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Abstract. We investigate the application of a Monte Carlo localiza-
tion filter to the problem of combining local and global observations of
a small, off-the-shelf quadruped domestic robot, in a simulated Smart
House environment, for the purpose of robust tracking and localization.
A Sony Aibo ERS-210A robot forms part of this project, with the ulti-
mate aim of providing additional monitoring, human-system interaction
and companionship to the occupants.

1 Introduction

This paper investigates using these two forms of sensors for the purpose of local-
izing a small quadruped robot in the presence of obstacles in a Smart House, as
an aid to elderly and disabled people. Such a robot may be guided by the Smart
House system, giving it the ability to interact with the occupants and visit areas
not otherwise covered by Smart House cameras. For example, the robot could be
used to disambiguate a person dropping out of view to retrieve an object from
a person falling over out of view of the Smart House cameras. A combination
of local (robot-based) and global sensing may be used to localize a robot in an
environment. In domestic environments, low-cost and minimal interference with
the existing environment are desirable, ruling out laser rangefinders, sonar rings
and omnidirectional cameras. However, cheap surveillance cameras are available
that can be mounted on the robot or fixed to the house.

This investigation makes use of the Sony Aibo ERS-210A Entertainment
Robot, shown in figure [{a). This robot possesses a low quality 176 x 144 pixel
camera, a 385MHz MIPS processor, wireless ethernet, quadruped omnidirec-
tional locomotion and approximately one hour of autonomous powered operation
per battery charge, making it well suited for the Smart House project. However,
its undulatory walking motion leads to poor odometry.

The system infrastructure used to operate and interface with the Aibo is
derived from the code released by the UNSW/NICTA rUNSWift 2003 RoboCup
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team [T] []. This code provides a framework for controlling the robot’s movements
and acquiring and processing sensory information.

This paper describes how a partial model of the environment and information
from robot odometry, the onboard camera and ceiling cameras can be combined
to track and guide the robot through the environment. Preprocessed images from
the robot camera are transmitted to the host PC and used to locate the robot
relative to known carpet patterns. The ceiling cameras are also used to track
potential robot positions. Both sensing techniques are complementary. Ceiling
cameras often suffer from occlusion and clutter whilst information from local
vision is often aliased or noisy. The process of sensor fusion makes use of Monte
Carlo localization (MCL) to deal with incomplete or ambiguous data from one
or both sources gracefully.

2 Environment

Four surveillance quality color overhead cameras are placed in the corners of
the Smart House environment such that their fields of view overlap in the unob-
structed center area as in figure[(b,c). These cameras feed four PCs for analysis.
The location of the robot on the floor is determined using a motion-based back-
ground subtraction technique [4] followed by a camera specific image to real
world coordinate Inappin The accuracy of the image to floor mapping is ap-
proximately 10cm at worst.

All of the joints in the legs and neck of the robot are equipped with angle
encoders with sub-degree accuracy. However, mechanism slop and flexing of the
robot structure reduce the accuracy of camera positioning relative to the ground
plane to about 1° in angle and 5mm in height. These errors as well as the in-
ability of the robot to determine which paws are in contact with the ground at
any one time, means the accuracy drops further as the robot walks. The angle
encoder values allow odometry to be obtained from the walk engine. Unfortu-
nately, asymmetry in the robot’s weight distribution, and variable slip in the
paws, introduce significant errors into this odometry.

The rUNSWift software can color segment the images from the robot’s on-
board camera in realtime using a static 3D color lookup table. The result-
ing images, called CPlanes, can then be fed to the PC host via the robot’s
wireless ethernet interface at close to realtime speeds for further processing.
Additionally, code exists to use the angle encoder values and known height
to locate points observed with the camera in 3D space relative to the robot.
However, positioning inaccuracies as discussed previously, combined with sig-
nificant barrel and chromatic distortion severely limit the accuracy of this
technique.

! The first author was a member of the 2003 rUNSWift RoboCup team. Components
of the work described in this paper extend work undertaken by the first author and
other members of the 2003 rUNSWift RoboCup team.

2 The crosses in figure[I] are normally used to calibrate the overhead cameras.
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Fig. 1. The Sony ERS-210A entertainment robot (a) and views from two of the Smart
House overhead cameras (b),(c). Note the large overlapping region and the white crosses
marked on the carpet. Arrows indicate the position of the robot

3 Monte Carlo Localization

The traditional approach to tracking is to use Kalman filtering that assumes
that sensor measurements have Gaussian distributions. However, at any point
in time the robot can only be represented in one location (with some vari-
ance). The MCL filter [2] allows multiple robot locations to be tracked because
it does not commit to one location and instead stores many candidate loca-
tions.

