CommLang: Communication for
Coachable Agents

John Davin, Patrick Riley, and Manuela Veloso

Carnegie Mellon University,
Computer Science Department, Pittsburgh, PA 15232
jdavin@cmu.edu, {pfr, mmv}@cs.cmu.edu

Abstract. RoboCup has hosted a coach competition for several years
creating a challenging testbed for research in advice-giving agents. A
coach agent is expected to advise an unknown coachable team. In
RoboCup 2003, the coachable agents could process the coach’s advice
but did not include a protocol for communication among them. In this
paper we present CommLang, a standard for agent communication which
will be used by the coachable agents in the simulation league at RoboCup
2004. The communication standard supports representation of multiple
message types which can be flexibly combined in a single utterance. We
then describe the application of CommLang in our coachable agents and
present empirical results showing the communication’s effect on world
model completeness and accuracy. Communication in our agents im-
proved the fraction of time which our agents are confident of player and
ball locations and simultaneously improved the overall accuracy of that
information.

1 Introduction

In a multi-agent domain in which agents cooperate with each other to achieve
a goal, communication between those agents can greatly aid them. Without
communication, agents must rely on observation-based judgments of their col-
laborator’s intentions [Il[2]. Communication enables agents to more explicitly
coordinate planning decisions and execute more intelligent group behaviors.

In domains where agents have only partial knowledge of their environment,
communication is equally important for sharing state information with other
agents. In most robotic applications, agents have only a limited view of the world.
However, by communicating with a team, they can achieve a much broader and
more accurate view of the world.

Communication is an important aspect of many multi-agent systems, es-
pecially those involving teamwork. Recently, several formal models have been
proposed to capture the decisions which agents face in communicating [3,4].

In RoboCup simulation soccer, teams of eleven agents compete against an
opposing team. A coach agent with global world information may advise the team
members. The soccer players are permitted to communicate through auditory
messages, but are limited to ten character messages. In order to maximize the

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 46-BE3 2005.
(© Springer-Verlag Berlin Heidelberg 2005

CommLang: Communication for Coachable Agents 47

utility of communication, particularly with messages limited to a short length,
we needed an architecture that could flexibly represent a number of different
types of information, and at the same time be easy to implement so that it
could be adopted as a standard.

Soccer simulation already has a language for communicating between the
coach and the players, named CLang, but no standardized language for inter-
agent communication has previously existed. While past work has developed gen-
eral purpose agent communication languages like KQML [5] and FIPA-ACL [6],
7], these languages are not directly applicable here because of the extremely
limited bandwidth between the players.

Other soccer simulation teams have used fixed communication schemes in
which they always send the same information — such as ball position and player
position. While this is beneficial, we believe that communication can be bet-
ter utilized.

In this paper we will present CommLang, a communication language that
we developed that has been adopted as the standard for coachable agents in
the 2004 RoboCup competition. We will also describe the algorithms we used
to implement CommLang in our coachable team, and show empirical evidence
that communication improved the accuracy of the world model in our agents.

2 The CommLang Communication Standard

We developed the CommLang communication standard to provide a means of
communicating between coachable agents. However, the protocol is also useful
for other simulation agents. It defines representations for different types of in-
formation to be transmitted over a limited bandwidth communication channel.
The standard specifies how to encode information into character strings for use
in the soccer server’s character-based communication messages.

CommLang addresses only the composition and encoding of communication
messages. We do not specify which specific types of information should be sent,
nor how often messages should be sent. We also do not specify how the received
information should be used, except that there should be some reasonable utiliza-
tion of the information. The messages are useful because they contain meaning
about what the sending agent’s beliefs are.

The soccer simulation server is configured to allow messages of ten characters
(out of a set of 73) to be sent each game cycle. Players receive one audio message
per cycle as long as a teammate within hearing range (50 meters) uttered a mes-
sage. We encode communication data into a character representation in order to
achieve full use of the 73 character range. After messages are received by a player,
they must be decoded to extract the numeric data from the character string.

