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Abstract. Modern processors’ multimedia extensions (MME) provide SIMD 
ISAs to boost the performance of typical operations in multimedia applications. 
However, automatic vectorization support for them is not very mature. The key 
difficulty is how to vectorize those SIMD-ISA-supported idioms in source code 
in an efficient and general way. In this paper, we introduce a powerful and ex-
tendable recognition engine to solve this problem, which only needs a small 
amount of rules to recognize many such idioms and generate efficient SIMD in-
structions. We integrated this engine into the classic vectorization framework and 
obtained very good performance speedup for some real-life applications. 

1   Introduction 

Multimedia extensions (MME), e.g. Intel MMX/SSE/SSE2  [13] [14], Motorola AltiVec 
 [21] etc, have become an integral part of modern processors. They enable the exploi-
tation of SIMD parallelism in multimedia applications. These SIMD ISA include not 
only simple SIMD arithmetic instructions (addition, subtraction etc) but also many 
domain-specific SIMD instructions to accelerate multimedia typical operations, e.g. 
saturated arithmetic, which are widely used in multimedia applications.  

However, these MMEs have been underutilized so far due to the immaturity of 
compiler automatic vectorization support. Programmers are largely restricted to 
time-consuming methods such as inline assembly or intrinsic functions  [16].  

Many researches have been conducted in automatic vectorization for MMEs. Most 
of them have regarded this utilization as a similar problem with the vectorization for 
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vector machines  [7] [11] [15] [16]. However, these two problems have different key  
points  [3]. Traditional vectorization  [1] [2] focuses on how to transform source code 
into vector form correctly, while the utilization of MMEs shall concentrate on how to 
automatically recognize and then vectorize MME supported idioms in multimedia ap-
plications  [3]. There are so many idioms needed to be recognized that an efficient and 
general way is of critical importance. Some researchers exerted efforts in this direction, 
the typical work is Bik et al  [12]’s use of tree-rewriting technique to recognize two 
kinds of operations, saturation and MAX/MIN. Simple rigid pattern match methods  [6] 
and specific languages (e.g. SWARC  [17]) have also been used. 

In this paper, we solve the key problem by introducing a powerful and extendable 
recognition engine and integrating it into the classic vectorization algorithm  [1] as an 
extra stage. In this stage, we first normalize the program representation. Then we use an 
extended Bottom-Up Rewriting System (BURS)  [9] to decide possible vectorization 
plans (VP) for each statement. Based on these single-statement VPs, we find out 
multi-statement vectorizable idioms and their VPs. Finally, we determine the best VP 
set for the loop. Experimental results show that we can vectorize many operations in 
real-life multimedia applications and the performances are quite satisfactory. We 
achieved a 10.86% average speedup for Accelerating Suite of Berkeley Multimedia 
Workload [4][5]. Compared with the vectorization ability of Intel C Compiler (ICC) 
version 8 [10], our compiler outperforms it by about 8% on average. 

In short, this paper offers: (1) a uniform and flexible engine to recognize many 
vectorizable idioms, (2) a mechanism to generate efficient code for vectorized idioms 
and (3) very good performance for several real-life multimedia applications. 

The rest of paper is organized as follows: In section 2, we show the key points in 
utilizing MMEs. After briefly introducing related techniques in section 3, we present 
our algorithm and discuss it in detail in section 4. In section 5, experiment results are 
presented. Then comparisons between our research and previous works are made in 
section 6. Finally, we end this paper by drawing conclusions in section 7. 

2   Key Points in Fully Utilizing MMEs 

MMEs include more domain-specific instructions than vector processors  [3]. Table 1 
lists those in Intel MMX/SSE/SSE2. The corresponding operations are heavily used 
in real-life multimedia applications. And after manual vectorization, they contribute 
to almost all speedups  [4] [5]. This fact shows that the recognition of these 
ISA-supported multimedia typical operations should be the focus of compiler sup-
port for MMEs. 

As a result of more domain-specific instructions on MMEs, more idioms need to be 
recognized than traditional vectorization. Furthermore, because of lacking direct sup-
port in high-level languages, programmers often have to use multiple statements to 
express a multimedia typical operation. In such case, statements composing it are often 
connected by complex control structure. Sometimes, the statements may even not be 
adjacent. This fact greatly increases the number of idioms needed to be recognized. For 
example, Fig. 1 gives three typical idioms to express the signed short saturated opera-
tion in C language. Therefore, it is impractical to use the  traditional 1:1  special  treat  
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Table 1. Multimedia typical arithmetic instructions provided by MMX/SSE/SSE2 

Function Instruction 
Saturated add PADDSB/PADDSW/PADDUSB/PADDUSW 
Saturated subtract PSUBSB/PSUBSW/PSUBUSB/PSUBUSW 
Saturated pack PACKSSWB/PACKSSDW/PACKUSWB 
Sum of absolute difference PSADBW 
Min/max PMINUB/…/PMINSW/PMAXUB/…/PMAXSW 
Average PAVGB/PAVGW 
Multiply and add PMADDWD 
Logical PAND/PANDN/PXOR/POR 
Compare PCMPEQB/PCMPGTW/…/PCMPGTB 

