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Abstract. A reference-counting garbage collector cannot reclaim unreachable
cyclic structures of objects. Therefore, reference-counting collectors either use
a backup tracing collector infrequently, or employ a cycle collector to reclaim
cyclic structures. We propose a new concurrent cycle collector, i.e., one that runs
concurrently with the program threads, imposing negligible pauses (of around
1ms) on a multiprocessor.

Our new collector combines the state-of-the-art cycle collector [S]] with the
sliding-views collectors [20} 2]]. The use of sliding views for cycle collection yields
two advantages. First, it drastically reduces the number of cycle candidates, which
in turn, drastically reduces the work required to record and trace these candidates.
Therefore, a large improvement in cycle collection efficiency is obtained. Second,
it eliminates the theoretical termination problem that appeared in the previous
concurrent cycle collector. There, a rare race may delay the reclamation of an
unreachable cyclic structure forever. The sliding-views cycle collector guarantees
reclamation of all unreachable cyclic structures.

The proposed collector was implemented on the Jikes RVM and we provide
measurements including a comparison between the use of backup tracing and the
use of cycle collection with reference counting. To the best of our knowledge,
such a comparison has not been reported before.

1 Introduction

Reference counting is a classical garbage collection algorithm. Systems using reference
counting were implemented starting from the sixties [[L1]. However, reference-counting
garbage collectors cannot reclaim cyclic structures of objects. Thus, reference-counting
collectors must be either accompanied by a backup mark and sweep collector (run
infrequently to collect unreachable cyclic structures) or by a cycle collector.

Trying to avoid developing and maintaining an additional mark and sweep collector
on the reference-counting collected system motivated attempts to design a cycle collec-
tor [81110L123]]. This effort culminated in the state-of-the-art on-the-fly cycle collector of
Bacon and Rajan [5]].
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1.1  On-the-Fly Garbage Collection

Many garbage collectors were designed to work on a single thread while program threads
are stopped, the so-called stop the world setting. On multiprocessor platforms, it is not
desirable to stop the program and perform the collection in a single thread on one proces-
sor, as this leads both to long pause times and poor processor utilization. A concurrent
collector runs concurrently with the program threads. The program threads are usually
stopped for a short time to initiate and/or finish the collection. An on-the-fly collector
does not need to stop the program threads simultaneously, not even for the initialization
or the completion of the collection cycle.

The study of on-the-fly garbage collectors was initiated by Steele and Dijkstra,
et al. [30,31,[12] and continued in a series of papers culminating in [13}14}[17,120,2].
The advantage of an on-the-fly collector over a parallel collector and other types of con-
current collectors [64128,19,[14,15/18]] is that it avoids the operation of stopping all the
program threads. Such an operation usually increases the pause times. Today, on-the-fly
collectors achieve pauses as short as a couple of milliseconds, and sometimes less [[17].

1.2 The Challenge

Bacon and Rajan [5] propose two cycle collectors. The simpler synchronous collector is
the most efficient cycle collector known today. It runs in a stop-the-world context. Their
more involved asynchronous collector is the only concurrent cycle collector known
today.

A typical stop-the-world cycle collector traces cycle candidates two or three times
to discover which cycles are unreachable. A concurrent cycle collector must deal with
concurrent program threads that modify the objects graph during the scan. Thus, a
concurrent collector cannot trust a scan to repeat the very same structure that a previous
scan has traversed. Furthermore, as modifications occur concurrently with the scan,
each specific scan cannot be guaranteed to view a consistent snapshot of the objects
graph at any specific point in time. This concurrency problem is the source of the two
drawbacks of Bacon and Rajan’s on-the-fly cycle collector. A practical drawback is
the reduced efficiency: the asynchronous collector employs additional checks (which
add substantial additional work) in order to make the collection safe in the presence
of concurrent program threads. A theoretical drawback is that completeness cannot be
guarantee(ﬂ A rare race condition may prevent an unreachable cyclic structure from
being ever reclaimed.