2.1 Message Types

CommLang defines a set of message types which each represent a specific type
of information. A single communication message can be composed of multiple

48 J. Davin, P. Riley, and M. Veloso

Table 1. Message types used to encode information

Message Type Syntax Cost (characters)
Our Position 0, X, Y] 3

Ball Position 1, X, Y, #cycles]
Ball Velocity 2, dX, dY, #cycles]

We have ball 3, player#]
Opponent has ball 4, player#|
Passing to coordinate 6, X, Y]
Want pass 7]

Opponent(player#) Position
Teammate(player#) Position

8+player#-1, X, Y, #cycles]
19+player#-1, X, Y, #cycles]

R W0 NN R

[
[
[
%
Passing to player# [5, player#]
[
[
[
[

Table 2. Data types used in composing messages. Each data type uses one character
of a message

Data Type |Description Range Precision
X x coordinate of a position [-53, 53) 1.45
Y y coordinate of a position [-34, 34) 0.93
dX x component of a velocity [-2.7,2.7)] 0.074
dY y component of a velocity [-2.7,2.7)| 0.074
#cycles number of cycles since data last observed|[0, 72) 1
player# a player number [0, 11] 1
msg type ID|the message ID [0, 29] 1

message types. The available message types and their syntax are listed in Table[Tl
All message types begin with a message type ID which allows us to identify the
type of message and the number of arguments that will follow.

Each message type is made up of discrete units of data referred to as data
types. In the interest of simplicity and ease of implementation, each unit of
information (data type) uses one character of the message string. The data types
are shown in Table 21 Each data type has a precision that is determined by the
data range that is represented by the 73 characters. For the data types with
floating point ranges, the precision is equal to the maximum loss of accuracy
that can occur from encoding the data.

This design is flexible in that auditory messages sent to the server may be
variable lengths — they can be composed of any number of message types, as
long as they fit within the ten character limit.

Note that the teammate and opponent position message types do not have a
single message type ID. Rather, the player number of the player whose position
we are communicating is encoded in the message type ID. This allows us to
reduce the length of the teammate and opponent message types by including the
player number in the message ID number rather than as a separate argument.

Since the message type IDs do not yet use the full 73 character range, it
would be possible to modify some of the other message types to encode the

CommLang: Communication for Coachable Agents 49

char validchars[] = "0123456789abcde f ghijklmnopgrstuvwzyz
ABCDEFGHIJKLMNOPQRSUVWXY Z(). + — x /7 <> _";
NUMCHARS = 73

char getChar(int 4):
Returns validcharssINUMCHARS-1] if ¢ > NUMCHARS
Returns validchars[0] if ¢ < 0
Returns validchars][i] otherwise
int getIndex(char ¢):
Returns the index of character ¢ in the validchars array.

Fig. 1. Character conversion functions. The validchars array contains the characters
that are permitted in soccer server say messages

player number in the ID. However, we chose not to do this because it would
quickly use up the ID range, which may be needed in the future if new message
types are added to the standard.

The player number data type ranges from 1 to 11 to indicate a player number.
However, in the “We have ball” and “Opponent has ball” message types, a zero
may be sent as the player number to indicate that we know which team has the
ball, but do not know the player number.

Player and ball positions that are sent in messages should be the position
that the player predicts the object is at in the current cycle. The #cycles data
type should be equal to the number of cycles ago that the player received data
about the object.

2.2 Character Conversions

The task of converting numeric information such as a field position to a character
that can be accepted by the soccer server is handled by a character array and
lookup functions. A specification for these functions is shown in Fig. [These
functions are used to assist with encoding and decoding, as described in the next
two sections.

2.3 Encoding Messages

We encode communication messages by converting numeric information into
character encodings according to the equations in Table Bl The encoded strings
of each message type being used are then concatenated into one string and sent
to the soccer server as a say message.

The arithmetic in the encoding functions is done using standard floating point
operations, and the final integer result is the floor of the float value.

50 J. Davin, P. Riley, and M. Veloso

Table 3. Data Type encoding functions

Data type value|Encoded character value

X getChar((X+453)/106 * NUMCHARS)
Y getChar((Y+34)/68 * NUMCHARS)
dxX getChar((dX+2.7)/5.4 * NUMCHARS)
dy getChar((dY+2.7)/5.4 * NUMCHARS)
#cycles getChar(#cycles)

player# getChar(player#)

msg type ID getChar(msg type ID)

Table 4. Data Type decoding functions

Data type of character|Decoded numeric data

X (getIndex(X)/NUMCHARS * 106) - 53
Y (getIndex(Y)/NUMCHARS * 68) - 34
dx (getIndex(dX)/NUMCHARS * 5.4) - 2.7
dy (getIndex(dY)/NUMCHARS * 5.4) - 2.7
#cycles getIndex(#cycles)

player# getIndex(player#)

msg type ID getIndex(msg type ID)

2.4 Decoding Messages

When a coachable agent receives a message from a teammate, it decodes the
message by using the message type IDs to identify which message types are
included, and then decodes the data types according to the definitions in Table [

Am I ball owner?