 

/* short a, b; int ltmp; */ 
#define GSM_SUB(a, b) \ 

((ltmp=(int)a-(int)b)\ 
> MAX_WORD ? MAX_WORD:\ 
ltmp < MIN_WORD ? \ 
MIN_WORD: ltmp 
 

t = GSM_SUB(a, b) 

/*short *a,*b,*c;  
int t;*/ 
t = a[i] - b[i]; 
if(t>32767||t<-32768){ 

if(t>32767)  
c[i] = 32767; 

else  
c[i] = -32768; 

} else  c[i] = t; 

/*float sum; int clip; 
short *sample; */ 
if(sum>32767.0) { 

*samples = 32767; 
clip++; 

}elseif(sum<-32768.0) 
{ *samples = -32768; 

clip++; 
}else  *samples = sum; 

 (a)    (b)    (c)  

Fig. 1. Three variations of signed short saturated operation 

ment to recognize each idiom as the number of idioms is now largely increased. It 
follows that a uniform and flexible way to recognize them is much preferred. 

3   Background 

3.1   Classic Vectorization Algorithm 

The classic algorithm for automatic vectorization  [1] is illustrated in Fig. 2. Its main 
idea is to reorder and vectorize statements in the loop according to data dependence.  
 
for each loop in source code { 

construct its data dependence graph. 
condense each maximal strongly connected component in the graph. 
topological sort the condensed graph and number the nodes 
(1..m). 
for i = 1 to m {       // code generation  

distribute node
i
 into a loop. 

if node
i
 is not strongly-connected   //not in a dep cycle 

or can be recognized as vectorizable idiom then 
vectorize node

i. 

 } 
} 

Fig. 2. Classic vectorization algorithm 
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Because its objects mostly are simple arithmetic operations, it pays little attention to 
code pattern and ISA support. For other few important idioms in numerical applica-
tions, e.g. MAX/MIN, it uses special treatment to recognize them. 

3.2   Bottom-Up Rewriting System (BURS) 

Bottom-Up Rewriting System (BURS)  [9] is a code generator’s generator, which is 
widely used in compiler to help generate code from IR tree. For a certain IR tree and a 
set of tree patterns, there may be more than one match (covering) of the tree. BURS 
uses dynamic programming to choose the lowest cost one. It accepts rules in the form of 
non-terminal pattern (cost) [action] and produces tree matchers that make two 
passes over each subject tree. The first bottom-up pass finds a set of patterns that cover 
the tree with minimum cost. The second top-down pass executes the actions associated 
with minimum-cost patterns at the nodes they matched, which is driven by the goal 
non-terminal at tree root (similar with the start symbol in LR parsing). 

According to the  grammar in  Fig. 3(a), tree FETCH(PLUS(REG,INT)) has two  
coverings, namely, rule tree 1(4(6(5(2,3)))) and 1(4(8(2))) with costs 5 and 2, 
respectively.  

In the first traversal of the BURS tree matcher, the tree is labeled as Fig. 3(b), in 
which each node is associated with minimum cost matching rule set for this subtree and 
corresponding costs. The best covering 1(4(8(2))) is indicated by the goal non-terminal 
goal at tree root. 

 

Fig. 3. Example BURS Matches. Action of each rule is omitted 

4   Compiler Support for MMEs 

To solve the idiom recognition problem in compiler support for MMEs, we design a 
powerful recognition engine and add it as an extra stage at the beginning of the classic 
algorithm in Fig. 2. The enhanced algorithm, as a whole, works as follows: our engine 
deals with the recognition of vectorizable language constructs (simple statements and 
idioms) in each loop and the dependence relations within each construct. Besides, the 
engine decides vectorization plan (VP) for each construct, i.e. the way to generate    
its SIMD code. Then it comes to the classic algorithm part that handles other issues, 
e.g. dependence relations between these constructs and other statements. During 
dependence graph construction, the statement(s) in each construct share one node     
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in the graph. After graph condensing, we discard those recognized constructs that        
are strongly connected. For those survived, SIMD code is generated according to 
their VPs. 

4.1   Basic Ideas in Vectorizable Construct Recognition 

A vectorizable construct is a code block in source code to express one or several related 
vectorizable operations as a whole. It can be transformed into efficient SIMD code. 
Recognizing such constructs and finding how to vectorize them i.e. their VPs are the 
two tasks the recognition engine needs to accomplish. These two tasks are closely re-
lated. To recognize such construct, we have to know whether it is supported by MME’s 
ISA and whether its vectorized form is profitable. Only during deciding its VPs can 
such information be obtained. To find how to vectorize a construct, i.e. its VP, we have 
to use a series of patterns (rules) to match the construct. Thus, a VP actually is a rule set 
covering the construct and VP finding is a process of recognition. Therefore, we prefer 
to perform these two tasks together. 

