

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 59 – 75, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Boosting the Performance of Multimedia Applications
Using SIMD Instructions*

Weihua Jiang1,2, Chao Mei1, Bo Huang2, Jianhui Li2, Jiahua Zhu1,
Binyu Zang1, and Chuanqi Zhu1

1 Parallel Processing Institute, Fudan University,
220 Handan Rd, Shanghai, China, 200433

{021021073, 0022704, jhzhu, byzang, cqzhu}@fudan.edu.cn
2 Intel China Software Center, Intel China Ltd,

22nd Floor, No. 2299 Yan’an Road (West), Shanghai, China, 200336
{weihua.jiang, bo.huang, jian.hui.li}@intel.com

Abstract. Modern processors’ multimedia extensions (MME) provide SIMD
ISAs to boost the performance of typical operations in multimedia applications.
However, automatic vectorization support for them is not very mature. The key
difficulty is how to vectorize those SIMD-ISA-supported idioms in source code
in an efficient and general way. In this paper, we introduce a powerful and ex-
tendable recognition engine to solve this problem, which only needs a small
amount of rules to recognize many such idioms and generate efficient SIMD in-
structions. We integrated this engine into the classic vectorization framework and
obtained very good performance speedup for some real-life applications.

1 Introduction

Multimedia extensions (MME), e.g. Intel MMX/SSE/SSE2 [13] [14], Motorola AltiVec
 [21] etc, have become an integral part of modern processors. They enable the exploi-
tation of SIMD parallelism in multimedia applications. These SIMD ISA include not
only simple SIMD arithmetic instructions (addition, subtraction etc) but also many
domain-specific SIMD instructions to accelerate multimedia typical operations, e.g.
saturated arithmetic, which are widely used in multimedia applications.

However, these MMEs have been underutilized so far due to the immaturity of
compiler automatic vectorization support. Programmers are largely restricted to
time-consuming methods such as inline assembly or intrinsic functions [16].

Many researches have been conducted in automatic vectorization for MMEs. Most
of them have regarded this utilization as a similar problem with the vectorization for

* This research supported by: NSF of China (60273046), Science and Technology Committee of

Shanghai, China (02JC14013) and Intel-University Cooperation Project (Optimizing Compiler
for Intel NetBurst Microarchitecture).

60 W. Jiang et al.

vector machines [7] [11] [15] [16]. However, these two problems have different key
points [3]. Traditional vectorization [1] [2] focuses on how to transform source code
into vector form correctly, while the utilization of MMEs shall concentrate on how to
automatically recognize and then vectorize MME supported idioms in multimedia ap-
plications [3]. There are so many idioms needed to be recognized that an efficient and
general way is of critical importance. Some researchers exerted efforts in this direction,
the typical work is Bik et al [12]’s use of tree-rewriting technique to recognize two
kinds of operations, saturation and MAX/MIN. Simple rigid pattern match methods [6]
and specific languages (e.g. SWARC [17]) have also been used.

In this paper, we solve the key problem by introducing a powerful and extendable
recognition engine and integrating it into the classic vectorization algorithm [1] as an
extra stage. In this stage, we first normalize the program representation. Then we use an
extended Bottom-Up Rewriting System (BURS) [9] to decide possible vectorization
plans (VP) for each statement. Based on these single-statement VPs, we find out
multi-statement vectorizable idioms and their VPs. Finally, we determine the best VP
set for the loop. Experimental results show that we can vectorize many operations in
real-life multimedia applications and the performances are quite satisfactory. We
achieved a 10.86% average speedup for Accelerating Suite of Berkeley Multimedia
Workload [4][5]. Compared with the vectorization ability of Intel C Compiler (ICC)
version 8 [10], our compiler outperforms it by about 8% on average.

In short, this paper offers: (1) a uniform and flexible engine to recognize many
vectorizable idioms, (2) a mechanism to generate efficient code for vectorized idioms
and (3) very good performance for several real-life multimedia applications.

The rest of paper is organized as follows: In section 2, we show the key points in
utilizing MMEs. After briefly introducing related techniques in section 3, we present
our algorithm and discuss it in detail in section 4. In section 5, experiment results are
presented. Then comparisons between our research and previous works are made in
section 6. Finally, we end this paper by drawing conclusions in section 7.

2 Key Points in Fully Utilizing MMEs

MMEs include more domain-specific instructions than vector processors [3]. Table 1
lists those in Intel MMX/SSE/SSE2. The corresponding operations are heavily used
in real-life multimedia applications. And after manual vectorization, they contribute
to almost all speedups [4] [5]. This fact shows that the recognition of these
ISA-supported multimedia typical operations should be the focus of compiler sup-
port for MMEs.

