
Adjoining Declassification and Attack Models by
Abstract Interpretation

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica,
Università di Verona,

Strada Le Grazie 15, I-37134 Verona, Italy
{roberto.giacobazzi, mastroeni}@sci.univr.it

Abstract. In this paper we prove that attack models and robust declas-
sification in language-based security can be viewed as adjoint transfor-
mations of abstract interpretations. This is achieved by interpreting the
well known Joshi and Leino’s semantic approach to non-interference as
a problem of making an abstraction complete relatively to a program’s
semantics. This observation allows us to prove that the most abstract
property on confidential data which flows, here called private observa-
tion, and the most concrete harmless attacker observing public data,
here called public observable, both modeled as abstractions of the pro-
gram’s semantics, are respectively the adjoint solutions of a completeness
problem in standard abstract interpretation theory. In particular declas-
sification corresponds to refining the given model of an attacker with the
minimal amount of information in order to achieve completeness, which
is non-interference, while the harmless attacker corresponds to remove
this information. This proves an adjunction relation between two basic
approaches to language-based security: declassification and the construc-
tion of suitable attack models, and allows us to apply relevant techniques
for abstract domain transformation in language-based security.

Keywords: Abstract interpretation, language-based security, declassifi-
cation, abstract non-interference, attack models, adjunction, complete-
ness.

1 Introduction

Many security problems in language-based security are problems of confiden-
tiality: If a user wants to keep some information confidential then he/she has
to state a policy stipulating that no data visible from other users is affected by
confidential data. This policy allows programs to manipulate private data, unless
visible/public outputs of those programs do not improperly reveal information
about the data [27]. The usual way used to show confidentiality is to prove that
an attacker cannot observe any difference between the public outputs of any
two executions differing only in their private inputs with the assumption that
an attacker (or unauthorized user) is allowed to view only information that is

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 295–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 R. Giacobazzi and I. Mastroeni

not confidential. In this case the program is said to satisfy non-interference [18],
also referred as secrecy [27, 30]. In standard non-interference, the attacker can
fully analyze concrete computations. In this case, any conservative type/data-
flow/control-flow analysis of information flows would discard all the programs
which may provide any explicit or implicit concrete flows from confidential to
public resources. Standard non-interference is therefore often too strict for practi-
cal use in language-based security. In order to adapt security policies to practical
cases, it would be essential to know how much an attacker may learn from a pro-
gram by (statically) analyzing its input/output behavior. This idea has recently
lead to the definition of the notion of abstract non-interference [13] and robust
declassification [32]. Abstract non-interference provides a method for modeling
attackers as abstract interpretations [7, 8] of the input/output program behav-
ior, in particular it is used for characterizing the most powerful attacker which
is not able to disclose confidential properties, in the following called harmless.
Declassification corresponds to downgrade the sensitivity of data in order to
accommodate with (intentional) information leakage. In [13] and [32] system-
atic methods have been designed for deriving and analyzing respectively attack
models and declassification by characterizing what information flows from confi-
dential to public variables. It is clear that the stronger is the attacker, the more
information can be released by the program. Namely, the more concrete is the
model of the harmless attacker, the more abstract is the confidential informa-
tion that can be kept private. This observation gives an intuitive explanation
of the adjoint relation existing between the actions of weakening attackers and
declassifying private information. In particular, we can note that when we derive
the most concrete attack model, then we are looking for the most concrete pub-
lic observer , while when we derive the most abstract property the flows during
computation, for characterizing abstract declassification, we are looking for the
most abstract private observable. Indeed, the most concrete public observer is the
model of the most powerful attacker that can observe only public data. While,
the most abstract private observable is the minimal amount of information that
a program releases during computation.

In this paper, we prove that this duality corresponds precisely to an adjunc-
tion in the lattice of abstract interpretations. This is achieved by considering
abstract non-interference as a generalization of both declassification for passive
attackers and attack models. In this setting we prove that, under non restrictive
hypotheses, abstract non-interference corresponds precisely to making abstract
interpretation complete (see [17]) relatively to the denotational semantics of pro-
grams. This derives directly from an abstract interpretation-based generalization
of Joshi and Leino’s approach to secure information flows [19], which makes this
approach equivalent to a completeness problem. Abstract interpretation plays
a key role here, providing the adequate framework where program properties
can be compared by considering their relative precision. In particular, we prove
that declassification and attack models are adjoint notions and they correspond
respectively to the minimal complete refinement, providing the most concrete
public observer property of the program and the minimal complete simplifica-
tion, providing the most abstract private observable property of the program.

Adjoining Declassification and Attack Models by Abstract Interpretation 297

2 Basic Notions

If S and T are sets, then ℘(S) denotes the powerset of S, S × T denotes the
Cartesian product of S and T , S�T denotes the set-difference between S and
T , S � T denotes strict inclusion, and for a function f : S → T and X ⊆ T ,
f(X) def= {f(x) | x ∈ X} and f−1(X) def=

{
x

∣∣f(x) ∈ X
}
. We will often denote

f({x}) as f(x) and use lambda notation for functions. Function composition
λx. f(g(x)) is denoted f◦g. 〈P,≤〉 denotes a poset P with ordering relation ≤,
while 〈P,≤,∨,∧,	,⊥〉 denotes a complete lattice P , with ordering ≤, lub ∨, glb
∧, greatest element (top) 	, and least element (bottom) ⊥. Often, ≤P will be
used to denote the underlying ordering of a poset P , and ∨P , ∧P , 	P and ⊥P

denote the basic operations and elements if P is a complete lattice. id def= λx. x
and T

def= λx. 	. If S ⊆ P then ↓S
def= {x ∈ P | ∃y ∈ S. x ≤ y}. ↓x is a shorthand

for ↓ {x}. f : C → A is (completely) additive if f preserves lub’s of all subsets
of C (emptyset included). Continuity holds when f preserved lubs’s of chains.
Co-additivity and co-continuity are dually defined.

It is well known that abstract domains can be equivalently formulated ei-
ther in terms of Galois connections or closure operators [8]. A pair of functions
α : C → A and γ : A → C on posets, denoted 〈C,α,A, γ〉, forms an adjunction or
a Galois connection (GC) if for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y).
α (resp. γ) is the left- (right-)adjoint to γ (α) and it is an additive (co-additive)
function. Additive and co-additive functions f admit respectively right and left
adjoint: f+ def= λx.