MCL utilizes modified grid-based Markov localization [2] to represent the
robot’s possible location (with heading) or state [ = [z, y, 0] as a probability map
in a discretized state space. This representation is modified using a motion model
and observation updates in order to track the robot’s location over time. At any
time, analysis of the distribution of locations allows the most probable location
to be determined. The process is Markovian because the current distribution
of possible locations is solely based on the distribution at the previous time
step, the current observations and the robot’s action. For efficiency, the grid is
probabilistically sampled, each sample called a particle within a set of particles
S =s;ili =1, ..., N. Each particle s; is a possible location I; of the robot with an
associated probability or weighting p;.

Initially the distribution of particles can be random over the whole space of
possible values of [ but will soon converge to form a tight distribution after a
number of iterations. In addition to .S, two other parameters are required. First,
a probability distribution p(I|l’,a): given the action a what is the probability
that the robot goes to [ from I’. Second, a probability distribution p(s|l): given
the location [ what is the probability of a sensor derived location occurring. At
each iteration, the steps in the algorithm are:

1. Generate N new samples probabilistically sampled from S. For each new
sample, the location is called I.

2. Generate [; from p(l|l',a) where a is the action or command given to the
robot. Set the probability p for each I; to be 1/N.

3. Generate a new value of p; for each new particle from p(s|l) i.e. p(l|s) —
aP(s|l) where a is used to ensure XY p; = 1.

4. If required, determine the best estimate of location from the distribution S.
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The main issues are defining the distributions p(s|l) (based on observations)
and p(I|l’,a) (based on odometry), and the number of particles N. In addition,
in this work, the algorithm requires some approximations because of speed con-
siderations.

4 Sensing

Preprocessing of data from the individual overhead cameras involves four ma-
jor steps. Firstly, segmentation of the candidate robot pixels is performed by
background subtraction using a mixture of Gaussians background model for
each pixel and color channel [7]. Foreground objects are extracted as long as
they move and are regarded as candidate robot pixels. Secondly, these pixels are
projected onto the ground plane via a camera-specific transformation to form
candidate robot points (assuming the robot is on the ground) [4]. Note that after
projection, the points do not necessarily form a single connected grouping but
will form clusters of points (figure ).

Thirdly, these candidate points are filtered based on geometric properties to
eliminate those that are unlikely to be part of the robot region. The filter applied
to these points uses the kernel matrix of figure[2, tuned to give a high response
when convolved with a cluster of points of a size that approximately matches the
size of the robot. Finally the output is thresholded to segment out the candidate
robot regions. The varying density of the candidate robot clusters is reduced by
using morphological dilation [5] to directly yield a measure of p(I|s).

A variant of the NightOwl system [6] developed by rUNSWift is used to
extract localization information from the onboard camera. In order to determine
a measure of p(l|s) this algorithm matches known patterns on the ground and
consists of three steps.

Firstly, patterns of interest on the gray-blue carpet are detected using a noise-
reducing edge detector applied to the color segmented CPlane [6]. These patterns
consist of white crosses on a 1m grid as in figure Il These points are then pro-
jected onto the ground plane. Points projected further than 75cm from the robot
are discarded due to potential inaccuracies. This process is illustrated in figure [3
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Fig. 2. The robot (a) from overhead appears as (b). The kernel (c) has a similarly

.
|

sized positive inner region and negative outer region of a width equal to the minimum
desired distance between detected robot clusters and other points. Three situations
arise: the kernel matches a robot-sized cluster (d), a cluster that is too small (e) and
too large (f)
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(a) () (d)
Fig. 3. Robot at (a) observing a feature through its camera (b), transmitting a color
segmented CPlane to the host PC (c) and projecting onto the ground plane in robot-
relative space (d). Arcs in (d) illustrate points 50cm and 100cm from the robot respec-
tively. Note that the robot is in the same position as in figure [I]

MApyax = 252
_J MApax —d  ,d<3 (1)
M{d)= { 3 (MApax —d) ,d>3

Fig. 4. Matching array MA in heightfield and equation formats. M(d) is the value of
an element of MA based on its distance d from the nearest matchable feature

The matching of these observed, projected points with the known environ-
ment model is performed on an as-needed basis given a query state [ for which
an estimation of p(l|s) is needed. Each edge point is transformed by this state
to real-world co-ordinates. These points are multiplied with a matching array
MA (figure d) which serves as a precomputed model of detectable environmen-
tal features. Locations in the array representing detectable features (crosses)
have a high value and the remaining locations are assigned successively lower
values based on their Manhattan distance from the nearest feature, through a
non-linear mapping (equation [I) to reduce the effect of outliers on the matching.