As a result of more domain-specific instructions on MMEs, more idioms need to be
recognized than traditional vectorization. Furthermore, because of lacking direct sup-
port in high-level languages, programmers often have to use multiple statements to
express a multimedia typical operation. In such case, statements composing it are often
connected by complex control structure. Sometimes, the statements may even not be
adjacent. This fact greatly increases the number of idioms needed to be recognized. For
example, Fig. 1 gives three typical idioms to express the signed short saturated opera-
tion in C language. Therefore, it is impractical to use the traditional 1:1 special treat

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 61

Table 1. Multimedia typical arithmetic instructions provided by MMX/SSE/SSE2

Function Instruction
Saturated add PADDSB/PADDSW/PADDUSB/PADDUSW
Saturated subtract PSUBSB/PSUBSW/PSUBUSB/PSUBUSW
Saturated pack PACKSSWB/PACKSSDW/PACKUSWB
Sum of absolute difference PSADBW
Min/max PMINUB/…/PMINSW/PMAXUB/…/PMAXSW
Average PAVGB/PAVGW
Multiply and add PMADDWD
Logical PAND/PANDN/PXOR/POR
Compare PCMPEQB/PCMPGTW/…/PCMPGTB

/* short a, b; int ltmp; */
#define GSM_SUB(a, b) \

((ltmp=(int)a-(int)b)\
> MAX_WORD ? MAX_WORD:\
ltmp < MIN_WORD ? \
MIN_WORD: ltmp

t = GSM_SUB(a, b)

/*short *a,*b,*c;
int t;*/
t = a[i] - b[i];
if(t>32767||t<-32768){

if(t>32767)
c[i] = 32767;

else
c[i] = -32768;

} else c[i] = t;

/*float sum; int clip;
short *sample; */
if(sum>32767.0) {

*samples = 32767;
clip++;

}elseif(sum<-32768.0)
{ *samples = -32768;

clip++;
}else *samples = sum;

 (a) (b) (c)

Fig. 1. Three variations of signed short saturated operation

ment to recognize each idiom as the number of idioms is now largely increased. It
follows that a uniform and flexible way to recognize them is much preferred.

3 Background

3.1 Classic Vectorization Algorithm

The classic algorithm for automatic vectorization [1] is illustrated in Fig. 2. Its main
idea is to reorder and vectorize statements in the loop according to data dependence.

for each loop in source code {

construct its data dependence graph.
condense each maximal strongly connected component in the graph.
topological sort the condensed graph and number the nodes
(1..m).
for i = 1 to m { // code generation

distribute node
i
 into a loop.

if node
i
 is not strongly-connected //not in a dep cycle

or can be recognized as vectorizable idiom then
vectorize node

i.

 }
}

Fig. 2. Classic vectorization algorithm

62 W. Jiang et al.

Because its objects mostly are simple arithmetic operations, it pays little attention to
code pattern and ISA support. For other few important idioms in numerical applica-
tions, e.g. MAX/MIN, it uses special treatment to recognize them.

3.2 Bottom-Up Rewriting System (BURS)

Bottom-Up Rewriting System (BURS) [9] is a code generator’s generator, which is
widely used in compiler to help generate code from IR tree. For a certain IR tree and a
set of tree patterns, there may be more than one match (covering) of the tree. BURS
uses dynamic programming to choose the lowest cost one. It accepts rules in the form of
non-terminal pattern (cost) [action] and produces tree matchers that make two
passes over each subject tree. The first bottom-up pass finds a set of patterns that cover
the tree with minimum cost. The second top-down pass executes the actions associated
with minimum-cost patterns at the nodes they matched, which is driven by the goal
non-terminal at tree root (similar with the start symbol in LR parsing).

According to the grammar in Fig. 3(a), tree FETCH(PLUS(REG,INT)) has two
coverings, namely, rule tree 1(4(6(5(2,3)))) and 1(4(8(2))) with costs 5 and 2,
respectively.

In the first traversal of the BURS tree matcher, the tree is labeled as Fig. 3(b), in
which each node is associated with minimum cost matching rule set for this subtree and
corresponding costs. The best covering 1(4(8(2))) is indicated by the goal non-terminal
goal at tree root.

Fig. 3. Example BURS Matches. Action of each rule is omitted

4 Compiler Support for MMEs

To solve the idiom recognition problem in compiler support for MMEs, we design a
powerful recognition engine and add it as an extra stage at the beginning of the classic
algorithm in Fig. 2. The enhanced algorithm, as a whole, works as follows: our engine
deals with the recognition of vectorizable language constructs (simple statements and
idioms) in each loop and the dependence relations within each construct. Besides, the
engine decides vectorization plan (VP) for each construct, i.e. the way to generate
its SIMD code. Then it comes to the classic algorithm part that handles other issues,
e.g. dependence relations between these constructs and other statements. During
dependence graph construction, the statement(s) in each construct share one node

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 63

in the graph. After graph condensing, we discard those recognized constructs that
are strongly connected. For those survived, SIMD code is generated according to
their VPs.

4.1 Basic Ideas in Vectorizable Construct Recognition

A vectorizable construct is a code block in source code to express one or several related
vectorizable operations as a whole. It can be transformed into efficient SIMD code.
Recognizing such constructs and finding how to vectorize them i.e. their VPs are the
two tasks the recognition engine needs to accomplish. These two tasks are closely re-
lated. To recognize such construct, we have to know whether it is supported by MME’s
ISA and whether its vectorized form is profitable. Only during deciding its VPs can
such information be obtained. To find how to vectorize a construct, i.e. its VP, we have
to use a series of patterns (rules) to match the construct. Thus, a VP actually is a rule set
covering the construct and VP finding is a process of recognition. Therefore, we prefer
to perform these two tasks together.

During the recognition of single-statement vectorizable construct, VP selection is
needed since a construct may have more than one VP. E.g. on Intel SSE/SSE2, con-
struct c[i]=(a[i]+b[i]+1)>>1; have two VPs: one is add/add/shift/store instruction
sequence and the other is instructions average/store. If we express each statement as a
tree, then BURS is a tool available to find the best one of all the coverings (VPs).