Do we know where
bowner is && bowner

is close to ball (<15)
&& within hear range

ws

attentionto(ball owner)

Is there a player within
hear range that is upfield|
of us?

attentionto(random) attentionto(furthest_upfield_player)

Can we find a player
within hear range that
is closest to ball?

attentionto(random) attentionto(player_closest_to_ball)

Fig. 2. The decision process used to decide which teammate to listen to. “Atten-
tionto(random)” indicates that we allow the server to randomly choose a message
for us

CommLang: Communication for Coachable Agents 51

The message must be sequentially processed to extract each message type based
on its message type ID.

Since our numeric data was encoded in a character representation, the de-
coded data may be slightly different from the original data due to the limited
precision of each data type (see Fig. B).

2.5 CommLang in RoboCup 2004

To assist other teams in using CommLang, we have released our encoding and
decoding library at: http://www-2.cs.cmu.edu/ robosoccer/simulator/. The li-
brary is easily extensible — if new types of messages are added to the standard,
a new version of the library can be released that is backwards compatible with
previous versions so that teams’ existing code will still operate.

The RoboCup 2004 simulation league rules require that coachable agents con-
form to the communication standard as described in this paper. Since simulation
games will take place with teams composed of a mix of coachable agents from
different research teams, it is necessary for all agents to use the same standard
in order to understand each other. It is our belief that use of CommLang will
improve cooperation between coachable agents and lead to better performance
in the competition.

3 Implementation of Agent Communication

We have implemented coachable agent communication in the CMU Wyverns
coachable team which was used in RoboCup 2003. The version of our agents used
with our communication implementation also includes a number of improvements
that were made after the competition. We had two primary goals in mind while
adding communication to our agents:

1. To maximize the utility of agent communication by supporting all of the mes-
sage types and by increasing the likelihood that communicated information
would be useful to teammates.

2. To create a flexible architecture for experimenting with different strategies
of communication.

3.1 Sending Message Frequency

In our implementation, every player broadcasts a say message each cycle. We
chose this approach because it insures that every player receives a message every
cycle. Simulation soccer teams have sometimes used coordinated strategies of
having designated players speak each cycle. Our approach has the advantage
of allowing us to listen to any player each cycle and attempt to select the most
useful player to listen to. The trade-off is that we may not listen to a player for an
extended period of time even though it might have something important to say.

Another reason for using this message sending strategy is that the simulation
soccer coachable agents are mixed in with agents from other developers to make

52 J. Davin, P. Riley, and M. Veloso

up a coachable soccer team. Since the CommLang standard does not make any
stipulations about message frequency, our agents can not make any assumptions
about the sending strategy of teammates.

3.2 Receiving Messages

We use the soccer server “attentionto” command to focus our attention on a
teammate of our choosing. This is the player that we will receive say messages
from if it is within range. This control gives us the ability to establish preferences
towards listening to a certain player. For example, it is often preferable to listen
to the ball owner.

The determination of which player to listen to is handled by a decision tree,
which is shown in Fig. 2.

3.3 Selecting Message Composition

The most complex part of our implementation is the process for deciding what
message types to include in the messages that the player sends. We typically
have room to fit three or four message types within the ten character message
size limit. The strategy we use to choose those three or four message types is
an important factor in determining how useful the message is. For example, if
a teammate needs to know where the ball is, but we generally send our player
position instead, our messages will have little value.

Our implementation uses a randomized scheme to select the message com-
position. Each message type is assigned a weight which influences the likelihood
of using it in the final message. These weights are intended to reflect the overall
utility of the message type. Message types that we think are highly useful in
most situations are assigned higher values while less important message types

Table 5. The predicate functions and weights for each message type, as currently
configured in our agents

Predicates Weight
OurPos none 0.5
BallPos Confident of ball position 0.5
BallVel Confident of ball velocity 0.3
WeHaveBall Confident of ball info AND We own ball 0.2
currently
OppHasBall Confident of ball info AND Opponent team owns| 0.2
ball
PassToPlayer I executed a pass action within the last 5 cycles 1.1
PassToCoord I executed a pass action within the last 5 cycles 0.8
WantPass I’'m not ball owner AND I'm close to opponent 1.0
goal AND T have a good goal shot
OppPos(pnum) Confident of position of opponent player #pnum | 0.4
TeammatePos(pnum)|Confident of position of teammate player #pnum| 0.4

