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Abstract. In this paper we show how a combination of multiple neuromorphic 
vision sensors can achieve the same higher level visual processing tasks as 
carried out by a conventional vision system. We process the multiple 
neuromorphic sensory signals with a standard auto-regression method in order 
to fuse the sensory signals and to achieve higher level vision processing tasks at 
a very high update rate. We also argue why this result is of great relevance for 
the application domain of reactive and lightweight mobile robotics, at the hands 
of a soccer robot, where the fastest sensory-motor feedback loop is imperative 
for a successful participation in a RoboCup soccer competition. 
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1   Introduction 

In our lab aVLSI technology is exploited in fast moving mobile robotics, e.g. 
RoboCup, where soccer-playing robots perform at high speed. The robot that is used 
in our experiments is a mid-sized league robot of roughly 45 by 45 cm with the 
weight of 17 kg. It is equipped with infra-red distance sensors in order to have fast 
and reliable obstacle avoidance, odometry together with an augmenting gyroscope in 
order to reduce the error in the odometry measurements, and contact sensitive bumper 
sensors. The robot uses a differential drive for movement, a pneumatic kicker for 
shooting and two small movable helper arms to prevent the ball from rolling away. 
The most important sensory inputs are streamed in via FireWire bus [1] from a digital 
color camera. The conventional part of vision processing is software based and 
consumes the most of the calculation resources on-board the robot [2].  

One of the most difficult tasks in the RoboCup environment is to pass the ball 
from one player to another. This requires first of all that the robot can control the ball, 
that is, be in possession of the ball so that it can be kicked in any direction and this 
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while the robot is in motion. The ball needs to be close to the robot in order to be 
successfully controlled. This can be achieved by carefully controlling the velocity and 
position of the robot relative to the ball. The closer the ball the lower the relative 
velocity must be in order for it not to bounce off due to its lower momentum. In order 
to solve this very demanding problem the robot has to know where the ball is located 
at each instant, which requires a fast read-out and processing of the sensory 
information. 

This paper is structured as follows: in section 2 a description of our robot platform 
is given. The neuromorphic vision sensors used in the experiments are presented in 
section 3. In sections 4 and 5 we investigate how the vision system can be aided with 
a set of neuromorphic vision sensors. Here, we present data collected during 
experimental runs with one of our robots. We show that this data is suitable for 
further higher level processing. In the conclusions we point out the importance of the 
results that were achieved. 

2   Our Robot Platform 

Our soccer playing robot has actuators in the form of motors to drive the robot and to 
turn a panning camera. A valve is used to kick the ball pneumatically and small robot 
arms attached to the left and right side of the robot keeps the ball in front of the kicker 
plate. Besides the optical sensors; camera and neuromorphic vision sensors, it has 
four infrared distance sensors, a contact sensitive bumper strip with rubber shield and 
odometry at the two actuated wheels of the robot. This is augmented by a gyroscope 
for fast turning movements. All of these peripheral devices are controlled by three 16 
bit micro controllers [3]. They are interconnected with a bus interface (CAN), which 
is a standard in German automobile industry. A notebook PC operates the main 
behavior program and the operating system can be either Windows or LINUX. The 
cyclic update rate is 30 Hz (~33 ms) which is governed by the frame rate of the digital 
camera.  

For the experiments we increased the observation rate for the neuromorphic 
sensors to the maximum effective sampling rate of the micro-controller module that is 
used which is ~2 kHz (0.5 ms). In the various experiments the signal is down-sampled 
to 153 Hz in the first experiments and up to 520 Hz in the more complex experiment 
done at the end.  

The robot vision system does color blob tracking of multiple objects and delivers 
information from tracked objects such as position of geometrical center, bounding 
box and pixel area. In our experiments only the position of the geometrical center of 
the tracked object will be used to train the system. Other parameters like pixel area 
are only used indirectly, in order to prepare data for the training phase of the system 
by removing noisy information from distant objects and other artifacts. The vision 
software used for the experiments is a free software developed at the Carnegie Mellon 
University and used be many robot teams in RoboCup tournaments [2]. 
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3   Neuromorphic Vision Sensors 

Neuromorphic vision chips process images directly at the focal plane level. Typically 
each pixel in a neuromorphic sensor contains local circuitry that performs, in real time, 
different types of spatio-temporal computations on the continuous analog brightness 
signal. Data reduction is thus performed, as they transmit only the result of the vision 
processing off-chip, without having to transmit the raw visual data to further processing 
stages. Standard CCD cameras, or conventional CMOS imagers merely measure the 
brightness at the pixel level, eventually adjusting their gain to the average brightness 
level of the whole scene. The analog VLSI sensors used in our experiments are made 
using standard 1.6 and 0.8 micron CMOS technologies. They are small 2x2 mm devices 
that dissipate approximately 100mW each. Specifically, they a 1D tracking chip [5], a 
1D correlation-based velocity sensor [6], a single 1D chip comprising both tracking and 
correlation-based velocity measurements, and, a gradient based 2D optical flow chip [7] 
(cf. Fig. 1). The 2D optical flow chip is the most complex and computes the optical flow 
on its focal plane providing two analog output voltages. The correlation-based velocity 
sensor delivers the mean right or left velocity computed throughout the whole 1D array 
in two separate output channels, and the 1D tracker sensor provides an analog output 
voltage that indicates the position of the highest contrast moving target present in its 
field of view. 