As to the recognition of multi-statement construct, the first key problem is to uni-
form variations of multimedia operations. As mentioned in section 2, such variations
result from the complex control structure. If relations between statements were sim-
plified, the number of variations and the difficulty of recognition would be lowered.
Therefore, we first normalize the program representation. IF-conversion [18] is the
technique we used to convert control dependence to data dependence. After conversion,
statements are flattened and only related by data dependence. Besides, each statement
is composed of a statement body and several guard conditions. In this way, it does not
matter what statements look like in original source code since they are now all related
by data dependence.

Then, we have to find which statements constitute such a construct. Each statement’s
semantic information and their relations are thus needed. The latter can be obtained
from variables’ DU chains. The former can be obtained from VPs of statements since
certain VP is only linked with certain statement structure. Thus, we reuse the result of
single-statement construct recognition (represented by goal non-terminals of VP) here
to avoid redundant computation. E.g., we can know that the first statement in Fig. 1(b)
can be part of a vectorizable saturated sub construct since its VP shows that it is a
signed short subtract operation.

However, not every single statement in a vectorizable multi-statement construct can
be vectorized. E.g. though statements in Fig. 1(b) as a whole are vectorizable on
MMEs, the second statement itself is not vectorizable. To solve this problem, we regard
each statement in a vectorizable multi-statement operation as partially vectorizable and
design a goal non-terminal and a VP rule to represent it. After multi-statement construct
recognition, these partial VPs will be discarded.

64 W. Jiang et al.

After multi-statement construct recognition, selection is also needed since constructs
may have conflicts, i.e. a statement may belong to more than one construct.

To ease the introduction of our recognition algorithm, we define several concepts.

Definition 1. A vectorization plan (VP) for tree t defines a possible way to vectorize the
tree. It consists of a series of 6-tuples <r, vl, vc, sc, def, use> associated with tree nodes,
which means using rule r to vectorize the subtree rooted at the node, vl is the vector
length, vc is the amortized vectorized execution cost, sc is the sequential execution cost,
def and use mean the definition and use operands respectively.

In our system, VP rules are expressed similarly with BURS rules. In each tuple, field
sc is used to compare with field vc to show whether the VP is profitable. When rec-
ognizing a multi-statement construct, we need to know its operands from VPs of its
statements. Thus, we add field def and use here.

As mentioned above, the result of VP can be represented by its goal non-terminal.
Thus, for simplicity, we denote the vectorization plan as VP(t, n), in which t is the tree
and n is the goal non-terminal.

To be easy, we encode the VP rule information into its left-side non-terminal. It is
named as [<op>_]<category>[suffix][datatype]. E.g. ssub_exprs16 denotes the result of
using signed short saturated subtract rule to vectorize an expression.

Op category Datatype

sub(normal subtract)

ssub(saturated subtract), etc.

expr(vectorizable expression)

stmt(vectorizable statement)

s16 (signed short)

u32(unsigned int), etc

In our system, we express statements as trees. For each statement, its body and every
condition in its guard are expressed as a tree, respectively. For a tree t, t is vectorizable
if

⎩
⎨
⎧

∈∧∃
∈∧∃

conditionguardiscategory),(

bodystatememtiscategory),(

texprnntVP

tstmtnntVP .

Definition 2. Best vectorization plan BVP(t, n) is the minimal vectorized cost VP of all
VP(t, n).

Definition 3. Candidate vectorization plan set CVP_Set(t) contains all the BVPs for
tree t.

If we ignore fields vl, sc, def and use of each tuple in VP, we can find that CVP_Set
is just the result set of using BURS and rules to match a tree.

Definition 4. Multi-statement vectorization plan MVP(s1,s2,…,sn) is a vectorization
plan for multi-statement construct which is composed of statements s1, s2,…,sn . It is a
tree of 6-tuples <MVP rule, vl, vc, sc, def, use> (one for each multi-statement opera-
tion). Each field has similar meaning as its counterpart in VP tuple.

Our recognition algorithm is shown in Fig. 4. Each main step is discussed below.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 65

Normalize program respresention;
for each statement s in loop {

compute CVP_Set(s.body);
for each condition expression c in s.guard

compute CVP_Set(c);
}
find all MVPs in the loop;
select best VPs for loop;

Fig. 4. Recognition Algorithm

4.2 Normalize the Program Representation

To normalize the program representation, first, we perform a series of normaliza-
tion techniques: e.g. scalar expansion, variable range analysis [20], loop rerolling
 [3] etc.

As mentioned above, we perform IF-conversion [18] in the loop body to reduce
variations of multi-statement operations and eliminate complex control flow. It
removes branches by replacing the statements in the loop body with an equivalent
set of guarded statements. Besides normal statement body, every guarded statement
includes a guard (relative to the loop) which is composed of several condition ex-
pressions combined by and operation. As to nested loops, the inner loop as a whole
is regarded as a statement when outer loop is processed. The below code illustrates
the conversion for the outer loop.

if(guard1)
 for(…){
 if(guard2){
 if(guard3)
 stmt1;
 for(…)
 stmt2;
}}

⇒

if(guard1)
 for(…){
S1: (guard2, guard3) stmt1;
S2: (guard2) for(…) stmt2;
 }

Thus, variation (a) and (b) in Fig. 1 have the same code sequence as in Fig. 5(a)
after scalar expansion and IF-conversion. And variation (c) has the form as in Fig.
5(b).