5 Implementation

The PC receives odometry information from the robot that is used to update
particle positions. These updates have most of their bias removed but retain
significant errors. To account for these errors in a probabilistic manner, the po-
sition updates are randomly scaled to between 90% and 100% in both position
and heading. This motion model may be demonstrated by ignoring sensors and
starting from a known state (figure B). As the robot moves, the density of parti-
cles S disperses to account for odometric errors. In this application, 3000 particles
were used to balance accuracy and ease of tracking against computational load.

The intermediate probability measure of each particle p; is updated based
on the observations from the cameras. The combination of each observational



Visual Tracking and Localization of a Small Domestic Robot 415

Fig. 5. The MCL filter tracking a non-sensing (dead reckoning only) robot (a), initial-
ized to the robot’s actual state. (b) shows successive actual robot positions

probability p(l|s;) from each source i to form a consolidated observational prob-
ability measure p(l|s) is performed via additive heuristic rules formulated to re-
duce the bias towards areas of the environment that may be observed by many
cameras. The result is summed with a probability measure p(l|s,) obtained from
the NightOwl subsystem evaluated at [. These summations are possible since the
measurements may be regarded as independent. Note that the overhead cameras
do not contribute heading information 6.

To extract a single most likely robot location, an iterative algorithm based on
Expectation-Maximization [3] is used. The average Euclidian distance in (z,y)
is found between the last iteration’s average position and each particle. A weight
of 9 is assigned to particles within this distance and 1 to all other particles to
reduce the effect of outliers. A weighted average position of all particles is then
computed and the process repeated. This is efficient since the algorithm tends
to converge within four iterations. The vector average of headings for particles
close to this average position is then used to determine the most likely robot
heading.

6 Experimental Results

When used alone, the data from the overhead cameras localized the robot even
in the presence of some ambiguity, as long as the robot moved. For example, in
figure 6] the robot has stopped long enough to become part of the background.
After it begins to move again, the background “hole” left by the robot tem-
porarily appears as another candidate robot (figure Glb)). The filter continues
to track the correct state once the hole becomes incorporated into the back-
ground.

When the robot is initially detected, the cluster of particles around the robot’s
state have uniformly distributed headings. As the robot moves, only those with
headings matching the robot’s heading will receive motion updates that cause
their future predictions to coincide with subsequent observations. This technique
is able to reliably achieve an angular accuracy of around 5° and spatial accuracy
of around 20cm after only 1m of motion using only one overhead camera. When
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Fig. 6. Example of the particle filter coping with an ambiguous observation. Sequence

(a) to (c) displays the input to the particle filter from the overhead camera, sequence
(d) to (f) displays the corresponding state of the particles in the particle filter

there is significant clutter and noise, multiple cameras improve accuracy and
speed of convergence.

The onboard camera is not able to globally localize the robot due to ambiguity
i.e. observing a single cross provides four potential locations and with twelve
crosses, 48 potential locations exist. Naturally, this ambiguity is reduced for
more unique, natural and less repeating carpet patterns and features. Despite
this, it is still possible to, over time, extract global localization from this data
by tracking each of these potential locations. As the robot moves, some of these
points may be eliminated as they coincide with environmental limits.

The combination of onboard localization information with that provided by
the overhead cameras greatly improved the speed and accuracy with which the
robot’s heading was determined. If a carpet feature was visible whilst the robot’s
heading was unknown, the filter would often snap to two or three potential
headings (due to similar features being visible in several directions). A small
amount of movement, often only 20cm, would then eliminate all but one of these
headings.

In the following example, only one overhead camera was used. The filter was
able to track the robot (figure[f(a)) up to when it moved behind the barrier. The
particles began to spread out as the robot was no longer visible (figure[@(b)). In
a second test, the onboard camera observed the cross in front of it and was able
to maintain localization and thus the cluster was tight even when the robot was
clearly still occluded (figure [7d)).

e .
(a) (b)

Fig. 7. Example of the robot moving behind an occlusion. In (a) and (b), no crosses
are visible to the robot and the particles diverge. In (c) to (e), the robot continues
to view crosses and maintain localization. Overhead camera vision (from the opposite
corner of the room to the experiment camera) when the robot was occluded appears
in (f)
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7 Conclusion

This paper has demonstrated that the Monte Carlo filter can successfully track
a robot using both local and global sensing and to cope when one of these is
absent. It can accommodate ambiguous as well as erroneous observations. A
number of heuristics have been used to speed up the algorithm such that real
time performance is achieved. The NightOwl algorithm has been demonstrated
to usefully contribute localization information in a real-world environment and
proved to be very effective as a sensor despite the highly ambiguous information
it provides because of the repeating pattern of crosses. Whilst NightOwl alone
may not be effective for global localization in this specific application it allows
the system to deal with inaccurate or missing global information.
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