During the recognition of single-statement vectorizable construct, VP selection is 
needed since a construct may have more than one VP. E.g. on Intel SSE/SSE2, con-
struct c[i]=(a[i]+b[i]+1)>>1; have two VPs: one is add/add/shift/store instruction 
sequence and the other is instructions average/store. If we express each statement as a 
tree, then BURS is a tool available to find the best one of all the coverings (VPs). 

As to the recognition of multi-statement construct, the first key problem is to uni-
form variations of multimedia operations. As mentioned in section 2, such variations 
result from the complex control structure. If relations between statements were sim-
plified, the number of variations and the difficulty of recognition would be lowered. 
Therefore, we first normalize the program representation. IF-conversion  [18] is the 
technique we used to convert control dependence to data dependence. After conversion, 
statements are flattened and only related by data dependence. Besides, each statement 
is composed of a statement body and several guard conditions. In this way, it does not 
matter what statements look like in original source code since they are now all related 
by data dependence.  

Then, we have to find which statements constitute such a construct. Each statement’s 
semantic information and their relations are thus needed. The latter can be obtained 
from variables’ DU chains. The former can be obtained from VPs of statements since 
certain VP is only linked with certain statement structure. Thus, we reuse the result of 
single-statement construct recognition (represented by goal non-terminals of VP) here 
to avoid redundant computation. E.g., we can know that the first statement in Fig. 1(b) 
can be part of a vectorizable saturated sub construct since its VP shows that it is a 
signed short subtract operation. 

However, not every single statement in a vectorizable multi-statement construct can 
be vectorized. E.g. though statements in Fig. 1(b) as a whole are vectorizable on 
MMEs, the second statement itself is not vectorizable. To solve this problem, we regard 
each statement in a vectorizable multi-statement operation as partially vectorizable and 
design a goal non-terminal and a VP rule to represent it. After multi-statement construct 
recognition, these partial VPs will be discarded. 
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After multi-statement construct recognition, selection is also needed since constructs 
may have conflicts, i.e. a statement may belong to more than one construct.  

To ease the introduction of our recognition algorithm, we define several concepts. 

Definition 1. A vectorization plan (VP) for tree t defines a possible way to vectorize the 
tree. It consists of a series of 6-tuples <r, vl, vc, sc, def, use> associated with tree nodes, 
which means using rule r to vectorize the subtree rooted at the node, vl is the vector 
length, vc is the amortized vectorized execution cost, sc is the sequential execution cost, 
def and use mean the definition and use operands respectively. 

In our system, VP rules are expressed similarly with BURS rules. In each tuple, field 
sc is used to compare with field vc to show whether the VP is profitable. When rec-
ognizing a multi-statement construct, we need to know its operands from VPs of its 
statements. Thus, we add field def and use here. 

As mentioned above, the result of VP can be represented by its goal non-terminal. 
Thus, for simplicity, we denote the vectorization plan as VP(t, n), in which t is the tree 
and n is the goal non-terminal.  

To be easy, we encode the VP rule information into its left-side non-terminal. It is 
named as [<op>_]<category>[suffix][datatype]. E.g. ssub_exprs16 denotes the result of 
using signed short saturated subtract rule to vectorize an expression. 

Op category Datatype 

sub(normal subtract) 

ssub(saturated subtract), etc. 

expr(vectorizable expression) 

stmt(vectorizable statement) 

s16 (signed short) 

u32(unsigned int), etc 

In our system, we express statements as trees. For each statement, its body and every 
condition in its guard are expressed as a tree, respectively. For a tree t, t is vectorizable 
if 

⎩
⎨
⎧

∈∧∃
∈∧∃

conditionguardiscategory),(

bodystatememtiscategory),(

texprnntVP

tstmtnntVP . 

Definition 2. Best vectorization plan BVP(t, n) is the minimal vectorized cost VP of all 
VP(t, n). 

Definition 3. Candidate vectorization plan set CVP_Set(t) contains all the BVPs for 
tree t. 

If we ignore fields vl, sc, def and use of each tuple in VP, we can find that CVP_Set 
is just the result set of using BURS and rules to match a tree.  

Definition 4. Multi-statement vectorization plan MVP(s1,s2,…,sn) is a vectorization 
plan for multi-statement construct which is composed of statements s1, s2,…,sn . It is a 
tree of 6-tuples <MVP rule, vl, vc, sc, def, use> (one for each multi-statement opera-
tion). Each field has similar meaning as its counterpart in VP tuple. 