1.3 The Solution

We present an on-the-fly cycle collector which solves these drawbacks, by employing
the sliding-views techniques [20]. The idea is to obtain a fixed view of the heap (via the
sliding-views mechanism), and then run the more efficient synchronous (i.e., stop-the-
world) cycle collector of [[5]] on this obtained view. The theoretical completeness problem
is immediately solved. Any unreachable cyclic structure generated before the view of

4 Completeness of a concurrent garbage collector stands for the standard liveness term in dis-
tributed computing. A collector is complete if all unreachable objects are eventually reclaimed.
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the heap is created can be identified in the view and reclaimed. From the practical point
of view, the use of the simpler and more efficient synchronous algorithm implies a more
efficient execution.

But there are more efficiency benefits. All previous cycle collectors required as input
a list of all reference-count decrements, in order to reclaim all garbage cycles correctly.
However, the sliding-views reference-counting collector keeps track of only a small frac-
tion of reference-count updates (and in particular decrements). This problem is solved
by improving the analysis of the cycle collector to show that the small number of decre-
ments recorded by the sliding-views mechanism suffices to reclaim all garbage cycles.
Note, that fewer decrements implies recording fewer candidates for cyclic structures,
which, in turn, implies less work on traversing these candidates and a reduction in the
cycle collector work. Finally, we improve the efficiency of the synchronous algorithm
of 5] by employing a better scheduling strategy and new filtering techniques that further
reduce the number of traced objects.

In order to check the behavior of the cycle collector in a different environment, we
also incorporated it into the age-oriented collector [27]. The age-oriented collector is
an efficient variation of generational collection that uses reference counting to collect
the old generation and tracing to collect the young generation. Cycle collectors spend a
large fraction of their time working on cycle candidates among newly allocated objects.
The age-oriented collector eliminates a large fraction of the cycles as well as a large
fraction of the cycle collector’s work, as it uses mark and sweep on the young objects
and it runs the cycle collector only on the older objects.

Organization. An overview of previous cycle collectors and the sliding-views collectors
is presented in Section2l An overview of the new cycle collector appears in Section 3
Results are given in Sectiondl Related work is discussed in Section [5]and we conclude
in Section

2  Review of Previous Collectors

This section reviews relevant previous work. We start by reviewing the algorithms for
cycle collection [23211I5] and then we review the sliding-views collectors [20 2]

In this paper the term cycle or cyclic structure refers to a strongly connected com-
ponent in the objects graph. A strongly connected component is a maximal subgraph of
a directed graph such that for every pair of vertices u, v in the subgraph, there exists a
directed path from u to v and a directed path from v to u.

2.1  Collecting Cycles in the Stop-the-World Setting

We start with the synchronous cycle collector of [S]] (building on [2321]]) that runs in
a stop-the-world manner on a single thread. Garbage cycles can only be created when
a reference count is decremented to a non-zero value ([23L121]]). The reference-counting
collector records all objects whose reference count is decremented to a non-zero value.
The cycle collector uses this list as a set of candidates that may belong to a garbage
cycle. Three colors are used to mark the state of objects. The initial color of all objects is
black. A possible member of a garbage cycle is marked gray. The white color signifies
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an object that is identified as part of an unreachable cycle. The cycle collector runs three
traversals on all objects reachable from the candidate set as follows.

— The mark stage: traces the graph of objects reachable from the candidates, sub-
tracting counts due to internal references and marking traversed nodes gray. At the
end of this traversal, all nodes of each unreachable cyclic structure have zero ref-
erence counts, whereas each reachable structure has at least one node with positive
reference count.

— The scan stage: scans the subgraph of (gray) objects reachable from the candidates.
All objects reachable from external pointers (objects with positive reference counts
and all their descendants) are marked black. Also reference counts are restored to
reflect all outgoing pointers from black objects. All other nodes in the subgraph are
colored white (these objects are identified as forming a garbage cycle).

— The collect stage: scans the subgraph again and reclaims all white objects.