∨ {
y

∣∣f(y) ≤ x
}

and f− def= λx.
∧ {

y
∣∣x ≤ f(y)

}
respec-

tively. Remember that (f+)− = (f−)+ = f [2]. If in addition for any a ∈ A:
α(γ(a)) = a, then we call 〈C,α,A, γ〉 a Galois insertion (GI) of A in C. In
GC-based abstract interpretation the concrete and abstract domains, C and A,
are complete lattices [7]. An upper (lower) closure operator ρ : P → P on a
poset P is monotone, idempotent, and extensive: ∀x ∈ P. x ≤P ρ(x) (reductive:
∀x ∈ P. x ≥P ρ(x)). The set of all upper (lower) closure operators on P is
denoted by uco(P) (lco(P)). Let 〈C,≤,∨,∧,	,⊥〉 be a complete lattice. Closure
operators are uniquely determined by the set of their fix-points ρ(C). For upper
closures, X ⊆ C is the set of fix-points of ρ ∈ uco(C) iff X is a Moore-family
of C, i.e., X = M(X) def= {∧S | S ⊆ X} — where ∧∅ = 	 ∈ M(X), iff X is
isomorphic to an abstract domain A in a GI (C,α,A, γ), i.e., A ∼= ρ(C) with
ι : ρ(C) → A and ι−1 : A → ρ(C) being an isomorphism, and (C, ι◦ρ,A, ι−1)
is the GI, i.e., ρ = γ◦α. In this case ρ(C) is a complete sub-lattice of C iff ρ
is additive. Dual properties can be derived for lower closures. Therefore uco(C)
is isomorphic to the so called lattice of abstract interpretations of C [8]. If C is
a complete lattice then uco(C) and lco(C) ordered point-wise are also complete
lattices. For upper closures 〈uco(C),�,�,�, T, id〉 where for every ρ, η ∈ uco(C),
{ρi}i∈I ⊆ uco(C) and x ∈ C: ρ � η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
(�i∈Iρi)(x) = ∧i∈Iρi(x); and (�i∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x. Dual prop-
erties can be derived for 〈lco(C),�,�,�, λx. x, λx. ⊥〉. In the following we will
find particularly convenient to identify closure operators (and therefore abstract
domains) with their sets of fix-points. The disjunctive completion of an abstract

298 R. Giacobazzi and I. Mastroeni

domain ρ ∈ uco(C) is the most abstract domain able to represent the concrete
disjunction of its objects:

�
(ρ) = �{η ∈ uco(C)|η � ρand η is additive}. ρ is

disjunctive iff
�

(ρ) = ρ (cf. [8]). Closure operators and partitions are related
concepts. If π is a partition (viz. an equivalence relation), then [·]π is the cor-
responding equivalence class. A closure η ∈ uco(℘(S)) induces a partition on
S:

{
[x]η

∣∣x ∈ S
}
, where [x]η

def=
{

y
∣∣η(x) = η(y)

}
. The most concrete closure

that induces the same partition of values as η is P(η) def=
�

(
{

[x]η
∣∣x ∈ S

}
). η is

partitioning if η = P(η) [24]. The idea is that P(η) is the most concrete closure
such that for any y ∈ P(η(x)): P(η(x)) = P(η(y)), while in general η(y) ⊆ η(x).

In abstract interpretation there are two equivalent ways to express the sound-
ness of an abstraction [7]. Let C be a complete lattice, f : C → C, (C,α,A, γ)
be a Galois insertion, and f � : A → A. Then (C,α,A, γ) and f � provide a sound
abstraction of f if α◦f ≤ f �◦α, or equivalently (by adjunction) if f◦γ ≤ γ◦f �.
While these two definitions of soundness are equivalent, they are not equivalent
when equality is required, i.e., when we consider completeness [8, 17, 15]. In the
first case α◦f = f �◦α means that no loss of precision is accumulated by approx-
imating the input arguments of a given semantic function; while f◦γ = γ◦f �

means that no loss of precision is accumulated by approximating the result
of computations on abstract objects. We follow [15] where the first is called
backward (B) and the second is called forward (F) completeness. The problem
of making abstract domains B-complete has been solved in [17]. These results
have been extended to F-completeness in [15]. The key point in this construc-
tion is that there exists an either B or F-complete abstract function f � in an
abstract domain A iff the best correct approximation α◦f◦γ of f in A is re-
spectively either B or F complete. This means that both F and B completeness
are properties of the underlying abstract domain A relatively to the concrete
function f . In a more general setting let f : C1 → C2 be a function on complete
lattices C1 and C2, and ρ ∈ uco(C2) and η ∈ uco(C1) be abstract domains.
〈ρ, η〉 is a pair of B(F)-complete abstractions for f if ρ◦f = ρ◦f◦η (f◦η =
ρ◦f◦η). In the following we denote by F(C1, C2, f) def=

{
〈ρ, η〉

∣∣f◦η = ρ◦f◦η
}

and B(C1, C2, f) def=
{

〈ρ, η〉
∣∣ρ◦f = ρ◦f◦η

}
. A pair of domain transformers can

be associated with any completeness problem. We follow [11, 16] by defining a
domain refinement and simplification as any monotone function τ : uco(L) →
uco(L) such that X ⊆ τ(X) and τ(X) ⊆ X respectively. In [17] and [15], a
constructive characterization of the most abstract refinement, called complete
shell , and of the most concrete simplification, called complete core, of any do-
main, making it F or B complete, for a given continuous function f , is given as
a solution of a simple domain equation. Consider the following basic operators
on closures:

RF
f

def= λX. M(f(X)) RB
f

def= λX. M(
⋃

y∈X max(f−1(↓y)))
CF

f
def= λX.