Our recognition algorithm is shown in Fig. 4. Each main step is discussed below. 
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Normalize program respresention; 
for each statement s in loop { 

compute CVP_Set(s.body); 
for each condition expression c in s.guard

compute CVP_Set(c); 
} 
find all MVPs in the loop; 
select best VPs for loop; 

Fig. 4. Recognition Algorithm 

4.2   Normalize the Program Representation 

To normalize the program representation, first, we perform a series of normaliza-
tion techniques: e.g. scalar expansion, variable range analysis  [20], loop rerolling 
 [3] etc.  

As mentioned above, we perform IF-conversion  [18] in the loop body to reduce 
variations of multi-statement operations and eliminate complex control flow. It 
removes branches by replacing the statements in the loop body with an equivalent 
set of guarded statements. Besides normal statement body, every guarded statement 
includes a guard (relative to the loop) which is composed of several condition ex-
pressions combined by and operation. As to nested loops, the inner loop as a whole 
is regarded as a statement when outer loop is processed. The below code illustrates 
the conversion for the outer loop. 

if(guard1) 
   for(…){ 
     if(guard2){ 
     if(guard3) 
          stmt1; 
       for(…) 
          stmt2; 
}} 

⇒

if(guard1) 
       for(…){ 
S1:       (guard2, guard3)    stmt1; 
S2:       (guard2)     for(…) stmt2; 
     } 

 

Thus, variation (a) and (b) in Fig. 1 have the same code sequence as in Fig. 5(a) 
after scalar expansion and IF-conversion. And variation (c) has the form as in Fig. 
5(b). 

S1:   ( )       t[i]=a[i]–b[i];
S2: (t[i]>32767)  c[i]=32767; 
S3: (t[i]<-32768)  c[i]=-32768;
S4: (t[i]≥-32768, t[i]≤32767) 

c[i]=t[i]; 

S1:(sum[i]>32767.0)  samples[i]=32767; 
S2:(sum[i]>32767.0)  clip++; 
S3:(sum[i]<-32768.0) samples[i]=-32768; 
S4:(sum[i]<-32768.0)  clip++; 
(sum[i]≥-32768, sum[i]≤32767)   

samples[i]=sum; 
(a) (b) 

Fig. 5. Saturated Operations after IF-conversion 
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Generally, IF-conversion can be used to utilize bit-masking instructions on 
MMEs  [3]. Here, we extend its usage. We regard program representation after 
IF-conversion as a new IR on which our further recognition is based. After recog-
nition, we roll back those converted statements (including their guard) if they are not 
vectorizable. 

4.3   Compute CVP_Sets 

As mentioned above, we use BURS  [9] to generate CVP_Sets for every statement’s 
body and guard conditions. The first bottom-up pass of BURS matcher is performed 
here while the second top-down pass is performed at code generation stage.  

To use BURS to compute CVP_Set, we define VP rule as extended BURS rule. The 
extension is the addition of 5 fields: vl, sc, def, use and constraint. Field constraint is 
added to represent constraints, e.g. dependence issues, data type etc., that are required 
before applying this rule. Original cost field in BURS rule is used as vc.  

We define costs of VP rule as 
⎩
⎨
⎧

≅
≅

nsinstrcutiosequentialoflatency

lengthvectornsinstrcutioSIMDoflatency

sc

 )()(vc . 

In its bottom-up traversal, BURS matcher matches a tree and labels each tree node 
its CVP_Set. In each tuple <r, vl, vc, sc, def, use>, cost vc and sc are set as the sum of 
VP rule r’s vc, sc and each subtree’s vc, sc, respectively. Field def and use are simply 
set as VP rule r’s def and use.  

As to vector length vl, its computation is a little bit subtle because vector length 
of VP rule and that of each subtree may not be equal. E.g. Assuming we have an 
expression a[i]+b[i], the element type of a, b is short and int, respectively. Ac-
cording to the rules in Fig. 6, Rule tree 11(10(2),4) can successfully match it. 
Vector length of each rule is 4, 4, 8 and 4, respectively. If vector length of the tree is 
4, then part of load result a[i+4:i+7] will be discarded. To avoid such waste, we set 
vl as the least common multiply (LCM) of vector length of VP rule and that of each 
subtree. This means the tree will be executed LCM times in one vectorized loop 
iteration. Thus, SIMD code generated by VP rule’s and subtrees’ semantic actions 
will be duplicated LCM/vli times respectively. As to the above example, we will 
generate code:  

load a[i:i+7];                                            #rule 2

load b[i:i+3]; load b[i+4:i+7];                         #rule 4 

convert a[i:i+7] to int vectors a’[i:i+3] and a’[i+4:i+7]; #rule 10

a’[i:i+3]+b[i:i+3]; a’[i+4:i+7]+b[i+4:i+7];              #rule 11

Take the process of computing CVP_Set for statements in Fig. 5(a) as an ex-
ample. Parts of the related VP rules are shown in Fig. 6. Fig. 7 shows BURS 
matching result.  
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# Rule vl vc sc def use constraint 
1 lval_exprs16 arr[index] 8 0.751.5 root  vec_arr(arr,index, s16) 
2 exprs16 arr[index] 8 0.751.5  {root} vec_arr(arr,index, s16) 
3 lval_exprs32 arr[index] 4 1.5 1.5 root  vec_arr(arr,index, s32) 
4 exprs32 arr[index] 4 1.5 1.5  {root} vec_arr(arr,index, s32) 