S1: () t[i]=a[i]–b[i];
S2: (t[i]>32767) c[i]=32767;
S3: (t[i]<-32768) c[i]=-32768;
S4: (t[i]≥-32768, t[i]≤32767)

c[i]=t[i];

S1:(sum[i]>32767.0) samples[i]=32767;
S2:(sum[i]>32767.0) clip++;
S3:(sum[i]<-32768.0) samples[i]=-32768;
S4:(sum[i]<-32768.0) clip++;
(sum[i]≥-32768, sum[i]≤32767)

samples[i]=sum;
(a) (b)

Fig. 5. Saturated Operations after IF-conversion

66 W. Jiang et al.

Generally, IF-conversion can be used to utilize bit-masking instructions on
MMEs [3]. Here, we extend its usage. We regard program representation after
IF-conversion as a new IR on which our further recognition is based. After recog-
nition, we roll back those converted statements (including their guard) if they are not
vectorizable.

4.3 Compute CVP_Sets

As mentioned above, we use BURS [9] to generate CVP_Sets for every statement’s
body and guard conditions. The first bottom-up pass of BURS matcher is performed
here while the second top-down pass is performed at code generation stage.

To use BURS to compute CVP_Set, we define VP rule as extended BURS rule. The
extension is the addition of 5 fields: vl, sc, def, use and constraint. Field constraint is
added to represent constraints, e.g. dependence issues, data type etc., that are required
before applying this rule. Original cost field in BURS rule is used as vc.

We define costs of VP rule as
⎩
⎨
⎧

≅
≅

nsinstrcutiosequentialoflatency

lengthvectornsinstrcutioSIMDoflatency

sc

)()(vc .

In its bottom-up traversal, BURS matcher matches a tree and labels each tree node
its CVP_Set. In each tuple <r, vl, vc, sc, def, use>, cost vc and sc are set as the sum of
VP rule r’s vc, sc and each subtree’s vc, sc, respectively. Field def and use are simply
set as VP rule r’s def and use.

As to vector length vl, its computation is a little bit subtle because vector length
of VP rule and that of each subtree may not be equal. E.g. Assuming we have an
expression a[i]+b[i], the element type of a, b is short and int, respectively. Ac-
cording to the rules in Fig. 6, Rule tree 11(10(2),4) can successfully match it.
Vector length of each rule is 4, 4, 8 and 4, respectively. If vector length of the tree is
4, then part of load result a[i+4:i+7] will be discarded. To avoid such waste, we set
vl as the least common multiply (LCM) of vector length of VP rule and that of each
subtree. This means the tree will be executed LCM times in one vectorized loop
iteration. Thus, SIMD code generated by VP rule’s and subtrees’ semantic actions
will be duplicated LCM/vli times respectively. As to the above example, we will
generate code:

load a[i:i+7]; #rule 2

load b[i:i+3]; load b[i+4:i+7]; #rule 4

convert a[i:i+7] to int vectors a’[i:i+3] and a’[i+4:i+7]; #rule 10

a’[i:i+3]+b[i:i+3]; a’[i+4:i+7]+b[i+4:i+7]; #rule 11

Take the process of computing CVP_Set for statements in Fig. 5(a) as an ex-
ample. Parts of the related VP rules are shown in Fig. 6. Fig. 7 shows BURS
matching result.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 67

Rule vl vc sc def use constraint
1 lval_exprs16 arr[index] 8 0.751.5 root vec_arr(arr,index, s16)
2 exprs16 arr[index] 8 0.751.5 {root} vec_arr(arr,index, s16)
3 lval_exprs32 arr[index] 4 1.5 1.5 root vec_arr(arr,index, s32)
4 exprs32 arr[index] 4 1.5 1.5 {root} vec_arr(arr,index, s32)

5
ssub_stmt1s16 lval_exprs32

=exprs16–exprs16
4 0.5 0.5lval_exprs32

{exprs16[1],
exprs16[2]}

no_dep(def, use[1])
no_dep(def,use[2])

6 sub_stmts32 ssub_stmt1s16 4 0 0
ssub_stmt1

s16.def
ssub_stmt1

s16.use

7 upplimit_exprs32 exprs32>32767 4 0.5 0.5 {exprs32}
8 lowlimit_exprs32 exprs32<-32768 4 0.5 0.5 {exprs32}
9 ssub_stmt2s16 lval_exprs16=32767 8 0.5 0.5lval_exprs16

10 exprs32 exprs16 4 0.5 0.5 {exprs16}
11 exprs32 exprs32 + exprs32 4 0.5 0.5 {exprs32[1],exprs32[2]}

Fig. 6. Some VP Rules. Function vec_arr(arr, index, type) checks if arr[index] is a vectorizable
continuous array visit expression with element type as type. Function no_dep(a, b) checks if there
is no dependence between a and b

The final work before MVP finding is to compute sequential cost sc of each state-
ment (including its body and guard). It is set as the sum of each part’s lowest sc and the
fixed instruction latency for if statement dispatch.

Fig. 7. CVP_Set Computation Result for S2 in Fig. 5(a). The VP rules for S1, S3 and S4 and their
match processes are similar, hence omitted. Their results are:
CVP_Set(S1.guard) = ∅, CVP_Set(S1.body) = {<ssub_stmt1s16,…>, <sub_stmts32,…>},
CVP_Set(S3.guard) = {<lowlimit_exprs32,…>}, CVP_Set(S3.body)={<ssub_stmt3s16,…>},
CVP_Set(S4.guard.condition1)={<!upplimit_exprs32,…>}, CVP_Set(S4.guard.condition2) =
{<!lowlimit_expr s32,…>}. , CVP_Set(S4.body) = {< ssub_stmt4 s16,…>}

4.4 Find All MVPs

Based on CVP_Sets, we now begin to find all MVPs in the loop according to prede-
fined MVP rules. We define each MVP rule as <non-terminal→Stmt_Set, vl, vc, def,
use, constraint, action>. Set Stmt_Set contains statements (represented by goal
non-terminals to indicate their roles). Other fields have the same meaning with their
counterparts in VP rules. As an example, Fig. 8 shows some MVP rules.