2.2 Collecting Cycles On-the-Fly

The on-the-fly cycle collection algorithm of [S]] consists of two phases. In the first phase,
a variant of the above synchronous algorithm is used, but instead of reclaiming the
white nodes these nodes are recorded as potential unreachable cyclic structures. Due
to concurrent mutator activity, some of the white objects may have been incorrectly
identified and may actually be reachable. The second phase is executed only at the next
(reference-counting) collection. The potential unreachable cycles are re-examined and
those found still unreachable are reclaimed.

This collector has a theoretical drawback and a practical drawback. A garbage collec-
tor is called complete if it eventually collects all unreachable objects. The first problem
of this cycle collector is that it is not complete. Rare race conditions may prevent it from
collecting garbage cycles. An example appears in [3]]. The second (practical) problem
is that the algorithm traces the candidate cycles a couple of times in the second phase
to ensure that no false garbage cycle is reclaimed. These extra scannings cause a sub-
stantial reduction in efficiency, especially for (typical) benchmarks which contain many
garbage cycles or many false cycle candidates. Moreover, additional work is required to
fix subgraphs that were not recolored black on time due to improper re-traversals.

2.3  The Sliding-Views Reference-Counting Collector

A simple version of the Levanoni-Petrank sliding-views collector is one that allows stop-
ping all program threads (mutators) simultaneously in the beginning of the collection.
Using such a halt, it is possible to get a virtual snapshot of the heap using a copy-on-write
mechanism. Each object is associated with a dirty bit which is cleared during the halt.
Then, whenever a pointer is modified, the dirty bit of the object holding this reference
is probed. If the object is dirty (i.e., has been modified previously) then the pointer
assignment may proceed with no further action. Otherwise, the object is copied to a
thread-local buffer before the assignment is executed.

This allows a reference-counting or a tracing collector to access a view of a heap
snapshot as taken during the simultaneous halt. If an object is not dirty, then its value in
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Fig. 1. A snapshot view at time 7 vs. a sliding view at interval [£1,2]

the heap is equal to its value at the snapshot time. The snapshot value of dirty objects
may be obtained from the local buffers. To deal with multithreaded programs, a carefully
designed write barrier is presented in [20] allowing the above write barrier to operate on
concurrent threads without requiring synchronized operations.

The collector in [20]] eliminates many of the reference-count updates by updating the
reference counts according to the change in pointer values between the previous snapshot
to the current one. Consider a pointer slot that, between two garbage collections is
assigned the values 0g, 01,02, ...,0,. All previous reference-counting collectors execute
2n reference-count updates for these assignments: RC(0g)——, RC(01)++, RC(01)——,
RC(02)++, . ..,RC(0,)++. However, it is observed that only two are required: RC(0g)——
and RC(0,)++, which buys a substantial reduction in the number of required updates.
The “o0¢” value of a modified slot (previous snapshot value) is exactly the value recorded
by the write-barrier when the slot is modified. The “o0,,” value of a modified slot (current
snapshot value) is obtained according to the dirty flag, as explained above. Note, that for
pointers in newly created objects the previous referent og is always null. However, the
reference count of current child (0,) of newly created objects should be incremented.

The algorithm described so far probably obtains short pause times, but in order to get
even shorter pause times, the sliding-views mechanism is proposed. Here, the program
threads are not halted simultaneously, but one at a time. The obtained view of the heap
is not a snapshot but a sliding view. A snapshot of the heap at time ¢ is a copy of the
content of each object in the heap at time 7. A sliding view of the heap is associated with
a time interval [71,£2] (rather than a single point in time). It provides the content of each
object in the heap at an arbitrary time ¢, satisfying #{ <t < f,. In contrast to a snapshot,
objects are not all recorded at the same time. Figure [Tl depicts the difference between a
sliding view and a snapshot.