{
y ∈ L

∣∣ f(y) ⊆ X
}

CB
f

def= λX.
{

y ∈ L
∣∣max(f−1(↓y)) ⊆ X

}

Let
 ∈ {F ,B}. In [17] the authors proved that the only interesting cases, as
far as the refinement and simplification towards
-completeness are concerned,
are respectively the most concrete β � ρ such that 〈β, η〉 is
-complete and
the most abstract β � η such that 〈ρ, β〉 is
-complete. In particular given
ρ ∈ uco(C2) the
-complete shell of η ∈ uco(C1) is R�,ρ

f (η) def= η � R�
f (ρ) and given

Adjoining Declassification and Attack Models by Abstract Interpretation 299

η ∈ uco(C1) the
-complete core of ρ ∈ uco(C2) is C�,η
f (ρ) def= ρ � C�

f (η). Note that,
when f is additive max

{
x

∣∣f(x) ≤ y
}

=
∨ {

x
∣∣f(x) ≤ y

}
= f+, and therefore

B(C1, C2, f) = F(C2, C1, f
+) (cf. [15]). Clearly, when we consider f : C → C and

the constraint η = ρ, the above construction requires a fixpoint iteration on ab-
stract domains: R�

f (ρ) = gfp(λX. ρ � R�
f (X)) and C�

f (ρ) = lfp(λX. ρ � C�
f (X))

are called respectively the absolute
-complete shell and core of ρ for f . Note
that R�

f ∈ lco(uco(C)) and C�
f ∈ uco(uco(C)) (see [17]). It is worth noting that

-complete cores and shells are adjoint abstract domain transformers, i.e., ad-
joint functions on the lattice of abstract interpretations. For any η ∈ uco(C1)
and ρ ∈ uco(C2): C�

f (η) � ρ ⇔ η � R�
f (ρ), which, by definition, implies that

C�,η
f (ρ) � ρ ⇔ η � R�,ρ

f (η).

3 Information Flows in Language-Based Security

Confidential data are considered private, labeled with H (high-level of secrecy),
while all other data are public, labeled with L (low-level of secrecy) [10]. Non-
interference can be naturally expressed by using semantic models of program
execution. This idea goes back to Cohen’s work on strong dependency [6], which
uses denotational semantics for modeling how information can be transmitted
among variables during the execution of programs. Therefore non-interference
for programs essentially means that “a variation of confidential (high or private)
input does not cause a variation of public (low) output” [27]. When this happens,
we say that the program has only secure information flows [1, 6, 9, 10, 19, 30].
This situation has been modeled by considering the denotational (input/output)
semantics �P � of the program P . In particular we consider programs where
data are typed as private (H) or public (L). Program states in Σ are functions
(represented as tuples) mapping variables in the set of values V. Finite traces
on Σ are denoted Σ+. If T ∈ {H, L}, n = |{x ∈ Var(P)|x : T}|, and v ∈ Vn, we
abuse notation by denoting v ∈ VT the fact that v is a possible value for the
variables with security type T. Moreover, we assume that any input s, can be
seen as a pair (h, l), where sH = h is a value for private data and sL = l is a value
for public data. In this case, non-interference can be formulated as follows.

A program P is secure if
∀ input s, t . sL = tL ⇒ (�P �(s))L = (�P �(t))L

This problem has been formulated also as a Partial Equivalence Relation (PER)
[28]. In this case we have that if the input data are equivalent under a given equiv-
alent relation, then also the outputs are equivalent w.r.t. a corresponding output
equivalence relation. The result is a PER on the domain of semantic functions
which can be used to model non-interference as above, where the equality on
public data can be generalized by considering any equivalence relation. McLean
[23] treats possibilistic notions of non-interference for even non-deterministic
programs in the context of trace semantics: A program is secure if the set of its
traces is closed under a function purge, i.e., it is insensible by varying private

300 R. Giacobazzi and I. Mastroeni

inputs. In [22] the different notions of possibilistic non-interference are modeled
in a odular way. Ryan [25], Focardi and Gorrieri [12] all provide a comprehen-
sive treatment of non-interference for concurrent programs in process algebras,
where attackers are modeled as view relations on computation trees. The stan-
dard methods for checking non-interference are based on security-type systems
and data-flow/control-flow analysis. Type-based approaches are designed in such
a way that well-typed programs do not leak secrets. In a security-typed language,
a type is inductively associated at compile-time with program statements in such
a way that any statement showing a potential flow disclosing secrets is rejected
[29, 31]. Similarly, data-flow/control-flow analysis techniques are devoted to stat-
ically discover flows of secret data into public variables [3, 4, 19, 20, 28]. All these
approaches are characterized by the way they model attackers (or unauthorized
users).

3.1 Joshi and Leino’s Semantic-Based Approach

As we said above, a program is secure if any observation of the initial and final
values of l : L do not provide any information about the initial value of h : H [19].
Assume that the adversary has knowledge of the program text and of the initial
and final values of l. The idea of Joshi and Leino’s semantic-based approach
to language-based security is that of characterizing secure information flow as
program equivalence, denoted by .=. They introduce a program HH

def= “assign to
h an arbitrary value”. Consider a program P for which we want to prove non-
interference. The program HH;P corresponds to run P after having set h to an
arbitrary value; while the program P ; HH discards the final value of h resulting
from the execution of P . Then a program P is said to be secure if

HH ; P ; HH
.= P ; HH (1)

where .= is the relational input/output semantic equality between programs,
namely for each possible input the two programs have to show the same public
output behavior. In order to understand this characterization, note that the
occurence of HH after P on both the sides of the equality indicates that only
the final values of l are of interest, whereas the occurence of HH before P on
the left side of the equality indicates that the program starts with an arbitrary
assignment to h. Clearly, the two programs are input/output equivalent provided
that the final value of l, produced by P , does not depend on the initial value of
h, which is indeed standard non-interference.

3.2 Robust Declassification

Declassifying information means downgrading the sensitivity of data in order
to accommodate with (intentional) information leakage. Robust declassification
has been introduced in [32] as a systematic method to drive declassification by
characterizing what information flows from confidential to public variables. In
particular the observational attacker’s capability is modeled by using equivalence
relations as in PER models, and declassification of private data is obtained by

Adjoining Declassification and Attack Models by Abstract Interpretation 301

Table 1. Narrow and Abstract Non-Interference

[η]P (ρ) if ∀h1, h2 ∈ VH, ∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒ ρ(�P �(h1, l1)L) = ρ(�P �(h2, l2)L)

(η)P (φ �[]ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL . ρ(�P �(φ(h1), η(l))L) = ρ(�P �(φ(h2), η(l))L)

manipulating these relations in a semantic-driven way. The semantics considered
is the operational semantics, defined on a transition system. The authors provide
a systematic method for identifying what the attacker could observe of the con-
crete execution traces, by iteratively refining the initial equivalence relation on
the states of the program. At this point they declassify private data in order to
make the attacker blind , i.e., they declassify all the information that the attacker
can get from the execution of the program.