CommLang: Communication for Coachable Agents 53

M := Set of all message types
C := empty message
V'm € M, m.p = getWeight(m)
remove m; € M if predicate(m;) = false Or m;.p = 0.0
foreach m € M, from largest m.p to smallest
If(m.p >1.0)
insert m in C'
remove m from M
Normalize such that {m.p | m € M} is a probability distribution
while (M #0)
Choose m; from distribution defined by m;.p
If(m;.size + C.size < MAX_MESSAGE_SIZE)
insert m; in C
remove m; from M
Renormalize probability distribution in {m.p | m € M}
return C

Fig. 3. Algorithm for choosing message composition

receive lower values. We also define predicates to filter out any message types
that are not applicable at the current time. For example, PassToPlayer is only
applicable when we have the ball and are passing to a teammate. Table [] lists
the predicates and weights for each message type.

The weights are generally within the range 0.0 to 1.0, but may also go over
1.0. Values over 1.0 serve to guarantee that we use the message type, as long as
there is sufficient space. Weights of 0.0 indicate that the message type will never
be used.

The main component of the selection algorithm is shown in Fig. Bl We first
automatically select any message types that have a weight of 1.0 or greater.
Then, the main loop chooses the next message type to include based on the
probability distribution over the weights of the remaining message types.

This probabilistic selection method allows us to define preferences towards
using particular message types while at the same time insuring that we do not
use the same message composition every time.

In addition to the weighting strategy that is in use now, for testing we have
also implemented a uniform probability distribution and a distribution for se-
lecting messages from a fixed subset of message types (specifically, it can be used
to send only “Our Pos” and “Ball Pos” types).

3.4 Processing Communicated Information

When we receive messages, we process the information using our decoding library
routines and then integrate the information into the world model. Data in the
world model is replaced with communicated information only if the information
is more recent than the knowledge we already have. Therefore, we implicitly

54 J. Davin, P. Riley, and M. Veloso

trust our teammates’ communication information to be accurate and we store
it in the same location as our own sensor information. We use the world model
from the 2002 UvA Trilearn team [8], which is the team that was used as the
original base for our coachable agents.

Three of the message types — PassToPlayer, PassToCoord, and WantPass
— are messages that primarily communicate information about a teammate’s
intentions rather than perceptions of the world’s state. Therefore, we respond
to these message types by executing new actions as appropriate. If a PassTo-
Player message indicates a teammate is passing to us, we immediately attempt
to intercept the ball. Similarly, if a PassToCoord message indicates a teammate
is passing to a position close to us, we assume the pass is intended for us and
attempt to intercept. If a teammate indicates WantPass, we attempt to pass to
that player if we possess the ball or obtain possession within the next 5 cycles.
These actions can take precedence over coach advice.

4 Empirical Evaluation

After implementing communication in the Wyverns coachable agents, we ran
tests of the agents to assess the impact of communication on their world model.
Two sets of ten games were run, with each game lasting for 3000 cycles. In the
experimental set, communication was used, and in the other set communication
was not used.

In both sets, the opponent team consisted of the Wyverns coachable agents
as publicly released after RoboCup 2003. The other team, which contained the
communication support, was an improved version of the Wyverns players with
a number of bug fixes and skill improvements.

Both teams were advised by the CMU Owl coach [9]. Note that the improved
Wyverns won most of the games, with 26 total goals, versus 4 goals for the
original Wyverns. Therefore the experimental players were often in offensive
positions, but they also were sometimes forced into defensive formations.

Since the team’s formation can affect the frequency that we see other players,
we will note that our offensive players were numbers 2, 7, and 8, our midfielders
were 3, 5, and 6, the defensive players were 4, 9, 10, and 11, and player 1 is
always the goalie.

4.1 Improvements in Player Confidence

The players’ confidence in the ball and player locations was recorded during the
games. As currently configured, players are confident in a teammate or opponent
location when they have seen the player (or updated the player’s position based
on communicated data) within the last 12 cycles. Players are confident of the
ball’s location when they have seen or updated it within the last 6 cycles.
Figure] shows the mean percentage of time that the players were confi-
dent of the location of the ball and teammates. The communication group had
higher confidence rates for all the objects, with most of the increases statisti-

CommLang: Communication for Coachable Agents 55

100%

20% 4

7O 4

B0% 1

0% 1

Confidence Frequency
Confidence Frequency

40 4

=

409

pall 1 2 2 4 g L] 7 2 a i n
Ball or Teammate # Opponent #

Fig.4. Confidence frequencies for Fig. 5. Confidence frequencies for the
the ball and teammates. Error bars opponent players
indicate 95% confidence intervals

cally significant. Similar results were seen for our perceptions of the opponent
players (Fig. B).