As a snapshot view cannot be assumed anymore, correctness considerations dictate a
snooping mechanism. During the (short) time interval [¢1, ;] in which the program threads
are being halted one by one, the snooping mechanism operates for each modified pointer
via the write barrier. For each modified reference, the snooping mechanism records in
a local buffer the address of the object that has acquired a new reference. These logged
addresses are considered roots for the current collection and so such objects are not
reclaimed. The view of the heap used by the collector may be thought of as a view that
is sliding in time: the heap objects are viewed at slightly different points in time. The
snooping mechanism makes sure that no reachable object is reclaimed. More details
appear in [20].
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3  Cycle Collector Overview

In this section we provide an overview of the new collector with its main ideas stressed.
A full description including the pseudo code is provided in our technical report [26]].

We first observe that if we were given a snapshot of the heap with all reference
counts updated and a list of all objects whose reference counts have been decremented
to a positive value since the last cycle collection, then we would have been able to
run the synchronous algorithm of [5]] on the given snapshot and correctly identify the
garbage cycles in the heap as viewed at the snapshot. This is good news because being
a garbage cycle is a stable property and such a cycle remains unreachable, no matter
how the application behaves, until the collector reclaims its objects. Thus, unreachable
cycles can be reclaimed based on a snapshot and a list of decrements.

Next, we explain how we obtain the snapshot and the list of decrements efficiently.
We first concentrate on the first issue: obtaining the snapshot. The full list of reference-
count decrements cannot be obtained efficiently, but we will show that it is possible to
use a partial list and how that partial list can be obtained efficiently.

3.1 Obtaining a Snapshot (or a Sliding View)

The cycle collector uses the heap (or a snapshot of it) by repeatedly traversing several
subgraphs of it. To obtain a virtual snapshot of the heap that may be used for such
traversals, we use the mechanism of [20] described in Subsection 23] Traversing a
subgraph is done as follows (following [2]]). The write barrier of [20] is employed by
the program threads. To traverse an object according to its pointer values at snapshot
time, we obtain these values in the following manner. First, the dirty bit of the object
is examined. If the object is not dirty (no pointer in the object has been modified since
the snapshot was taken), then its current state in the heap is equal to its state during the
snapshot and the collector may trace it by reading its pointers from the heap. Otherwise,
the object has been modified since the snapshot time and it is marked dirty. In this case,
the collector finds its snapshot values in the threads local buffers. After obtaining the
snapshot values, objects can be traced according to their state at the snapshot time, and
thus, repeated traces are bound to trace the same graph repeatedly.

In terms of completeness, once a garbage cycle is created, it must exist in the next
snapshot, and thus it is bound to be reclaimed by the synchronous algorithm of [S].
We also improve efficiency, since we can use the efficient synchronous algorithm of [J5]]
instead of using their less efficient concurrent collector. Inefficiencies originating from
the need to insure correctness in spite of program-collector races are eliminated. For
example, the entire second phase of the asynchronous algorithm of [3]] is redundant:
there is no need to store identified garbage cycles and there is no need to re-examine
them during the next garbage collection by more traversals.

We now extend the discussion to using sliding views instead of snapshots in order to
obtain an on-the-fly collector. The on-the-fly collector does not halt all program threads
simultaneously, but stops each of them separately to obtain their roots and read their
buffers. This creates a sliding view of the heap associated with a short time interval
[t1,12] instead of a snapshot.
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The cycle collector remains the same, except that it (obliviously) uses a sliding view
of the heap rather than a snapshot. A sliding view may incorrectly indicate that an object
is unreachable because the view does not represent the heap at a consistent point in time.
The snooping mechanism makes sure that such objects are not reclaimed, ensuring the
safety property. The snooping mechanism is explained in [20]. Let us review it shortly.