3.3 Abstract Non-interference: Attack Models and Declassification

In [13], we introduced the notion of abstract non-interference modeling weaker
information flows, attack models, and declassification. The idea is that an at-
tacker can observe only some properties, modeled as abstract interpretations of
program semantics, of public concrete values. The model of an attacker , also
called attacker , is therefore a pair of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)),
representing what an observer can see about, respectively, the input and output
of a program. The notion of narrow (abstract) non-interference (NNI) represents
the first weakening of standard non-interference relatively to a given model of an
attacker. When a program P satisfies narrow non-interference we write [η]P (ρ),
see Table 1. The problem with this notion is that it introduces deceptive flows
[13]. Consider, for instance, l := l ∗ h2, and consider the public input prop-
erty of being an even number, then we can observe a variation of the output’s
sign due to the existence of both negative and positive even numbers, reveal-
ing flows which does not depend on the private data, here called deceptive.
In order to avoid deceptive interference we introduce a weaker notion of non-
interference, having no deceptive flows, yet modeling properties of informations
flows. Namely, such that, when the attacker is able to observe the property η
of public input, and the property ρ of public output, then no information flow
concerning the property φ of the private input is observable from the public
output. Namely, φ represents the confidentialinformation that we want to keep
secret. We call this notion abstract non-interference (ANI). When a program P
satisfies abstract non-interference we write (η)P (φ �[]ρ), where φ ∈ uco(℘(VH)),
see Table 1. Note that [id]P (id) models exactly (standard) non-interference.
Moreover, we have that abstract non-interference is a weakening of both, stan-
dard and narrow non-interference: ∀η, ρ ∈ uco(℘(VL)), φ ∈ uco(℘(VH)) we have
[id]P (id) ⇒ (η)P (φ �[]ρ) and [η]P (ρ) ⇒ (η)P (φ �[]ρ), while standard non-
interference is not stronger than the narrow one due to deceptive interference.
A proof-system has been introduced, in [14], for checking both narrow and ab-
stract non-interference inductively on program’s syntax. Moreover, in [13], two
methods for deriving the most concrete output observation for a program, given

302 R. Giacobazzi and I. Mastroeni

the input one, for both narrow and abstract non-interference are provided. In
particular the idea is that of collecting in the same abstract object all the ele-
ments that, if distinguished, would generate a visible flow. These most concrete
output observations that are not able to get information from the program P ,
observing η in input, are, respectively, denoted [η]�P �(id) and (η)�P �(φ �[]id),
both in uco(℘(VL)). The following theorem is proved in [13].

Theorem 1. [η]�P �(id) � ρ ⇔ [η]P (ρ), (η)�P �(φ �[]id) � ρ ⇔ (η)P (φ �[]ρ).

Example 1. Consider the properties Sign and Par , observing, respectively, the sign
and the parity of integers, and the program fragment: P

def= l := l ∗ h2. with se-
curity typing: h : H and l : L and V = Z. Let us check if (id)P (id �[]Par). Note
that Par(�P �(2, 1)L) = Par(4) = 2Z while Par(�P �(3, 1)L) = Par(9) = 2Z + 1,
which are clearly different, therefore in this case (id)P (id �[]Par) doesn’t hold. Con-
sider (id)P (Sign �[]Par). Note that Par(�P �(Sign(2), 1)L) = Par(�P �(Sign(3), 1)L) =
Par(0+) = Z. In this case it is simple to check that (id)P (Sign �[]Par) holds.

The PER model of non-interference can be easily viewed as a narrow non-
interference, where both input and output closures are partitioning, i.e., equiv-
alence relations. This corresponds to narrow non-interference because in PERs
the equivalence is checked on the program outputs of concrete computations.
Abstract non-interference provides also an abstraction of declassification. The
idea is to find the most abstract property on confidential data which has to be
declassified in order to guarantee secrecy. For this reason we define the set:

ΠP(η, ρ) def=
{

〈
{

h ∈ VH
∣∣ρ(�P �(〈h, η(l)〉)L) = A

}
, η(l)〉

∣∣ l ∈ VL, A ∈ ρ
}

This is the set of all the pairs 〈H,L〉 ∈ ℘(VH)×℘(VL), such that, whenever η(l) =
L, then for any h1, h2 ∈ H, no information flows, from private to public, are
revealed. We use this set for deriving a partition of private data that guarantees
secrecy. For each L ∈ η, we define ΠP(η, ρ)|L

def=
{

H
∣∣ 〈H,L〉 ∈ ΠP(η, ρ)

}
. The

partition on private data corresponds to the most abstract property that flows
when the property observed of the public input is L: P(

�
L∈η M(ΠP(η, ρ)|L)).

In particular, it is the most abstract property that contains all the possible
variations of private inputs that generate insecure information flows, and the
most concrete such that each variation generates a flow. namely it uniquely
represents the confidential information that flows into the public output.

Example 2. Consider the program fragment: P = l := l ∗ h2. ΠP(id,Par) is the
set

{
〈Z, l〉

∣∣ l ∈ 2Z
}

∪
{

〈2Z, l〉
∣∣ l ∈ 2Z + 1

}
∪

{
〈2Z + 1, l〉

∣∣ l ∈ 2Z + 1
}
. Therefore by

using the notation above we have that if l ∈ 2Z then ΠP(id,Par)|l = Z and if l ∈ 2Z+1
then ΠP(id,Par)|l = {2Z, 2Z + 1}. Therefore, the most abstract partition on private
data that can be declassified is {2Z, 2Z+1}. In other words we have that by looking at
the low variables the only information that leaks about the high variables is its parity.