5 
ssub_stmt1s16 lval_exprs32 

=exprs16–exprs16 
4 0.5 0.5lval_exprs32

{exprs16[1],
exprs16[2]}

no_dep(def, use[1]) 
no_dep(def,use[2]) 

6 sub_stmts32 ssub_stmt1s16 4 0 0
ssub_stmt1

s16.def 
ssub_stmt1

s16.use 
 

7 upplimit_exprs32 exprs32>32767 4 0.5 0.5  {exprs32}  
8 lowlimit_exprs32 exprs32<-32768 4 0.5 0.5  {exprs32}  
9 ssub_stmt2s16 lval_exprs16=32767 8 0.5 0.5lval_exprs16   

10 exprs32 exprs16 4 0.5 0.5  {exprs16}  
11 exprs32 exprs32 + exprs32 4 0.5 0.5  {exprs32[1],exprs32[2]}  

Fig. 6. Some VP Rules. Function vec_arr(arr, index, type) checks if arr[index] is a vectorizable 
continuous array visit expression with element type as type. Function no_dep(a, b) checks if there 
is no dependence between a and b 

The final work before MVP finding is to compute sequential cost sc of each state-
ment (including its body and guard). It is set as the sum of each part’s lowest sc and the 
fixed instruction latency for if statement dispatch. 

 

Fig. 7. CVP_Set Computation Result for S2 in Fig. 5(a). The VP rules for S1, S3 and S4 and their 
match processes are similar, hence omitted. Their results are:  
CVP_Set(S1.guard) = ∅, CVP_Set(S1.body) = {<ssub_stmt1s16,…>, <sub_stmts32,…>}, 
CVP_Set(S3.guard) = {<lowlimit_exprs32,…>}, CVP_Set(S3.body)={<ssub_stmt3s16,…>}, 
CVP_Set(S4.guard.condition1)={<!upplimit_exprs32,…>}, CVP_Set(S4.guard.condition2) = 
{<!lowlimit_expr s32,…>}. , CVP_Set(S4.body) = {< ssub_stmt4 s16,…>} 

4.4   Find All MVPs 

Based on CVP_Sets, we now begin to find all MVPs in the loop according to prede-
fined MVP rules. We define each MVP rule as <non-terminal→Stmt_Set, vl, vc, def, 
use, constraint, action>. Set Stmt_Set contains statements (represented by goal 
non-terminals to indicate their roles). Other fields have the same meaning with their 
counterparts in VP rules. As an example, Fig. 8 shows some MVP rules.  
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NT Stmt_Set vl vc def use constraint 

ssub_stmt
s16 

{s1: () ssub_stmt1s16, 
s2: (upplimit_exprs32) 

ssub_stmt2s16, 
s3: (lowlimit_expr s32) 

ssub_stmt3s16, 
s4: (!upplimit_exprs32, 

!lowlimit_exprs32) 
ssub_stmt4s16} 

8 0.5 s4.body.def s1.body.use 

DU_Chain(def(s1.body)) 
≡{s2.guard, s3.guard, 

s4.guard, s4.body.right} 
def(s2.body)≡def(s3.body) 
def(s2.body)≡def(s4.body) 

stmts16 {s1: () ssub_stmts16} 8 0 s1.def s1.use[1].parent  
bitmask-
ing_stmt 

s16 

{s1: (exprs16) stmts16 
s2: (exprs16) stmts16} 

8 0.75 s1.body.def
{s1.guard.use, 
s1.body.use, 
s2.body.use}

def(s1.body)≡def(s2.body) 
s1.guard≡!s2.guard 

Fig. 8. MVP Rules Expamples. Action part of each rule is straightforward, thus omitted. E.g. 
action of the last rule will generate code (in form of ICC intrinsic function):  
“xmm1 = _mm_and_si128( use[1], use[2]); xmm2 = _mm_andnot_si128( use[1] , use[3]);  
xmm3 = _mm_or_si128(xmm1, xmm2); _mm_store_si128(def, xmm3)” 

Since a MVP rule represents a vectorizable operation, statements in it as a whole 
constitute a simpler semantic expression than their respective original expressions. As a 
result, we use the action of MVP rule and those of operands in use and def to generate 
code, instead of using the actions in each statement’s CVP_Set. Semantic actions of 
operands will be executed before that of MVP rule.  

We find out all MVPs by constructing a VP DAG. In this DAG, every node repre-
sents a possible MVP rule match or BVP. Edge represents the inclusion relationship 
between MVP node and corresponding VP nodes.  

The construction algorithm is as follows: 

1) Construct initial nodes. For each statement in the loop, we create a node for every 
element in the Cartesian product (every possible combination) of CVP_Sets of 
statement body and conditions in the guard. 