Although this improvement was expected, it is still a useful confirmation of
one of communication’s benefits. Confidence frequencies play a role in many of
an agent’s behaviors - for example, our players can not pass to a teammate unless
they are confident in its location. Therefore, increases in confidence frequencies
can directly influence agent behavior.

4.2 Improvements in Positional Error

The other statistic compiled from the games was the positional error of players in
our world model. The positional error values are the difference between where a
player thinks a teammate or opponent is, and where that player actually is. The
actual positions were obtained using the soccer server’s full state mode. Errors
were only counted during cycles when the player was confident in the location
of the relevant teammate or opponent.

Figure [6l shows the players’ mean world model errors for each of their team-
mates, as well as the ball. The 95% confidence intervals could not be displayed
on the figure, but were small enough for the results to be statistically significant.

For most player positions, communicating players had lower mean error than
non-communicating players. This was especially noticeable with the estimates
of ball position, and the position of player 1 (the goalie).

Since position errors were only collected when the player was confident in the
location of the teammate, more error data was sampled in the communication
set than the non-communication set because communication increases the fre-
quency at which players are confident of teammate locations. As seen in Fig. [l
the error for communicating players actually increased on a small number of the
player-player comparisons. Since communicating players are confident of team-
mate locations more often, this may cause more error to accumulate in some
cases. For example, if an offensive player is out of visible range of the goalie, but
receives the goalie’s position via communication, the player will still be confi-
dent of the goalie’s location ten cycles later, but the estimated position could be
significantly different from the actual position.

56 J. Davin, P. Riley, and M. Veloso

—— e e e . e —mwm —em —
10
—_— T e i —— = rTEm l_. — 1
El

B BB BE
H
H
b
H
0
H
H
H
b

L
i
]
i
]
i
]
i
]
]

&
]
|
|
]
|
]
|
]
]

e
|
|
|

1 I_ll_il_ll_I’_Il_l’_IFIFI’_I

Fig. 6. Mean world model error (in meters) of ball and teammate positions. The num-
bers along the x axis indicate our players. Each column of bars above represents the
positional errors in that player’s world model. The players’ errors for themselves (the
diagonal on the graph) are displayed as zero because self position errors were not
recorded (communication does not affect those values). The charts for our perceptions
of the teammates listed on the y axis are scaled to a max error value of 20 (meters),
and the row for the ball is scaled to a max of 3

In addition, communication can also change the behavior of the agents in
subtle ways. For example, if players know the locations of their teammates more
often (due to communication), they may decide to scan the field less often.

CommLang: Communication for Coachable Agents 57

“[hl:.[l[.[.l:l[i[.[l

' m A
Add
1 B
0 f
@ @ E
0 i
il
Al

mdh
ddd

Fig. 7. Mean world model error of opponent positions. The column for our goalie’s

=
0
=
o

@

=

EmEESEE R R E =

Opponert #
th - -1 =

EE B P P B E B F

r

o

EE R EEEE =
A E FE R EH
Fle B F B B E F M
AP FlEFEE R
B ¥F B B B B H

Our Flayer #

world model (player 1 on x axis) was omitted because the errors were beyond the scale
of the graph — our goalie has high error for the opponents since it usually can not
see them. The rows for opponents 2-11 are scaled to a maximum of 4, and the row for
opponent 1 is scaled to 18

Therefore, changes in the accuracy of player world models are not necessarily
only a direct result of communication — additional factors may include changes
to scanning frequency, and other differences.

Communicating players had lower error values for their estimated position
of the ball. Their mean ball error was 22.6% lower than non-communicating
players. As seen previously in Fig.[d, communicating players were also confident
of the ball location 3.3% more often than non-communicating players.

58 J. Davin, P. Riley, and M. Veloso

For the agents’ estimation of opponent positions (Fig.[d), most of the changes
were less significant. This could indicate that our agents were able to get better
information about the opponents simply through visual sensors.

However, our players 4, 9, 10, and 11, which are defensive players, all improved
their estimation of most of the opponent positions (see columns 4, 9, 10, 11 in
the figure). Since our defensive players rarely get good visual information about
the opponents since they are far away most of the time, communication helps
them a great deal in this regard.