In order to adapt robust declassification in [32] to the abstract non-interference
case, we consider passive attackers only and a semantics observing the ini-
tial and the final states of computations. We follow [32] in defining the in-
formation leaked by an equivalence relation transformer S[η, ρ] on Σ for each

Adjoining Declassification and Attack Models by Abstract Interpretation 303

η, ρ ∈ uco(℘(VL)): s1S[η, ρ]s2 iff sL1 ≈η sL2 and (∀σ, δ ∈ Σ+ .σ� = s1 ∧ δ� = s2 ⇒
σL
� ≈ρ δL�)), where s1, s2 ∈ Σ and given σ ∈ Σ+ such that |σ| = n ∈ N, then

σ�
def= σ0 and σ�

def= σn−1. It is simple to verify that s1S[η, ρ]s2 iff η(sL1) = η(sL2)
and ρ(�P �(s1)L) = ρ(�P �(s2)L). This means that abstract robust declassification
a la [32] characterizes the information leaked in narrow abstract non-interference.

4 Abstract Non-interference as Completeness

Joshi and Leino’s semantic-based approach to information flows [19] provides
a way to interpret abstract non-interference as the problem of making an ab-
straction complete [17]. By considering the denotational semantics of a program
P , �P �, the Equation (1) becomes a backward completeness problem if the se-
mantics of HH could be described as an abstraction. Indeed the program that
associates with private variables an arbitrary value can be interpreted as the
closure that abstracts the private value to the “don’t know” abstract value, i.e.,
the set of all the possible values for private variables. Therefore, we define the
function H : ℘(V) −→ ℘(V) in the following way (recall that ℘(V) = ℘(VH×VL)):
H = λX. 〈VH,XL〉, where XL def=

{
l
∣∣ 〈h, l〉 ∈ X

}
. It is straightforward to prove

its monotonicity, idepotence and extensivity. So we can finally conclude that

�HH ; P ; HH� = H◦�P �◦H and �P ; HH� = H◦�P �
Hence, non-interference can be equivalentely formalized as H◦�P �◦H = H◦�P �.
The idea is to transform H in order to either refine or simplify the abstraction
in order to get completeness, and therefore, abstract non-interference. This can
be achieved by observing that H = λX.〈T(XH), id(XL)〉 = λX. 〈VH,XL〉 where
XH def=

{
h

∣∣ 〈l, h〉 ∈ X
}
, i.e., H is the product of respectively the top and the

bottom abstractions in the lattice of abstract interpretations. This means that
the private component of H can only be refined as well as we can only abstract
its public one. In this context we prove that shell and core have two different and
precise meanings: The core abstracts the public component, viz. characterizes the
most concrete attacker that cannot disclose private properties; The shell refines
the private component, viz. characterizes the most abstract property that flows.

Example 3. Consider P
def= l := 2∗h, where l : L and h : H. P violates non-interference,

e.g., H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) = H(〈Z, 2Z〉) = 〈Z, 2Z〉 while H◦�P �(〈2, 3〉) =
H(〈2, 4〉) = 〈Z, 4〉, where 2Z �= 4. We can derive the complete core of H, which
makes the program secure. From [17] we have to keep only those elements whose in-
verse image is a fix-point of H: CB

�P �(H) =
{

〈Z, L〉
∣∣ { 〈h, l〉

∣∣ 〈h, 2h〉 ⊆ 〈Z, L〉
}

⊆ H
}
.

Note that 〈H, L〉 ∈ H iff H = Z and 〈Z, L′〉 ⊇ 〈Z, 2Z〉 iff L′ ⊇ 2Z. More gen-
erally, if L′ ⊆ 2Z + 1 then 〈h, 2h〉 ∈ 〈Z, L′〉 is false for each possible L′, namely{

〈h, l〉
∣∣ �P �(〈h, l〉) ⊆ 〈H ′, L′〉

}
= ∅ ⊆ H which means that in this case 〈Z, L′〉 is kept.

Therefore, CB
�P �(H) =

{
〈Z, L〉

∣∣L ∩ 2Z ∈ {2Z, ∅}
}
, which corresponds to abstracting

the public output in the domain that is not able to distinguish even numbers. Let
H def= CB

�P �(H), then in the previous case, we have H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) =
H(〈Z, 2Z〉) = 〈Z, 2Z〉 and H◦�P �(〈2, 3〉) = H(〈2, 4〉) = 〈Z, 2Z〉.

304 R. Giacobazzi and I. Mastroeni

Example 4. Consider P
def= l := (2h + 1) mod 2, where l : L and h : H. The pro-

gram violates non-interference, since, for instance, H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) =
H(〈Z, {−1, 1}〉) = 〈Z, {−1, 1}〉 while H◦�P �(〈2, 3〉) = H(〈2, 1〉) = 〈Z, 1〉 and {−1, 1} �=
1. We compute the complete shell of H, characterizing the flowing property of private
information, namely we add all the inverse images of the elements in H.

RB
�P �(H) = H � M(

⋃
L′∈℘(VL)

{
〈h, l〉

∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉
}
)

If −1 /∈ L′, then
{

〈h, l〉
∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉

}
= 〈Z+

0 , Z〉, Z+
0

def= Z+ ∪ {0}. If
1 /∈ L′, then

{
〈h, l〉

∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉
}

= 〈Z−, Z〉. Finally, if 1, −1 /∈ L′ we
have

{
〈h, l〉

∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉
}

= ∅.
Hence

⋃
L′∈℘(VL)

{
〈h, l〉

∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉
}

= {〈Z+
0 , Z〉, 〈Z−, Z〉, ∅}, which

implies RB
�P �(H) = H∪

{
〈H, L〉

∣∣H ∈ {Z+
0 , Z−}, L ∈ ℘(VL)

}
. Let H def= RB

�P �(H), then
H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z+

0 , 3〉) = H(〈Z+
0 , {1}〉) = 〈Z+

0 , {1}〉 and H◦�P �(〈2, 3〉) =
H(〈2, 1〉) = 〈Z+

0 , {1}〉.