2) Find a MVP rule match. It means to find a node set that meets the MVP rule, i.e. 
node set is an instance of the Stmt_Set (possible with additional guards) and con-
straints are satisfied. For each found MVP rule match, we construct a new node for 
it and make the node set as its children. 

3) Repeat step 2 until no new MVP rule match can be found. 

When a MVP rule successfully matched, a MVP node is created and annotated as  
<MVP rule, vl, vc, sc, def, use>. Field def and use are set according to the def and use 
field of MVP rule. E.g. the MVP rule match node for Fig. 5(a) has {a[i], b[i]} as use and 
c[i] as def. Field vl is set as the least common multiply of MVP rule’s vl and vl of each 
operand (def and use). Field vc is set as the sum of MVP rule’s vc and vc of each op-
erand. Field sc is set as the sum of sc of each original statement it included. 

For example, for statements in Fig. 5(a), we first construct node 1 to 5 in Fig. 9 
according to their CVP_Set. Then, after matching saturated subtract MVP rule, we  
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Fig. 9. MVP DAG for Fig. 5(a). The def and use field in each node is ignored for simpilicity 

construct node 6. Thus, all the MVP matches have been found and shown in this DAG. 
For statements in Fig. 5(b), similar DAG can be created. 

When matching MVP rules, it may be found that the statements constituting the 
MVP match node have additional guard conditions besides the ones needed by the 
MVP rule. If different statement has different additional conditions, this MVP rule 
cannot be matched because these  statements actually  are embraced by different if 
statements. However, if there is only one additional condition, we decompose each 
node representing the related statement that hasn’t such condition into two node and 
continue the match. E.g. assuming there are two nodes: (guard)S1 and S2. S1 and S2  
constitute a MVP match M if guard does not exist. In such case, we decompose S2 into 
two new nodes: (guard)S2 and (!guard)S2. Then (guard)S1 and (guard)S2 are matched 
as a MVP node (guard)M. Such decomposition is performed on DAG. Only when the 
related MVP is finally chosen will the decomposition really be performed on state-
ments. Such decomposition may increase the number of possible MVPs. However, our 
goal of this step is to find all the possibilities. Next step will choose from them the best 
ones. Thus, such treatment is harmless. 

Fig. 10(a) introduces an example to show the MVP recognition process. It is slightly 
modified from a code segment (Fig. 10(b)) in ADPCM Decoder to make it vectoriz-
able. The original version is similar to a saturated operation, but not vectorizable be-
cause valpred is a reduction variable and has different type from vpdiff. This test case is 
hard to recognize because saturated subtract operation is mingled with the saturated add 
in that they share the clip statement (the second if statement). We have not found any 
previous research work that could deal with it. However, our approach can vectorize  
 

if(sign[i]) 
 t[i]=valpred[i] 

–vpdiff[i]; 
else 
t[i]=valpred[i] 

+vpdiff[i]; 
if(t[i]>32767) 
  valpred[i]=32767; 
else if (t[i]<-32768) 
  valpred[i]=-32768; 
else valpred[i]=t[i] 

if(sign) 
  valpred-=vpdiff;
else 
  valpred+=vpdiff;
if(valpred>32767)
  valpred=32767; 
else 
if(valpred<-32768)
  valpred=-32768; 

S1:(sign[i])  
t[i]=valpred[i]–vpdiff[i]; 

S2:(!sign[i])  
t[i]=valpred[i]+vpdiff[i]; 

S3:(t[i]>32767)  
valpred[i]=32767; 

S4:(t[i]<-32768)  
valpred[i]=-32768; 

S5:(t[i]≤32767,t[i]≥-32768)  
     valpred[i]=t[i] 

(a) (b) (c) 

Fig. 10. Code Segment in ADPCM Decoder 
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Fig. 11. Match Result for Fig. 10(c). Guards are shown as real conditions instead of VPs for easy 
understanding. The def and use field in each node is ignored. Dotted line is used to show the node 
decomposition process. For example, node 12 and 13 are decomposed from node 5(S3 of Fig. 
10(c)). So, node 13 is (!sign[i], t[i]>32767) <ssub_stmt2s16, 8, 1.25, 2> ,which represents 
statement: (!sign[i], t[i]>32767) valpred[i] = 32767;. Solid line shows the inclusion relation-
ship. E.g. MVP sadd_stmt s16 (node 20) needs 4 statements (node 11, 13, 15, 17) to constitute. 
Therefore, they are connected by directed lines 

this example very well. Its normalized code is shown in Fig. 10(c). According to the 
MVP rules in Fig. 8 and some other similar MVP rules, we can get the MVP matching 
DAG in Fig. 11. It clearly shows our system’s power. 

4.5   Select VPs for the Loop 

After constructing the DAG, the problem now becomes how to select for each state-
ment its best VP because each statement can only be vectorized using one VP. 