The empirical results with player confidences and positional errors are im-
portant because they show that communication improves not only the frequency
with which a player is confident of ball and player locations, but also the accu-
racy of the player’s position estimate. This improved accuracy and confidence
has implications in many areas. For instance, ball positions are used in calculat-
ing interception trajectories, ball handling strategies, and in determining which
advice from the coach is applicable.

In summary, coachable agent communication as implemented in the Wyverns
agents increases the frequency with which players are confident of the ball and
other players. It also decreases the error in the players’ estimation of where the
ball, teammates, and opponents are.

5 Conclusion and Future Work

The CommLang standard for RoboCup agent communication described in this
paper is a flexible and easily extendable language for communicating between
agents. It allows a variety of information to be exchanged, expanding the po-
tential for inter-agent cooperation. All coachable agents will need to use this
standard and we encourage other soccer simulation teams to do so also. Use of
this standard by simulation teams would improve agent interoperability, facili-
tating interesting mixed-team pickup games.

Our implementation of coachable agent communication in the Wyverns agents
is a versatile architecture that provides control over the composition of messages,
the source of received messages, and the incorporation of received information
into our world model. It is designed to construct communication messages that
maximize the usefulness of a limited bandwidth channel of communication.

In past studies of previous versions of the simulated soccer environment [10],
communication had an overwhelmingly positive effect. However, at that time, the
communication bandwidth was over 50 times the bandwidth allowed currently
(512 characters compared to 10 characters). The players in general did not need
to reason about what information to include in each communication.

We have presented an algorithm for determining message composition and
shown that our initial parameters lead to improvements in world model complete-
ness and accuracy. We have not yet explored what settings (e.g. weights of the
message types) yield the largest improvements and this is an interesting avenue for
future work. Further, reasoning about the tradeoffs involved in limited bandwidth
communication could lead to improvements in some performance measures.

CommLang: Communication for Coachable Agents 59

In the future we may wish to consider adding new message types to the
communication standard. One general type of message which is not currently in
the standard is the information request form (such as exists in KQML [5]). These
messages would allow agents to request from their teammates state information
such as the ball location.

Another area meriting consideration is the option to maintain information
about communication from earlier in the game. We could consider using earlier
communication to learn who to listen to — if one of our teammates often sends
more useful information than other agents, we could focus on that agent more
frequently.

Through our empirical evaluation, we found that communication improved
the world model knowledge of our coachable agents. We believe there is signif-
icant research potential in this area to determine how communication between
agents can be used to the greatest advantage.

References

1. Doyle, R., Atkinson, D., Doshi, R.: Generating perception requests and expecta-
tions to verify the executions of plans. In: AAAI-86. (1986)

2. Kaminka, G., Tambe, M.: I'm OK, you’re OK, we're OK: Experiments in dis-
tributed and centralized socially attentive monitoring. In: Agents-99. (1999)

3. Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent
markov decision processes: Model and experiments. In: Agents-2001. (2001) 616—
623

4. Pynadath, D., Tambe, M.: The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research 16 (2002) 389-423

5. Labrou, Y., Finin, T.: Semantics and conversations for an agent communication
language. In: IJCAI-97, Morgan Kaufmann publishers Inc.: San Mateo, CA, USA
(1997) 584-591

6. FIPA: FIPA ACL message structure specification. http://www.fipa.org/specs/
£ipa00061/XCO0061E.html| (2001)

7. FIPA: FIPA communicative act library specification. http://www.fipa.org/
specs/fipa00037/XC00037H.html| (2001)

8. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Multi-robot decision making using coordi-
nation graphs. In: Proceedings of the 11th International Conference on Advanced
Robotics. (2003)

9. Riley, P., Veloso, M.: Advice generation from observed execution: Abstract Markov
decision process learning. In: AAAI-2004. (2004) (to appear)

10. Riley, P.: Classifying adversarial behaviors in a dynamic, inaccessible, multi-
agent environment. Technical Report CMU-CS-99-175, Carnegie Mellon University
(1999)

http://www.fipa.org/specs/
fipa00061/XC00061E.html
http://www.fipa.org/
specs/fipa00037/XC00037H.html

	Introduction
	The CommLang Communication Standard
	Message Types
	Character Conversions
	Encoding Messages
	Decoding Messages
	CommLang in RoboCup 2004

	Implementation of Agent Communication
	Sending Message Frequency
	Receiving Messages
	Selecting Message Composition
	Processing Communicated Information

	Empirical Evaluation
	Improvements in Player Confidence
	Improvements in Positional Error

	Conclusion and Future Work
	References