The idea is to embed the model of an attacker as given in ANI, i.e., as a pair of
input/output abstractions, in H. Consider 〈℘(VH) × ℘(VL), ∅, 〈VH, VL〉,�,∩,⊆〉,
where 〈H1, L1〉�〈H2, L2〉 def= 〈H1 ∪H2, L1 ∪L2〉. It is well known that there exists
an obvious GI of ℘(VH) × ℘(VL) in ℘(VH × VL), corresponding to the closure:
Split

def= λX.
{

〈x1, x2〉
∣∣∃y. 〈x1, y〉 ∈ X, ∃z. 〈z, x2〉 ∈ X

}
. Consider the closure

ρ ∈ uco(℘(VL)). We define Hρ ∈ uco(℘(VH) × ℘(VL)):

Hρ
def= λX. 〈VH, ρ(XL)〉

Note that H = Hid, Hρ ∈ uco(℘(VH×VL)), and for any pair of disjunctive closures
η, ρ ∈ uco(VL) and for all 〈h, l〉 ∈ V: Hρ◦�P �◦Hη(〈h, l〉) = Hρ◦�P �(〈h, l〉) ⇔
Hρ◦�P �◦Hη = Hρ◦�P �.
Theorem 2. Let ρ, η ∈ uco(℘(VL)).

1. [η]P (ρ) ⇐ Hρ◦�P �◦Hη = Hρ◦�P �;
2. If ρ is disjunctive and η is partitioning: [η]P (ρ) ⇒ Hρ◦�P �◦Hη = Hρ◦�P �.

This result proves that narrow abstract non-interference is weaker than the gen-
eralization of Joshi and Leino’s semantics-based approach to non-interference,
which is a problem of completeness. Moreover, when both η and ρ are equiva-
lence relations on public data as in the PER model, i.e., partitioning closures,
then the narrow abstract non-interference is equivalent to the PER model of
non-interference, which is in turn an instance of a completeness problem. The-
orem 2 gives a slightly weaker condition, because all partitioning closures (viz.
equivalence relations) are disjunctive, but the converse does not hold in gen-
eral. In order to extend Theorem 2 to model abstract non-interference we have
to modify the program semantics. The idea is to consider an abstract seman-
tics that is applied to abstract (public and private) data. Consider the clo-
sures η ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)). We define the abstract semantics as
�P �η,φ def= λ〈h, l〉. �P �(φ(h), η(l)). Note that, for any pair of disjunctive closures
η, ρ ∈ uco(VL) and for all 〈h, l〉 ∈ V: Hρ◦�P �η,φ◦Hη(〈h, l〉) = Hρ◦�P �η,φ(〈h, l〉) ⇔
Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ.

Adjoining Declassification and Attack Models by Abstract Interpretation 305

Theorem 3. Consider η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)):

1. (ρ)P (φ �[]η) ⇐ Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ;
2. If ρ and η are disjunctive then: (η)P (φ �[]ρ) ⇒ Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ.

Once again abstract non-interference is weaker than the generalization of Joshi
and Leino’s approach to non-interference. Additivity is here sufficient in order
to let these two approaches equivalent. Because the only difference in the corre-
sponding completeness problems is due to the program semantics: �P �η,φ in the
case of abstract non-interference and �P �id,id in the narrow case, in the following,
without loss of generality we consider the abstract non-interference case being
more general. In the following we omit the apex B from shells and cores, since
we will consider always backward completeness.

5 The Most Concrete Observer as Completeness Core

In [13] we gave a method for systematically deriving the most concrete harmless
attacker (canonical attacker) associated with a given program. By Theorem 3,
the most concrete public observer, which is the canonical attacker, can be derived
as the most concrete abstraction satisfying the following completeness problem:

H◦�P �η,φ◦Hη = H◦�P �η,φ (2)

Then we have the following result which allows us to specify the canonical at-
tacker as the fix-point of an abstract domain simplification.

Theorem 4. Let η ∈ uco(℘(VL)) be disjunctive and φ ∈ uco(VH). Then we have
CHη

�P �η,φ(H) =
{

〈VH, L〉
∣∣ { 〈h, l〉

∣∣ �P �(〈φ(h), η(l)〉) ⊆ 〈VH, L〉
}

∈ Hη

}
and

{
L ∈ ℘(VL)

∣∣∣ 〈VH, L〉 ∈ CHη

�P �η,φ(H)
}

= (η)�P �(φ �[]id).

Example 5. Consider the following program fragment, with l : L and h : H.

P
def= while h do l := 2l; h := 0 endw �P �(〈h, l〉) =

{
〈h, l〉 if h = 0
〈h, 2l〉 otherwise

We look for the core in order to make 〈H, H〉 complete for the map �P �id,id = �P �.
CH

�P �(H) =
{

〈Z, L〉
∣∣∀l ∈ VL . l ∈ L ⇔ 2l ∈ L

}

It is straightforward to show that CH
�P �(H) is the domain that abstracts the pub-

lic data in the domain
�

(
{

n{2}N
∣∣n ∈ 2Z + 1

}
), where {2}N def=

{
2k

∣∣ k ∈ N
}
. Let

H def= CH
�P �(H), then, H◦�P �◦H(〈3, 5〉) = H◦�P �(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, 5{2}N〉,

and H◦�P �(〈3, 5〉) = H(〈Z, {10}〉) = 〈Z, 5{2}N〉 while we have that H◦�P �◦H(〈3, 5〉) =
H◦�P �(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, {5, 10}〉 and, on the other hand, H◦�P �(〈3, 5〉) =
H(〈Z, {10}〉) = 〈Z, {10}〉.

306 R. Giacobazzi and I. Mastroeni

6 The Most Abstract Observable as Completeness Shell

We are now interested in applying the same construction for characterizing the
most abstract private observable, used for defining abstract declassification as
a solution of a completeness problem in abstract interpretation. Namely, we
are interested in the most abstract property that can be declassified in order
to guarantee abstract non-interference. By Theorem 3, this information can be
obtained by solving the following completeness problem:

Hρ◦�P �η,id◦Hη = Hρ◦�P �η,id (3)

Lemma 1. Let ρ, η ∈ uco(℘(VL)). Then we have

RHρ

�P �η,id(Hη) = Hη � M(
{ {

〈h, l〉
∣∣ρ(�P �(〈h, η(l)〉)L) ⊆ L

} ∣∣L ∈ ρ
}

.

Moreover, let R def= RHρ

�P �η,id(Hη), then forall l, l′ ∈ VL, h, h′ ∈ VH we have

R(〈h, l〉) = R(〈h′, l′〉) iff ρ�P �(〈h, η(l)〉)L = ρ�P �(〈h′, η(l′)〉)L

It is worth noting that, by Lemma 1, the partition induced by the complete
shell of Hη on ℘(VH × VL) for Equation 3 does not affect the closure η. This
means that the only component which is actually refined is the abstraction on
private data, and this corresponds to the most abstract partitioning of private
data which can be declassified. This means that any change between equivalent
elements does not produce insecure flows, as stated in the following theorem.