How can objects be seen unreachable in the sliding view while they are actually
reachable at all times? Suppose the sliding view is read during the interval [f],2;]. If no
pointer is written to the heap during this time, the sliding view represents a snapshot
of the pointers in the heap taken at the time #,. However, as pointers are being written
in the heap, this snapshot gets distorted, and the view may contain values of pointers
that were updated between #; and #,. It can be shown that if such a modified pointer
creates a false unreachable garbage cycle in the view, then a pointer must have been
written pointing to an object in this cycle during the time interval [t1,7,]. The snooping
mechanism records all objects that acquire a new reference. Thus, the object that falsely
seems unreachable in the sliding view must be snooped. Snooped objects are considered
roots, and therefore, cyclic structures containing snooped objects cannot be reclaimed.

With respect to completeness, any unreachable cyclic structure formed before the
collection begins, must be collected. The reason is that these objects are not modified
during the time interval [f{,#;] and in particular, no new pointers are being written to
objects in this cycle. Thus, none of the objects in the cyclic structure is snooped and
the view of all pointers into and in between these objects appears in the sliding view
exactly as it would have appeared had we taken a real snapshot at time ;. Thus, such an
unreachable cyclic structure must be reclaimed.

3.2  Obtaining the List of Candidates

It remains to explain how the list of objects whose reference counts was decremented is
obtained. All cycle collectors use a candidate set consisting of all newly created objects
plus all objects whose reference count is reduced to a positive value by any pointer
modification since the previous cycle collection. However, the sliding-views reference-
counting collector of Levanoni and Petrank [20]] does not maintain such a list. In fact,
it is oblivious to most of the pointer updates and this obliviousness is what buys its
efficiency. A naive solution is to make the reference-counting collector record all the
extra required updates. This solution is unacceptable as it undermine the efficiency of the
reference-counting collector. Instead, we improve the analysis of the cycle collector and
show that the reduced set of candidates obtained from the Levanoni-Petrank collector
suffices. This way, we can preserve the efficiency of the reference-counting collector
and also significantly improves the efficiency of the cycle collector as fewer candidates
need to be recorded and less work is required to traverse their descendants.

Newly created objects. Taking only reference-count decrements as candidates is not
enough when the write barrier is not used with the roots. This is the case with all modern
collectors, as a write barrier on the roots is too costly. Since decrements of roots are not
accounted for, cycle collectors also include in the set of candidates all objects created
since the last collection and all objects referenced directly from the roots during the
previous collection.
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To see that this is indeed required for all modern collectors, consider two newly
created objects that point to each other only (forming a cycle) and a root pointer that
references one of them. If the root pointer is modified, then a cycle of garbage is formed,
but it cannot be noticed from reference-count decrements. The extended candidate set
as above is enough to detect any such garbage cycle.

Obtaining the candidates. The sliding-views reference-counting collector yields almost
for free a list of newly created objects and a list of objects that were referenced by the roots
during the previous collection. We now concentrate on finding the more problematic set
of objects whose reference counts were decremented.

As the sliding-views collector reduces a large fraction of the reference-count updates,
we now claim that it is possible to collect all garbage cycles, even though we record and
consider much fewer objects as candidates. To be more precise, when a pointer p takes
the values og, 01, 02, . . . , 0, between two collections, only og is considered as a candidate
(if its reference count is decremented to a non-zero value) by the new cycle collector.
Previous collectors considered also the objects o1, 02, ..., 0,—1 as candidates but are
ignored by us. Additional relevant decrements are treated by this collector in the same
manner as previous collectors. These are decrements that are executed by the reference-
counting collector itself. When an object is reclaimed, the collector decrements the
reference counts of all its descendants. These decrements may also produce candidates
(if the descendant’s reference count is not decremented to zero).

To show that the collector does not miss a garbage cycle, we divide the argument into
2 cases: garbage cycles comprising solely of old objects and garbage cycles containing
at least one young object, where a young object is an object that has been created after
the previous sliding view (or snapshot). Both cases are properly handled.

The easy case is when an unreachable cycle includes a young object. As mentioned
earlier in this section, all young objects (surviving the reference-counting collection) are
considered candidates. Thus, this cycle will not be missed.