 

Fig. 1. Four aVLSI sensors mounted on the robot with their respective fields of view: The 2D 
optical flow sensor (A) is pointing straight towards the ground and also the absolute tracker (B) 
is pointing towards the ground. The absolute tracker (B) is mounted at a somewhat lower angle 
and with its pixel array vertically aligned. The 1D velocity tracker (C) and the 1D integrating 
tracker (D) are directed as a divergent stereo pair and with their respective pixel arrays 
horizontally aligned 

4   Experiment 

The purpose of the experiment is to investigate the plausibility of neuromorphic 
vision sensors to aid higher level vision processing tasks, in particular color blob 
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tracking, which is a standard real-time vision processing application that is 
commonly used on mobile robots. The test consists of two stages; firstly to 
investigate if the sensors can be made sensitive to a moving primary colored object, 
and secondly, to validate this against a somewhat cluttered background. The first 
stage is performed to investigate the precision of the prediction from the fused 
sensory readings. The second stage is performed to investigate if there is enough 
discrimination against background patterns, that is, to investigate the robustness of 
the object tracking task when the robot is moving. If both stages are successful, this 
would imply that a set of neuromorphic vision sensors, sensitive to different types 
of motion, could aid a standard camera based digital vision system in a local 
domain of the scene. 

The experiment consists of data collection from the neuromorphic vision sensors 
and the digital vision system of our soccer robot. The RoboCup soccer playing 
robot is fully autonomous and is operated by a behavior based program that was 
used by our team at the last world championships in Padua Italy [8],[9]. The test 
field is prepared with white lines that are located in a dense non-uniform grid and 
with an average spacing of about one meter. On the field there is a red soccer 
football. 

Three experiments were performed, two stationary experiments followd by a 
moving robot experiment at the end [10]. In the stationary epxeriments the ball is 
moved according to certain patterns that ensure an even distribution of events when 
projected onto the focal plane of the digital vision system. In the moving robot 
experiment the robot will constantly try to approach the red ball in different 
maneuvers. During this time the robot will frequently pass lines on the floor which 
will influence the tracking task of the red ball. Optimally, the system should 
recognize what sensory input belongs to white lines and what input belongs to the 
red ball.  

5   Experimental Results 

The first step here consists of two stationary robot experiments treated in section 5.1, 
and the second step, which is a moving robot experiment is treated in sec. 5.2. The 
data is evaluated by comparing the results from a standard dynamical prediction 
model. A root mean square error is calculated relative to the reference signal from the 
standard vision system. The prediction model used for the two stationary robot 
experiments is a multivariable ARX model of 4’th order. The model, which is part of 
the Matlab™ system identification toolbox is performing parametric auto-regression 
that is based on a polynomial least squares fit [11]. For the dynamic experiments the 
best overall model was chosen in the range of up to a 15 ARX coefficients (15’th 
order ARX model).  

5.1   Stationary Robot Experiment 

In the first experiment the robot is not moving and the camera and neuromorphic 
vision sensors detect a single moving red RoboCup soccer football. The ball was 
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moved so that it passed the robot along horizontal paths. The fields of view of the 
neuromorphic vision sensors were divided into four zones that were partially 
overlapping, and, within the field of view of the standard vision system. During the 
experiment the ball was thrown 25 times back and forth in each zone, but in random 
order, so that the data set would be easily split into a training and testing set of equal 
size. By this procedure the distribution would be close to uniformly distributed in the 
spatial domain and normally distributed in the temporal domain. The prediction 
efficiency is given in Table 1. For example, the horizontal x-channel over-all RMS 
error is about 13 %, which for the horizontal camera resolution of 320 pixels would 
mean an error of 40 pixels, which corresponds well to the fact that the resolution of 
the neuromorphic sensors is between 10 and 24 pixels. 

In the second experiment, that is performed with a non moving robot and the same 
boundary conditions as the first experiment, the ball was moved so that it passed 
straight towards the robot hitting it and bouncing off, where the ball with its 
significantly lower momentum got deflected in an elastic collision. During the 
experiment the ball was thrown 25 times back and forth in different zones, but in 
rando`m order and at the same point of impact, so that the data set would be easily 
split into a training and testing set of equal size. The results here indicate similar 
efficiency as for the first stationary robot experiment for estimating the horizontal 
trajectories of the red ball, but with a better efficiency in the estimation of the vertical 
component (cf. Table 1). An example from the stationary robot data set used in this 
experiment is given in Figs. 2 and 3, where the predicted result for the horizontal and 
vertical blob position is plotted with a solid line and the “ground truth” reference 
signal is plotted with a dotted line.  