68 W. Jiang et al.

NT Stmt_Set vl vc def use constraint

ssub_stmt
s16

{s1: () ssub_stmt1s16,
s2: (upplimit_exprs32)

ssub_stmt2s16,
s3: (lowlimit_expr s32)

ssub_stmt3s16,
s4: (!upplimit_exprs32,

!lowlimit_exprs32)
ssub_stmt4s16}

8 0.5 s4.body.def s1.body.use

DU_Chain(def(s1.body))
≡{s2.guard, s3.guard,

s4.guard, s4.body.right}
def(s2.body)≡def(s3.body)
def(s2.body)≡def(s4.body)

stmts16 {s1: () ssub_stmts16} 8 0 s1.def s1.use[1].parent
bitmask-
ing_stmt

s16

{s1: (exprs16) stmts16
s2: (exprs16) stmts16}

8 0.75 s1.body.def
{s1.guard.use,
s1.body.use,
s2.body.use}

def(s1.body)≡def(s2.body)
s1.guard≡!s2.guard

Fig. 8. MVP Rules Expamples. Action part of each rule is straightforward, thus omitted. E.g.
action of the last rule will generate code (in form of ICC intrinsic function):
“xmm1 = _mm_and_si128(use[1], use[2]); xmm2 = _mm_andnot_si128(use[1] , use[3]);
xmm3 = _mm_or_si128(xmm1, xmm2); _mm_store_si128(def, xmm3)”

Since a MVP rule represents a vectorizable operation, statements in it as a whole
constitute a simpler semantic expression than their respective original expressions. As a
result, we use the action of MVP rule and those of operands in use and def to generate
code, instead of using the actions in each statement’s CVP_Set. Semantic actions of
operands will be executed before that of MVP rule.

We find out all MVPs by constructing a VP DAG. In this DAG, every node repre-
sents a possible MVP rule match or BVP. Edge represents the inclusion relationship
between MVP node and corresponding VP nodes.

The construction algorithm is as follows:

1) Construct initial nodes. For each statement in the loop, we create a node for every
element in the Cartesian product (every possible combination) of CVP_Sets of
statement body and conditions in the guard.

2) Find a MVP rule match. It means to find a node set that meets the MVP rule, i.e.
node set is an instance of the Stmt_Set (possible with additional guards) and con-
straints are satisfied. For each found MVP rule match, we construct a new node for
it and make the node set as its children.

3) Repeat step 2 until no new MVP rule match can be found.

When a MVP rule successfully matched, a MVP node is created and annotated as
<MVP rule, vl, vc, sc, def, use>. Field def and use are set according to the def and use
field of MVP rule. E.g. the MVP rule match node for Fig. 5(a) has {a[i], b[i]} as use and
c[i] as def. Field vl is set as the least common multiply of MVP rule’s vl and vl of each
operand (def and use). Field vc is set as the sum of MVP rule’s vc and vc of each op-
erand. Field sc is set as the sum of sc of each original statement it included.

For example, for statements in Fig. 5(a), we first construct node 1 to 5 in Fig. 9
according to their CVP_Set. Then, after matching saturated subtract MVP rule, we

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 69

Fig. 9. MVP DAG for Fig. 5(a). The def and use field in each node is ignored for simpilicity

construct node 6. Thus, all the MVP matches have been found and shown in this DAG.
For statements in Fig. 5(b), similar DAG can be created.

When matching MVP rules, it may be found that the statements constituting the
MVP match node have additional guard conditions besides the ones needed by the
MVP rule. If different statement has different additional conditions, this MVP rule
cannot be matched because these statements actually are embraced by different if
statements. However, if there is only one additional condition, we decompose each
node representing the related statement that hasn’t such condition into two node and
continue the match. E.g. assuming there are two nodes: (guard)S1 and S2. S1 and S2
constitute a MVP match M if guard does not exist. In such case, we decompose S2 into
two new nodes: (guard)S2 and (!guard)S2. Then (guard)S1 and (guard)S2 are matched
as a MVP node (guard)M. Such decomposition is performed on DAG. Only when the
related MVP is finally chosen will the decomposition really be performed on state-
ments. Such decomposition may increase the number of possible MVPs. However, our
goal of this step is to find all the possibilities. Next step will choose from them the best
ones. Thus, such treatment is harmless.