The more involved case is a garbage cycle containing only old objects (created before
the previous sliding view). If this cycle was reachable during the previous sliding view
and is unreachable in the current sliding view, then there exists a pointer to one of the
cycle’s objects in the previous sliding view, but this pointer does not exist in the current
sliding view. If this was a root pointer, then the cycle is considered by the fact that all
root pointers from previous collection are candidates. Otherwise, this is a heap pointer
that has been modified during the time interval between the two sliding views. The
pointer modification could originate either from the application modifying a pointer (as
in Figure[2)), or from a reclamation of the object containing this pointer and the memory
manager deleting the pointer. In the first case, the change of this pointer is logged in
a local buffer causing a reference-count decrement to the object previously referenced.
In the latter case, the delete operation of the collector implies a similar reference-count
decrement. In each of these cases, this object becomes a candidate for cycle collection.
Hence, cycles containing only old objects are accounted for properly.
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Fig.2. A garbage cycle comprising solely of old objects cre-
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To summarize, even though the Levanoni-Petrank reference-counting collector exe-
cutes only a small fraction of the reference-count updates, we may collect cycles correctly
using as candidates only those objects whose reference counts are decremented by this
collector to a non-zero value, plus the roots at the previous sliding view and all newly
created objects.

3.3  Checking Behavior with the Age-Oriented Collector

Newly created objects add a substantial burden on the cycle collector. Therefore, we
also used the proposed cycle collector with a collector that runs reference counting and
cycle collection on the old generation only. We chose the age-oriented collector, a twist
on generational collection that is adequate for concurrent collection. Our age-oriented
collector runs concurrent reference counting on the old generation and concurrent mark
and sweep on the young objects [27]]. The age-oriented collector eliminates a large
fraction of the cycles as well as a large fraction of the cycle collector’s work since it
does not need to consider the young objects as candidates. Indeed cycle collection was
more effective in this setting. Let us say a few words about the age-oriented collector.
For a full description see [27]].

The age-oriented collector keeps generations, but it does not run frequent young gen-
eration collections. The reason for allowing entire heap collections is that short pauses
are obtained by concurrency already and do not need to be obtained by short young col-
lections. The heap is collected only when it gets full. When that happens, the age-oriented
collector uses a reference-counting collector to reclaim objects in the old generation and
mark and sweep collector to reclaim objects in the young generation. Since these collec-
tions always happen together, there is no need to record inter-generational pointers. It is
important to note that the age-oriented collector is an efficient collector, in particular, it
is more efficient than the reference-counting algorithm as a stand-alone. Therefore, it is
relevant to check its performance with a cycle collector.

3.4  Reducing the Number of Traced Objects

New techniques for filtering and reducing the number of traced objects were designed and
implemented in the proposed collector. For lack of space, these techniques are omitted.
They are described in our technical report [26]].
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4 Measurements

An Implementation for Java. Our algorithm was implemented in Jikes RVM [1]], a
research Java virtual machine. The entire system, including the collector itself is written
in Java (extended with unsafe primitives available only to the Java Virtual Machine
implementation to access raw memory).

Platform and benchmarks. We have taken measurements on a 4-way IBM Netfin-
ity 8500R server with a 550MHz Intel Pentium III Xeon processor and 2GB of phys-
ical memory. The benchmarks used were the SPECjvm98 benchmark suite and the
SPECjbb2000 benchmark (described in [29]). We feel that the multithreaded SPECjbb-
2000 benchmark is more interesting, as the SPECjvm98 are more appropriate for clients
and our algorithm is targeted at servers (multi-processors). SPECjbb2000 runs in a single
JVM in which threads represent terminals in a warehouse. It is run with one terminal per
warehouse, thus, the number of warehouses signifies the number of threads. We also feel
that there is a dire need in academic research for more multithreaded benchmarks. In this
work, as well as in other recent work ([4}/13]]) SPECjbb2000 is the only representative
of large multithreaded applications.