First, we decompose the DAG into a series of connected components (trees) (ig-
noring dotted lines). For example, DAG in Fig. 11 is decomposed as following trees: 
{1, 3, 8, 9, 18}, {2}, {4}, {5}, {6}, {7}, {10−17, 19−23}. Each tree as a whole shows 
how to vectorize a construct. 

Then, we delete those trees whose root satisfies any of the following conditions: 1) 
root.VP is only meaningful as part of MVP; 2) root.guard ≠ ∅. It means vectorized 
code shall be embraced by a vectorized if statement (not bit-masking operation) which 
is impossible; 3) root.sc ≤ root.vc. Such MVP is not profitable. After it, DAG in Fig. 11 
has trees {1, 3, 8, 9, 18} and {10−17, 19−23} left. The former will vectorize statements 
S1-S2 while the latter will vectorize S1-S5. However, S1-S2 can only be vectorized by 
one VP tree. Thus, these two trees are incompatible. 

We try to find the compatible tree subset with maximum weight. We define each 
tree’s weight (time save of vectorization) as its root.sc−root.vc. This problem can be 
formulated as a NP-complete set-covering problem (by using similar technique in 
 [19]). In practice, because conflicts are rare and easy to solve, we use the greedy al-
gorithm: choose the tree that has the most number of statements and lowest cost first. 
Thus, VP tree {10−17, 19−23} is selected for Fig. 11. 
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At dependence-graph-construction stage, we make all the statements in each chosen 
tree share one node in the graph. The dependence relations between these statements 
are ignored since they are already checked by the constraints of VP/MVP rules.  

4.6   Code Generation 

In code generation stage, vectorizable nodes in the dependence graph, i.e. those that are 
associated with a VP tree and not strongly connected, are vectorized on IR in the classic 
way: first distribute it into a loop; then generate vectorized code according to actions of 
its VP tree; loop step is set as the vl field of the VP tree root; rest loop is generated for 
un-vectorizable iterations. 

Since we regard each VP tree as a high-level operation, it shall contain assignment(s) 
only to one variable. Thus, the “store” action in each non-root VP node is not per-
formed. E.g. the store operations to variable valpred in nodes 19-22 of Fig. 11 are 
prohibited. 

After vectorization on IR, two optimizations: alignment analysis and redundant 
load/store are performed. Because MMEs prefer aligned data load/store, we need to lay 
out the arrays and determine the alignment information for each memory access. At 
present, we only scan alignment requirements for array references and try to meet them 
as many as possible. For pointer references, we conservatively regard them as un-
aligned. This strategy seems to work well for our benchmarks. 

To reduce the redundant load/store for arrays in vectorized constructs, we per-
form common sub-expression elimination for loads and dead code elimination for 
stores. 

5   Experimental Results 

In this section, we demonstrate the effectiveness of the presented algorithm with ex-
perimental results. All experiments were conducted on a 2.8G Pentium 4E Processor 
and 1G memory system with Redhat 9.0. The benchmark we use is Accelerating Suite 
of Berkeley Multimedia Workload (ASBMW)  [4] [5]. We also compare the results of 
our method with ICC [10], the Intel compiler that has the state of the art vectorization 
techniques. We use two versions of ICC, v7 and the latest v8, to vectorize the applica-
tions. We implement our vectorization algorithm in our C-to-C compiler Agassiz  [8] 
which is a research compiler developed by University of Minnesota and us. Agassiz 
transforms vectorizable parts of multimedia source code into Intel SSE/SSE2 instruc-
tion set (in form of ICC intrinsic functions). The rules we added to our system are the 
ones we found profitable and general enough in our real-life application study. The 
output of Agassiz is compiled by ICC 7 and ICC 8 with vectorization off, respectively. 
Fig.12 lists the results. All results are obtained as the average of 5 runs. 

As illustrated by Fig.12, Agassiz achieved an average more than 10% speedup. In 
contrast, ICC 7 and ICC 8 only achieved 1.94% and 2.37% speedup, respectively. This 
is because Agassiz can vectorize almost all the constructs ICC can, which mainly are 
memory copies, arithmetic operations, MAX/MIN operations, etc. Moreover, Agassiz  
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Application 
ICC 7 

option1 

ICC 8 

option1 

Agassiz

+ICC 7

option2

Agassiz

+ICC 8

option2

gsm_decode -1.88% -3.74% 18.07% 19.25%

gsm_encode -0.70% -15.81% 12.49% 13.13%

lame 7.60% 6.29% 7.49% 6.14%

mesa_gears -2.22% 0.17% -1.67% -2.10%

mesa_morph3d -0.77% -0.78% -0.19% -0.79%

mesa_reflect 2.21% 1.38% 2.46% 2.25%

mpeg2_decode 1.07% 0.86% 3.05% 1.67%

mpeg2_encode 9.76% 37.69% 43.55% 42.03%

mpg123 3.28% 0.00% 18.90% 18.29%

timidity 1.06% -2.34% 3.78% 2.87% 
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Fig. 12. Speedup of vectorization. ICC compiling option1: -O2 -xW (with vectorization turned 
on); ICC compiling option2: -O2 -xW -vec- (with vectorization turned off). The baseline is 
compiled with option2 

can vectorize constructs that ICC cannot. This fact leads to the results that Agassiz 
outperforms ICC on six applications while the rest have similar performance. 