Fig. 10(a) introduces an example to show the MVP recognition process. It is slightly
modified from a code segment (Fig. 10(b)) in ADPCM Decoder to make it vectoriz-
able. The original version is similar to a saturated operation, but not vectorizable be-
cause valpred is a reduction variable and has different type from vpdiff. This test case is
hard to recognize because saturated subtract operation is mingled with the saturated add
in that they share the clip statement (the second if statement). We have not found any
previous research work that could deal with it. However, our approach can vectorize

if(sign[i])
 t[i]=valpred[i]

–vpdiff[i];
else
t[i]=valpred[i]

+vpdiff[i];
if(t[i]>32767)
 valpred[i]=32767;
else if (t[i]<-32768)
 valpred[i]=-32768;
else valpred[i]=t[i]

if(sign)
 valpred-=vpdiff;
else
 valpred+=vpdiff;
if(valpred>32767)
 valpred=32767;
else
if(valpred<-32768)
 valpred=-32768;

S1:(sign[i])
t[i]=valpred[i]–vpdiff[i];

S2:(!sign[i])
t[i]=valpred[i]+vpdiff[i];

S3:(t[i]>32767)
valpred[i]=32767;

S4:(t[i]<-32768)
valpred[i]=-32768;

S5:(t[i]≤32767,t[i]≥-32768)
 valpred[i]=t[i]

(a) (b) (c)

Fig. 10. Code Segment in ADPCM Decoder

70 W. Jiang et al.

Fig. 11. Match Result for Fig. 10(c). Guards are shown as real conditions instead of VPs for easy
understanding. The def and use field in each node is ignored. Dotted line is used to show the node
decomposition process. For example, node 12 and 13 are decomposed from node 5(S3 of Fig.
10(c)). So, node 13 is (!sign[i], t[i]>32767) <ssub_stmt2s16, 8, 1.25, 2> ,which represents
statement: (!sign[i], t[i]>32767) valpred[i] = 32767;. Solid line shows the inclusion relation-
ship. E.g. MVP sadd_stmt s16 (node 20) needs 4 statements (node 11, 13, 15, 17) to constitute.
Therefore, they are connected by directed lines

this example very well. Its normalized code is shown in Fig. 10(c). According to the
MVP rules in Fig. 8 and some other similar MVP rules, we can get the MVP matching
DAG in Fig. 11. It clearly shows our system’s power.

4.5 Select VPs for the Loop

After constructing the DAG, the problem now becomes how to select for each state-
ment its best VP because each statement can only be vectorized using one VP.

First, we decompose the DAG into a series of connected components (trees) (ig-
noring dotted lines). For example, DAG in Fig. 11 is decomposed as following trees:
{1, 3, 8, 9, 18}, {2}, {4}, {5}, {6}, {7}, {10−17, 19−23}. Each tree as a whole shows
how to vectorize a construct.

Then, we delete those trees whose root satisfies any of the following conditions: 1)
root.VP is only meaningful as part of MVP; 2) root.guard ≠ ∅. It means vectorized
code shall be embraced by a vectorized if statement (not bit-masking operation) which
is impossible; 3) root.sc ≤ root.vc. Such MVP is not profitable. After it, DAG in Fig. 11
has trees {1, 3, 8, 9, 18} and {10−17, 19−23} left. The former will vectorize statements
S1-S2 while the latter will vectorize S1-S5. However, S1-S2 can only be vectorized by
one VP tree. Thus, these two trees are incompatible.

We try to find the compatible tree subset with maximum weight. We define each
tree’s weight (time save of vectorization) as its root.sc−root.vc. This problem can be
formulated as a NP-complete set-covering problem (by using similar technique in
 [19]). In practice, because conflicts are rare and easy to solve, we use the greedy al-
gorithm: choose the tree that has the most number of statements and lowest cost first.
Thus, VP tree {10−17, 19−23} is selected for Fig. 11.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 71

At dependence-graph-construction stage, we make all the statements in each chosen
tree share one node in the graph. The dependence relations between these statements
are ignored since they are already checked by the constraints of VP/MVP rules.

4.6 Code Generation

In code generation stage, vectorizable nodes in the dependence graph, i.e. those that are
associated with a VP tree and not strongly connected, are vectorized on IR in the classic
way: first distribute it into a loop; then generate vectorized code according to actions of
its VP tree; loop step is set as the vl field of the VP tree root; rest loop is generated for
un-vectorizable iterations.

Since we regard each VP tree as a high-level operation, it shall contain assignment(s)
only to one variable. Thus, the “store” action in each non-root VP node is not per-
formed. E.g. the store operations to variable valpred in nodes 19-22 of Fig. 11 are
prohibited.

After vectorization on IR, two optimizations: alignment analysis and redundant
load/store are performed. Because MMEs prefer aligned data load/store, we need to lay
out the arrays and determine the alignment information for each memory access. At
present, we only scan alignment requirements for array references and try to meet them
as many as possible. For pointer references, we conservatively regard them as un-
aligned. This strategy seems to work well for our benchmarks.

To reduce the redundant load/store for arrays in vectorized constructs, we per-
form common sub-expression elimination for loads and dead code elimination for
stores.

5 Experimental Results

In this section, we demonstrate the effectiveness of the presented algorithm with ex-
perimental results. All experiments were conducted on a 2.8G Pentium 4E Processor
and 1G memory system with Redhat 9.0. The benchmark we use is Accelerating Suite
of Berkeley Multimedia Workload (ASBMW) [4] [5]. We also compare the results of
our method with ICC [10], the Intel compiler that has the state of the art vectorization
techniques. We use two versions of ICC, v7 and the latest v8, to vectorize the applica-
tions. We implement our vectorization algorithm in our C-to-C compiler Agassiz [8]
which is a research compiler developed by University of Minnesota and us. Agassiz
transforms vectorizable parts of multimedia source code into Intel SSE/SSE2 instruc-
tion set (in form of ICC intrinsic functions). The rules we added to our system are the
ones we found profitable and general enough in our real-life application study. The
output of Agassiz is compiled by ICC 7 and ICC 8 with vectorization off, respectively.
Fig.12 lists the results. All results are obtained as the average of 5 runs.