Theorem 5. Let ρ, η ∈ uco(℘(VL)) then for each l, l′ ∈ VL, h, h′ ∈ VH we have
η(l) = η(l′) = Y ⇒ (R(〈h, l〉) = R(〈h′, l′〉) iff h′ ∈ [h]ΠP(η,ρ)|Y).

Next examples show how declassification can be obtained as solutions of com-
pleteness problems.

Example 6. Consider the program fragment: P
def= l := l ∗ h2, with l : L and

h : H. We want to find the shell in order to make 〈H,HPar 〉 complete for the
map �P �id,id = �P �.

RHPar
�P � (H) = H �

({
〈Z, Z〉, 〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉,
〈2Z + 1, 2Z〉, ∅

})

This means that the reduced product generates also 〈2Z, 2Z + 1〉 and there-
fore 〈2Z, l〉 for each l ∈ 2Z + 1. Let H def= RHPar

�P � (H), then for instance, we have
HPar◦�P �◦H(〈2, 3〉) = HPar◦�P �(〈2Z, 3〉) = 〈Z, 2Z〉, and HPar◦�P �(〈2, 3〉) =
〈Z, 2Z〉, while HPar◦�P �◦H(〈2, 3〉) = HPar◦�P �(Z, 3) = 〈Z, Z〉. As in abstract
desclassification [13], this means that it is the variation of parity of the private
input that generates the flow.

Adjoining Declassification and Attack Models by Abstract Interpretation 307

Example 7. Consider ρ
def= {Z, 2Z, 4Z, 2Z+1, ∅} and η

def= {Z, 2Z, 5Z, 10Z, ∅}, and
consider P

def= if (h mod 4) = 0 then l := l ∗ h else l := l ∗ (h + 1) fi. Compute,
first, the abstract robust declassification, as was introduced in [13]:

ΠP(η, ρ) =

⎧⎪⎪⎨
⎪⎪⎩

〈4Z ∪ 4Z + 3, 10Z〉, 〈4Z + 1 ∪ 4Z + 2, 10Z〉,
〈4Z ∪ 4Z + 3, 5Z〉, 〈4Z + 1, 5Z〉, 〈4Z + 2, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z + 1 ∪ 4Z + 2, 2Z〉,
〈4Z ∪ 4Z + 3, Z〉, 〈4Z + 1, Z〉, 〈4Z + 2, Z〉

⎫⎪⎪⎬
⎪⎪⎭

Therefore we obtain ΠP(η, ρ)|10Z = ΠP(η, ρ)|2Z = {4Z ∪ 4Z + 3, 4Z + 1 ∪ 4Z + 2}
and ΠP(η, ρ)|5Z = ΠP(η, ρ)|Z = {4Z ∪ 4Z + 3, 4Z + 1, 4Z + 2}. Consider now the
completeness shell:

{
〈h, l〉

∣∣ �P �(〈h, η(l)〉)L ⊆ 4Z
}

= 〈4Z ∪ 4Z + 3, Z〉{
〈h, l〉

∣∣ �P �(〈h, η(l)〉)L ⊆ 2Z
}

= 〈Z � 4Z + 2, Z〉 ∪ 〈4Z + 2, 2Z〉{
〈h, l〉

∣∣ �P �(〈h, η(l)〉)L ⊆ 2Z + 1
}

= ∅

Then we have:

RHρ

�P �(Hη) = Hη ∪

⎧⎨
⎩

〈Z � 4Z + 2, Z〉 ∪ 〈4Z + 2, 2Z〉, 〈4Z ∪ 4Z + 3, Z〉,
〈Z � 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉, 〈4Z ∪ 4Z + 3, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z ∪ 4Z + 3, 10Z〉

⎫⎬
⎭

For instance, consider 5, 9 ∈ 4Z + 1, 6, 10 ∈ 4Z + 2, and note that η(10) =
η(30) = 10Z, and η(5) = η(15) = 5Z. Note that, 5 and 6 are in the same
equivalence class in the partition induced by ΠP(η, ρ)|10Z, written 5 ∈ [6]10Z,
and indeed R(〈5, 10〉) = R(〈6, 30〉) = 〈Z, 10Z〉 ∈ Hη. While 5 ∈ [9]5Z �= [6]5Z,
namely the partition induced by ΠP(η, ρ)|5Z distinguishes 5 and 6, while 5 is
together with 9 and 6 is together with 10, i.e., 10 ∈ [6]5Z. On the other hand, we
have R(〈5, 5〉) = R(〈9, 15〉) = 〈Z � 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉 and R(〈6, 5〉) =
R(〈10, 15〉) = 〈Z, 5Z〉 ∈ Hη.

7 Adjoining Observer and Observable Properties

Modeling attackers means characterizing the maximal power of an harmless at-
tacker, i.e., an attacker which cannot disclose confidential information. Declas-
sification, instead, means characterizing the information revealed to a fixed at-
tacker. As we have seen in the previous sections, the model of the most concrete
harmless attacker corresponds to the most concrete public observer, while ab-
stract declassification is characterized by the most abstract private observable.
Clearly there is a strong relation between these two notions, since the more pow-
erful is the attacker and the less is the confidential information that can be kept

308 R. Giacobazzi and I. Mastroeni

private. In other words the index of the
partition of private data for declassifica-
tion is proportional to the cardinality of
the abstract domain which models the
precision of the property that the at-
tacker can observe. This phenomenon
can be precisely characterized in the
lattice of abstract interpretations as an
adjunction. In the picture on the right
we provide a graphical representation of
the relation existing between the most
concrete property modeling the public

observer and the most abstract property modeling the private observable. In par-
ticular, this picture represents the fact that the more powerful is the attacker,
i.e., the more concrete is the observer property, the less confidential information
can be kept private, i.e., the more concrete is the private observable. The pic-
ture also shows that, if the arrow represents the most abstract private observable,
then when we declassify a confidential property which lays in the white area we
cannot guarantee the secrecy of the program, since we are declassifying less than
what is released by the semantics. When we declassify a property in the filled
area instead, then we guarantee that no confidential information leakage may
happen. Moreover, note that, even if the attacker is able to observe the value
of public variables, then the observable property can be more abstract then the
identity since the program itself can behave as a firewall for certain confidential
properties, such as the square operation hides the sign. In Section 5 and 6 we
proved that both problems can be viewed as instances of the problem of making
abstractions complete. While the private observable for declassification is ob-
tained by computing the completeness shell, the public observer, modeling the
attacker, is obtained by computing the completeness core in the same complete-
ness problem. These abstract domain transformers have been proved in [17] to
be adjoint functions (see Sect. 2) on the lattice of abstract interpretations. The
following result is therefore a consequence of Theorem 4 and 5.