Testing procedure. We used the benchmark suite using the test harness, performing

standard automated runs of all the benchmarks in the suite. Our standard automated run
runs each benchmark five times for each of the JVM’s involved (each implementing a
different collector). The average of this 5 runs is used. Finally, each JVM was run on
varying heap sizes. For the SPECjvm98 suite, we started with a 32MB heap size and
extended the sizes by 8MB increments until a final large size of 96MB. For SPECjbb2000
we started from 256MB heap size and extended by 64MB increments until a final large
size of 704MB.
The compared collectors. The cycle collection algorithm was incorporated into two
collectors: the Levanoni-Petrank reference-counting collector [20]], and the more effi-
cient age-oriented collector [27]. Both collectors are also implemented in Jikes and are
accompanied by a backup mark and sweep collector which is run infrequently to collect
garbage cycles. For performance measurements, we ran both collectors accompanied
with our cycle collection algorithm against both collectors when using the backup mark
and sweep algorithm. This first ever reported comparison of cycle collection to a backup
tracing collector is important since these are the main two options provided to an imple-
menter of a reference-counting algorithm. In addition, we have compared characteristics
of our cycle collection algorithm (with both collectors), against the characteristics of the
previous on-the-fly cycle collector of Bacon and Rajan [4].

4.1 Performance

SPECjbb2000. Figure [3]depicts the throughput ratio between using the cycle collector
and a backup tracing collector when both are used with the Levanoni-Petrank collector.
With 1-3 warehouses the collector has a spare processor to run on, since the platform
has four processors. In this case, throughput differences occur only when the collector is
not efficient enough to free enough space for program threads with on-going allocations.

3 This is a tight heap for Jikes as it is self-hosted.
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Fig. 3. SPECjbb2000 on a multiprocessor with the reference-counting collector. The higher the
ratio, the better the cycle collector performs compared to the backup tracing algorithm
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better the cycle collector performs compared to the backup tracing algorithm
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Fig. 5. SPECjvm98 on a multiprocessor. The higher the ratio, the better the cycle collector performs
compared to the backup tracing algorithm

This is more noticeable on tight heaps. With 4—-8 warehouses, the collector does not have
a spare processor and its use of CPU directly affects the throughput. The tracing backup
collector outperforms the cycle collector usually by 5%—10%.
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The same measurements have been run when the cycle collector and the backup
tracing collector were used with the old generation of the age-oriented collector [27], see
Figure[dl As only old objects are collected with reference counting and cycle collection,
the behavior differs. Here, cycle collection performs usually as good as the backup tracing
collector, whereas in tight heaps in which cycle collection wins. As already observed
in [2] reference counting has an advantage on tight heaps over tracing. Here it is seen
that cycle collection is also preferable on tracing (as an add-on to reference counting)
when the heap is tight.

SPECjvm98. When running the SPECjvm98 benchmarks on a multiprocessor the
collector runs concurrently with the program thread(s) on a spare processor. Figure
depicts the results both with the Levanoni-Petrank reference-counting collector as well
as with the age-oriented collector. The results do not point to a clear winner. Each
application behaves somewhat differently and most of the differences are below 5%.
The only clear noticeable difference is with the _227_mtrt benchmark. In _227_mtrt
there exists an initial phase in which many objects are created and kept alive till the
end of the run. These newly created objects induce a large amount of work on the cycle
collector. During the (single) long collection, the mutators halt waiting for free space.
Performance difference on 227 _mitrt is not noticeable with the age-oriented collector,
where the cycle collector is not run on this pack of young objects.

Discussion. At first glance, it may seem that backup tracing is the right choice. How-
ever, it is worth noting that modern platforms and benchmarks also run more efficiently
with tracing than with reference counting [2]]. Should we give up on reference counting
and cycle collection? To our minds, the answer is no. With the direction modern com-
puting is taking, we believe that the cycle collector may become much more effective
compared to a backup tracing collector. As heaps grow larger, reference counting may
become the preferred method of choice. While tracing must traverse the live objects
in the heap, reference counting needs only account for reference-counts updates and
reclaiming dead objects [. 1f future benchmarks use a large live heap or even a large old
generation, then reference counting may become the best collector, and a companion
cycle collector will be required. In that case, the cycle collector proposed here is an
effective companion and we expect it to outperform a backup tracing collector. Note
also, that the best way to use reference counting today is to run it on the old generation
only as proposed in [3,[7,127]]. In that case, running cycle collection with the reference
counting is the right choice.