As illustrated by Fig.12, Agassiz achieved an average more than 10% speedup. In
contrast, ICC 7 and ICC 8 only achieved 1.94% and 2.37% speedup, respectively. This
is because Agassiz can vectorize almost all the constructs ICC can, which mainly are
memory copies, arithmetic operations, MAX/MIN operations, etc. Moreover, Agassiz

72 W. Jiang et al.

Application
ICC 7

option1

ICC 8

option1

Agassiz

+ICC 7

option2

Agassiz

+ICC 8

option2

gsm_decode -1.88% -3.74% 18.07% 19.25%

gsm_encode -0.70% -15.81% 12.49% 13.13%

lame 7.60% 6.29% 7.49% 6.14%

mesa_gears -2.22% 0.17% -1.67% -2.10%

mesa_morph3d -0.77% -0.78% -0.19% -0.79%

mesa_reflect 2.21% 1.38% 2.46% 2.25%

mpeg2_decode 1.07% 0.86% 3.05% 1.67%

mpeg2_encode 9.76% 37.69% 43.55% 42.03%

mpg123 3.28% 0.00% 18.90% 18.29%

timidity 1.06% -2.34% 3.78% 2.87%

-15%

-5%

5%

15%

25%

35%

45%

gs
m_
de
co
de

gs
m_
en
co
de la

me

me
sa
_g
ea
rs

me
sa
_m
or
ph
3d

me
sa
_r
ef
le
ct

mp
eg
2_
de
co
de

mp
eg
2_
en
co
de

mp
g1
23

ti
mi
di
ty

ICC 7 option1 ICC 8 option1

Agassiz+ICC7 option2 Agassiz+ICC8 option2

Fig. 12. Speedup of vectorization. ICC compiling option1: -O2 -xW (with vectorization turned
on); ICC compiling option2: -O2 -xW -vec- (with vectorization turned off). The baseline is
compiled with option2

can vectorize constructs that ICC cannot. This fact leads to the results that Agassiz
outperforms ICC on six applications while the rest have similar performance.

We can also find that ICC 8 generated better scalar code than ICC 7 since Agas-
siz+ICC 8 had slightly smaller speedup than Agassiz+ICC 7 on most applications. As
to the vectorization capability, ICC 8 greatly outperformed ICC 7 on mpeg2_encode
since it vectorized the Sum of Absolute Difference (SAD) operation. A very strange
thing is that, though they vectorized the same parts of gsm_encode, ICC 8 greatly
slowed down it.

Though Agassiz have vectorized lots of constructs, the most important ones (con-
tributing most to speedup) are just variations of several important operations. As to
gsm_decode and gsm_encode, the most important one is saturated operation. Con-
cerning lame, the most important one is MAX operation. As to mpeg2_encode, the key
operations are SAD operation and float arithmetic operation. As to mpeg2_decode, it is
saturated pack. To mpg123, it is also saturated arithmetic. Regarding timidity, it is
floating-point operation.

Fig. 13 lists the comparison of two performance monitors after Agassiz+ICC 8
vectorization and its scalar counterparts.

We can see that execution time (clockticks, column 2) is somewhat proportional to
the number of dynamic instructions retired (column 3). In the listed applications, the
great reduction of dynamic instructions is attributed to the vectorization of multimedia
typical operations (mainly multi-statement operations) in hot loops. Thus, these op-
erations contribute to most of the speedups. The rest speedups mainly come from float
operation and integer operation of small data type. Other performance monitors such as
mis-predicted branches and L2 cache miss etc. have not changed much due to vec-
torization. Thus, they are not listed here.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 73

 Clockticks Instructions

gsm_decode 86.47% 62.18%

gsm_encode 88.73% 83.98%

lame 92.77% 85.22%

mesa_gears 98.03% 100.91%

mesa_morph3d 97.18% 100.69%

mesa_reflect 96.96% 89.48%

mpeg2_decode 98.41% 96.46%

mpeg2_encode 68.72% 42.99%

mpg123 84.42% 75.94%

timidity 96.39% 99.68%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

gsm
_dec

od
e

gsm
_e

nc
ode lam

e

mesa_
gea

rs

mesa_
morp

h3
d

mes
a_

ref
lec

t

mpeg
2_d

ec
ode

mpeg2
_en

co
de

mpg
123

tim
idi

ty

Clockticks Instructions

Fig. 13. Performance monitors after vectorization vs. its scalar counterparts

6 Related Work

The application of traditional automatic vectorization techniques on MMEs
 [11] [15] [16] and new methods such as SLP [7] neither recognize nor vectorize those
important multi-statement idioms in real-life multimedia programs.

Realizing the importance of recognizing multimedia typical idioms, researchers
have proposed other methods. Simple pattern match based algorithm [6] requires
compiler to have one pattern for each variation of multimedia operations, thus too rigid
to be acceptable. Domain-specific language, SWARC [17], is developed to provide a
portable way to program for MMEs. But it is not popular enough.

In [12], a preprocessing before classic vectorization algorithm to detect two multi-
media typical operations (saturation and max/min) is presented. It uses tree rewriting
system to rewrite the tree step by step to recognize them. Speedup was reported for
several small kernels and 164.gzip in SPEC2000. In comparison, our algorithm shows
more applicability and power. First, our algorithm can recognize almost all kinds of
SIMD idioms in a uniform and flexible way. Second, as to the two kind operations this
method focuses on, our method puts much less constraints on the recognizable opera-
tions. For example, ours does not require the exact order of statements in a
multi-statement construct, e.g. statements s2, s3, s4 in Fig. 5(a) can appear in any order
and any other irrelevant statements could be inserted between these three statements.
We also allow the multi-statement operations appearing in forms that are more com-
plex. Thus, our method is able to recognize those variations such as Fig. 1(b), Fig. 1(c)
and Fig. 10(a) which cannot be handled by [12].