Theorem 6. Let η ∈ uco(℘(VL)) be a disjunctive property, and P a program.
Then we have that id � (η)�P �(id �[]id) ⇔ P(�L∈ηM(ΠP(η, id)|L)) � T.

This result provides a precise mathematical framework where declassification
and attack models can be systematically derived and compared with each other
in the lattice of abstract interpretations by applying well known methods for
abstract domain design. This framework can be the basis for applying quanti-
tative methods and metrics [5] for measuring the amount of information leaked
relatively to a given attack model, or by adjunction, the precision of an attacker
under the hypothesis that some information can be declassified. Recently, sev-
eral papers treated the problem of defining non-interference for programs where
confidential information can be explicitly declassified [26, 21]. In these cases the
authors define weaker notions of non-interference in order to model confinement

Declassification

Secure

The most abstract observable

The most concrete observer

i d

> id

Adjoining Declassification and Attack Models by Abstract Interpretation 309

problem for programs where there are intentional releases of information. Ab-
stract non-interference, instead does not consider explicit declassification, but
allows to characterize which confidential information should be declassified, at
least, in order to guarantee only secure information flows.

References

1. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations
and model. Technical Report M74-244, MITRE Corp. Badford, MA, 1973.

2. T.S. Blyth and M.F. Janowitz. Residuation theory. Pergamon Press, 1972.
3. C. Bodei, P. Degano, F. Nielson, and H.R. Nielson. Static analysis for secrecy and

non-interference in networks of processes. In Proc. of PaCT’01, volume 2127 of
Lecture Notes in Computer Science, pages 27–41. Springer-Verlag, 2001.

4. D. Clark, C. Hankin, and S. Hunt. Information flow for algol-like languages. Com-
puter Languages, 28(1):3–28, 2002.

5. D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con-
fidential data. In Workshop on Quantitative Aspects of Programming Laguages
(QAPL ’01), volume 59 of Electronic Notes in Theoretical Computer Science. El-
sevier, Amsterdam, 2001.

6. E. S. Cohen. Information transmission in computational systems. ACM SIGOPS
Operating System Review, 11(5):133–139, 1977.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL ’77), pages 238–252. ACM Press, New York, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming
Languages (POPL ’79), pages 269–282. ACM Press, New York, 1979.

9. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, 1976.

10. D. E. Denning and P. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, 1977.

11. G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view of abstract domain design.
ACM Comput. Surv., 28(2):333–336, 1996.

12. R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. Journal of Computer security, 3(1):5–33, 1995.

13. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing
non-interference by abstract interpretation. In Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’04), pages 186–197. ACM-Press, NY, 2004.

14. R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. In Annual
Conference of the European Association for Computer Science Logic (CSL’04),
volume 3210, pages 280–294. Springer-Verlag, 2004.

15. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refine-
ments in abstract model-checking. In P. Cousot, editor, Proc. of The 8th Internat.
Static Analysis Symp. (SAS’01), volume 2126 of Lecture Notes in Computer Sci-
ence, pages 356–373. Springer-Verlag, 2001.

310 R. Giacobazzi and I. Mastroeni

16. R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. of the 24th
Internat. Colloq. on Automata, Languages and Programming (ICALP ’97), volume
1256 of Lecture Notes in Computer Science, pages 771–781. Springer-Verlag, Berlin,
1997.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. of the ACM., 47(2):361–416, 2000.

18. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20. IEEE Computer Society Press,
1982.

19. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37:113–138, 2000.

20. P. Laud. Semantics and program analysis of computationally secure information
flow. In Programming Languages and Systems, 10th European Symp. On Program-
ming, ESOP, volume 2028 of Lecture Notes in Computer Science, pages 77–91.
Springer-Verlag, 2001.

21. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
Proc. of the 32st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’05). ACM-Press, NY, 2005. To appear.

22. H. Mantel. Possibilistic definitions of security – an assemply kit –. In Proc. of the
IEEE Computer Security Foundations Workshop, pages 185–199. IEEE Computer
Society Press, 2000.

23. J. McLean. Proving noninterference and functional correcteness using traces. Jour-
nal of Computer security, 1(1):37–58, 1992.

24. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract inter-
pretation. In D. Schmidt, editor, Proc. of the 13th European Symposium on Pro-
gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages
18–32. Springer-Verlag, 2004.

25. P. Ryan. Mathematical models of computer security – tutorial lectures. In R. Fo-
cardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of Lecture Notes in Computer Science, pages 1–62. Springer-Verlag, 2001.

26. A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proc. of the International Symp. on Software Security (ISSS’03), Lecture Notes in
Computer Science. Springer-Verlag, 2004.

27. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J.
on selected ares in communications, 21(1):5–19, 2003.

28. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

29. C. Skalka and S. Smith. Static enforcement of security with types. In ICFP’00,
pages 254–267. ACM Press, New York, 2000.

30. D. Volpano. Safety versus secrecy. In Proc. of the 6th Static Analysis Symp.
(SAS’99), volume 1694 of Lecture Notes in Computer Science, pages 303–311.
Springer-Verlag, 1999.

31. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2,3):167–187, 1996.

32. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. of the IEEE
Computer Security Foundations Workshop, pages 15–23. IEEE Computer Society
Press, 2001.

	Introduction
	Basic Notions
	Information Flows in Language-Based Security
	Joshi and Leino’s Semantic-Based Approach
	Robust Declassi.cation
	Abstract Non-interference: Attack Models and Declassi.cation

	Abstract Non-interference as Completeness
	The Most Concrete Observer as Completeness Core
	The Most Abstract Observable as Completeness Shell
	Adjoining Observer and Observable Properties
	References