Table 1. First and second stationary robot experiment – test data: The overall RMS error 
for the x-value and y-value of the centroid of the pixel blob delivered by the standard 
vision system (SVS). RMS errors of sensors are calculated only in their trig-points, thus 
the lower and irregular sample size. The RMS error is calculated as the difference between 
the object position given by the vision reference and the one predicted with the 4’th order 
ARX model 

Stationary robot Data Set I: 
(153 Hz, 4’th order ARX) 

X Channel  
RMS Error 

Y Channel RMS 
Error 

Sample 
size 

Over all SVS test data: 0.1295 0.1920 38044 
SR Opt. Flow: 0.1101 0.2069 569 
SR Tracker: 0.06250 0.1449 4647 
SR Velocity: 0.2405 0.2505 126 

SR Int. Tracker: 0.1089 0.2304 112 
Stationary robot Data Set II: 

(153 Hz, 4’th order ARX) 
Over all SVS test data: 0.1386 0.1245 37974 

SR Opt. Flow: 0.1586 0.1236 236 
SR Tracker: 0.1416 0.1172 1004 
SR Velocity: 0.1803 0.1210 387 

SR Int. Tracker: 0.1316 0.1396 161 
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Fig. 2. An example from the stationary robot experiment for the red channel of the standard 
vision system. The predicted result for the horizontal blob position is plotted with a solid line 
and the “ground truth” reference signal is plotted with a dotted line. The activity of all the 
sensors is indicated as trig-points on top of the reference signal 

 

Fig. 3. An example from the stationary robot experiment for the red channel of the standard 
vision system. The predicted result for the vertical blob position is plotted with a solid line and 
the “ground truth” reference signal is plotted with a dotted line. The activity of all the sensors is 
indicated as trig-points on top of the reference signal 



432 V. Bečanović, R. Hosseiny, and G. Indiveri 

 

5.2   Moving Robot Experiment 

Data is here continuously collected for 7 minutes and 10 seconds at a sampling rate of 
2 kHz (down-sampled to 520, 260 and 130 Hz) on a fully performing robot, where the 
robot during this time tries to approach the ball in different maneuvers. The 
experiment is validated by tracking red and white objects with the standard vision 
system of the robot, where the red object corresponds to the red ball and white objects 
correspond to lines present in the playfield. The reference information of the red 
object is as before used for the model fitting and the reference of the white objects 
(corresponding to white lines) is only used to indicate trig-points to be used for visual 
inspection and the calculation of the efficiency of discrimination against white lines. 
The system was trained with 75% of the full data set and tested with the remaining 
25%. The results are presented in Table 2, where the over-all RMS error is calculated 
for the test data for sampling frequencies of 130, 260 and 520 Hz. There are also 
RMS errors calculated in trig-points for the case when only the ball was visible (red 
object only) and when the red ball was visible with occluded background (red object 
and white line). It can be seen from Table 2 that the efficiency seems to be slightly 
improved at higher update rates and that the ball can be recognized in occluded scenes 
(with close to over-all efficiency). 

Table 2. Moving robot experiment – test data: The overall RMS error for the x-value and y-
value of the centroid of the pixel blob delivered by the standard vision system (SVS). RMS 
errors of the standard vision system are calculated for: (i) all test data, (ii) when a red object is 
present within the range of the sensors and (iii) when a red object and white line/s are present. 
The RMS error is calculated as the difference between the object position given by the vision 
reference and the one predicted with the corresponding ARX model 

Moving robot Data Set: 
(130 Hz, 12’th order ARX) 

X Channel  
RMS Error 

Y Channel RMS 
Error 

Sample 
size 

Over all SVS test data: 0.2574 0.2808 13967 
SVS Red object only: 0.2293 0.2331 758 

SVS Red obj. & White line: 0.2195 0.2714 320 
(260 Hz, 3’rd order ARX) 

Over all SVS test data: 0.2471 0.2679 27936 
SVS Red object only: 0.2241 0.2328 829 

SVS Red obj. & White line: 0.2113 0.2983 363 
(520 Hz, 6’th order ARX) 

Over all SVS test data: 0.2485 0.2568 55872 
SVS Red object only: 0.2247 0.2163 829 

SVS Red obj. & White line: 0.2116 0.2571 361 

6   Summary and Conclusions 

In our work we investigate if the output signals from a small number of neuromorphic 
vision sensors can perform the elementary vision processing task of object tracking. 
For our experiments we use a soccer playing robot as a test-platform, but are looking  
for a general application domain that can be used for all types of mobile robots, 
especially smaller robots with limited on-board resources. Those robots can benefit 
from neuromorphic vision systems, which provide high speed performance together 
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with low power consumption and small size which is advantageous for reactive 
behavior based robotics [12], where sensors are influencing actuators in a direct way. 
In general it can be concluded that the results of the robot experiments presented 
indicate that optical analog VLSI sensors with low-dimensional outputs give a robust 
enough signal, and, that the visual processing tasks of object tracking and motion 
prediction can be solved with only a few neuromorphic vision sensors analyzing a 
local region of the visual scene. 
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