7 Conclusion

In this paper, we first showed that the key difficulty in utilizing MMEs to boost the
performance of real-life multimedia applications is how to recognize many different
profitable and vectorizable operations, especially how to recognize the variations of the
same multimedia typical operation in an efficient and general way.

74 W. Jiang et al.

Then, we introduced a powerful recognition engine to overcome such difficulty,
which only needs a small amount of rules to recognize and vectorize many operations
in real-life source code. In addition, it can find the best VP set for each loop. Thus, it
can fully exploit benefits from MMEs. It also enjoys great extendibility in that we only
need to add new operation patterns (rules) into it if new SIMD instructions appear. We
integrated this engine into the classic vectorization framework and obtained satisfac-
tory speedup for several real-life multimedia applications.

References

[1] Allen R, Kennedy K. Automatic Translation of Fortran Programs to Vector Form. ACM
Trans. on Programming Languages and Systems, 1987, 9(4): 491-542.

[2] Padua D, Wolfe M. Advanced Compiler Optimizations for Supercomputers. Comm. of the
ACM. 1986, 29(12): 1184-1201.

[3] Ren G, Wu P, Padua D. A Preliminary Study On the Vectorization of Multimedia Appli-
cations for Multimedia Extensions. Proc. of the 16th Int’l Workshop on Languages and
Compilers for Parallel Computing, 2003.

[4] Slingerland N, Smith A J. Design and Characterization of the Berkeley Multimedia Work-
load. Multimedia Systems, 2002, 8(4): 315-327.

[5] Slingerland N, Smith A J. Measuring the Performance of Multimedia Instruction Sets.
IEEE Trans. Computers, 2002, 51(11): 1317-1332.

[6] Boekhold M, Karkowski I, Corporaal H. Transforming and Parallelizing ANSI C Programs
Using Pattern Recognition. Lecture Notes in Computer Science, 1999, 1593: 673.

[7] Larsen S, Amarasinghe S. Exploiting Superword Level Parallelism with Multimedia In-
struction Sets. ACM SIGPLAN Notices, 2000, 35(5): 145-156.

[8] Zheng B, Tsai J Y, Zhang BY, Chen T, Huang B, Li J H, Ding Y H, Liang J, Zhen Y, Yew
P C, Zhu C Q. Designing the Agassiz Compiler for Concurrent Multithreaded Architec-
tures. Proc. of the 12th Int’l Workshop on Languages and Compilers for Parallel Com-
puting, 1999: 380-398.

[9] Fraser C W, Hanson DR, Proebsting T A. Engineering Efficient Code Generators Using
Tree Matching and Dynamic Programming. TR-386-92, Princeton University.

[10] Intel Corporation. Intel C++ Compiler User's Guide. 2003: http://developer.intel.com/.
[11] Sreraman N, Govindarajan R. A Vectorizing Compiler for Multimedia Extensions. Int’l

Journal on Parallel Processing, 2000.
[12] Bik A J C, Girkar M, Grey P M, Tian X. Automatic Detection of Saturation and Clipping

Idioms. Proc. of the 15th Int’l Workshop on Languages and Compilers for Parallel Com-
puters, July 2002.

[13] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 1: Basic Ar-
chitecture. 2001: http://developer.intel.com/.

[14] Intel Corporation. Intel Architecture Optimization Reference Manual. 2001:
http://developer.intel.com/.

[15] Cheong G, Lam M S. An Optimizer for Multimedia Instruction Sets. Second SUIF Com-
piler Workshop, Stanford, August 1997.

[16] Krall A, Lelait S. Compilation Techniques for Multimedia Processors. Int’l Journal of
Parallel Programming, 2000, 28(4): 347-361.

[17] Fisher R J, Dietz H G. Compiling for SIMD within a Register. Workshop on Languages and
Compilers for Parallel Computing, University of North Carolina, August 1998.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 75

[18] Allen J R, Kennedy K, Porterfield C, Warren J. Conversion of Control Dependence to Data
Dependence. Proc. of the 10th ACM SIGACT-SIGPLAN symp. on Principles of Pro-
gramming Languages, Austin, Texas, 1983: 177-189.

[19] Liao S, Devadas S, Keutzer K. A Text-Compression-Based Method for Code Size Mini-
mization in Embedded Systems. ACM Trans. on Design Automation of Electronic Systems,
1999, 4(1): 12-38

[20] Stephenson M, Babb J, Amarasinghe S. Bitwidth Analysis with Application to Silicon
Compilation. ACM SIGPLAN Conf. on Programming Language Design and Implementa-
tion, June 2000

[21] Fuller S. Motorola’s AltiVec Technology. White Paper, May 6, 1998

	Introduction
	Key Points in Fully Utilizing MMEs
	Background
	Classic Vectorization Algorithm
	Bottom-Up Rewriting System (BURS)

	Compiler Support for MMEs
	Basic Ideas in Vectorizable Construct Recognition
	Normalize the Program Representation
	Compute CVP_Sets
	Find All MVPs
	Select VPs for the Loop
	Code Generation

	Experimental Results
	Related Work
	Conclusion
	References