We can also find that ICC 8 generated better scalar code than ICC 7 since Agas-
siz+ICC 8 had slightly smaller speedup than Agassiz+ICC 7 on most applications. As 
to the vectorization capability, ICC 8 greatly outperformed ICC 7 on mpeg2_encode 
since it vectorized the Sum of Absolute Difference (SAD) operation. A very strange 
thing is that, though they vectorized the same parts of gsm_encode, ICC 8 greatly 
slowed down it. 

Though Agassiz have vectorized lots of constructs, the most important ones (con-
tributing most to speedup) are just variations of several important operations. As to 
gsm_decode and gsm_encode, the most important one is saturated operation. Con-
cerning lame, the most important one is MAX operation. As to mpeg2_encode, the key 
operations are SAD operation and float arithmetic operation. As to mpeg2_decode, it is 
saturated pack. To mpg123, it is also saturated arithmetic. Regarding timidity, it is 
floating-point operation. 

Fig. 13 lists the comparison of two performance monitors after Agassiz+ICC 8 
vectorization and its scalar counterparts.  

We can see that execution time (clockticks, column 2) is somewhat proportional to 
the number of dynamic instructions retired (column 3). In the listed applications, the 
great reduction of dynamic instructions is attributed to the vectorization of multimedia 
typical operations (mainly multi-statement operations) in hot loops. Thus, these op-
erations contribute to most of the speedups. The rest speedups mainly come from float 
operation and integer operation of small data type. Other performance monitors such as 
mis-predicted branches and L2 cache miss etc. have not changed much due to vec-
torization. Thus, they are not listed here. 
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 Clockticks Instructions 

gsm_decode 86.47% 62.18% 

gsm_encode 88.73% 83.98%

lame 92.77% 85.22%

mesa_gears 98.03% 100.91%

mesa_morph3d 97.18% 100.69%

mesa_reflect 96.96% 89.48%

mpeg2_decode 98.41% 96.46%

mpeg2_encode 68.72% 42.99%

mpg123 84.42% 75.94%

timidity 96.39% 99.68% 
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Fig. 13. Performance monitors after vectorization vs. its scalar counterparts 

6   Related Work 

The application of traditional automatic vectorization techniques on MMEs 
 [11] [15] [16] and new methods such as SLP  [7] neither recognize nor vectorize those 
important multi-statement idioms in real-life multimedia programs.  

Realizing the importance of recognizing multimedia typical idioms, researchers 
have proposed other methods. Simple pattern match based algorithm  [6] requires 
compiler to have one pattern for each variation of multimedia operations, thus too rigid 
to be acceptable. Domain-specific language, SWARC  [17], is developed to provide a 
portable way to program for MMEs. But it is not popular enough. 

In  [12], a preprocessing before classic vectorization algorithm to detect two multi-
media typical operations (saturation and max/min) is presented. It uses tree rewriting 
system to rewrite the tree step by step to recognize them. Speedup was reported for 
several small kernels and 164.gzip in SPEC2000. In comparison, our algorithm shows 
more applicability and power. First, our algorithm can recognize almost all kinds of 
SIMD idioms in a uniform and flexible way. Second, as to the two kind operations this 
method focuses on, our method puts much less constraints on the recognizable opera-
tions. For example, ours does not require the exact order of statements in a 
multi-statement construct, e.g. statements s2, s3, s4 in Fig. 5(a) can appear in any order 
and any other irrelevant statements could be inserted between these three statements. 
We also allow the multi-statement operations appearing in forms that are more com-
plex. Thus, our method is able to recognize those variations such as Fig. 1(b), Fig. 1(c) 
and Fig. 10(a) which cannot be handled by [12].  

7   Conclusion 

In this paper, we first showed that the key difficulty in utilizing MMEs to boost the 
performance of real-life multimedia applications is how to recognize many different 
profitable and vectorizable operations, especially how to recognize the variations of the 
same multimedia typical operation in an efficient and general way.  
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Then, we introduced a powerful recognition engine to overcome such difficulty, 
which only needs a small amount of rules to recognize and vectorize many operations 
in real-life source code. In addition, it can find the best VP set for each loop. Thus, it 
can fully exploit benefits from MMEs. It also enjoys great extendibility in that we only 
need to add new operation patterns (rules) into it if new SIMD instructions appear. We 
integrated this engine into the classic vectorization framework and obtained satisfac-
tory speedup for several real-life multimedia applications. 
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