4.2 Pause Times

Table[Mpresents the maximum pause times of the Levanoni-Petrank reference-counting
collector accompanied by our cycle collection algorithm. Pauses were measured with
a 64MB heap for SPECjvm98 benchmarks, and a 256MB heap for SPECjbb2000 with
1, 2, and 3 warehouses. For this number of threads, no thread gets swapped out, and so
pauses are due to the garbage collection only. If we run more program threads, large

6 Actually, when the heap is tight and collections are frequent, reference counting is already
winning over tracing the whole heap [2]]. But, we don’t expect heaps to be tighter in the future.
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Table 1. Maximum pause time in Table 2. Cyclic garbage collected for each

milliseconds benchmark

Benchmarks|Maximum pause RC AO

time (ms) cyclic | cyclic || cyclic | cyclic

compress 1.0 Bench- | objects | bytes || objects | bytes
jess 13 marks  |reclaimed|(in MB)||reclaimed|(in MB)
db 0.7 compress 108| 84.08 0 0
javac 1.7 jess 24| 0.15 0 0
jack 1.0 db 16| 0.09 0 0
mtrt 0.9 javac IM| 67.64 0.57M| 37.02
jbb-1 0.8 mtrt 66052 5.78 66042|  5.66
jbb-2 0.6 jack 8976 1.72 3360 0.62
jbb-3 1.1 jbb 146 0.88 0 0

pause times (whose lengths depend on the operating system scheduler) appear because
threads lose the CPU to other threads.

The maximum pause time measured for all benchmarks was 1.7 ms. The maximum
pause time of the Levanoni-Petrank reference-counting collector does not depend on
whether it is accompanied by a tracing backup or by a cycle collector. The operation that
determines the length of the pause time is the scanning of the roots of a single thread,
which occurs in one of the handshakes of the collector with the program threads.

4.3 Collector Characteristics

Amount of Cyclic Garbage. Table [2| provides, for each benchmark, the number of
garbage cycle objects reclaimed and the space they consume. As the age-oriented col-
lector only employs cycle collection on old objects, it needs to reclaim a smaller set of
garbage cycles than the reference-counting collector.

Candidates Roots: ratio compared with Bacon & Rajan Objects traced: ratio compared with Bacon & Rajan

P
1 A0

Candidates traced ratio
Objects traced ratio

Jack ibb

Jack job compress  jess @ Javac mirt
Benchmarks

o javac mirt
Benchmarks

Fig. 6. Comparison between the new collector and the previous cycle collector of Bacon and
Rajan. On the left, comparing the number of cycle candidates and on the right the number of
traced objects. The lower the ratio, the better the new cycle collector algorithm behaves
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The benchmarks producing a substantial amount of garbage cycles space are
213_javac and 201_compress. 201 _compress creates dozens of garbage cycles com-
prised of huge objects, and thus requires only a small amount of tracing. 213 _javac
however, contains thousands of garbage cycles, thus requiring a large cycle collection
work.

Amount of Tracing. Figure[@reports the candidates examined and the objects traced
ratios when the cycle collector is run with the Levanoni-Petrank collector (LP) and age-
oriented collector (AO) compared to these of the cycle collector of Bacon and Rajan [5].
To be extremely conservative we did not include the objects scanned during the additional
verification phase of [3]] (since in this phase the actual operation on some objects only
included work on their colors, i.e., they were not actually fraced). Thus, the actual
advantage of the new collector is even higher than reported.

Figurel6lshows that the new cycle collector with the Levanoni-Petrank collector traces
fewer candidates compared to the previous cycle collector (of [S]]) over all benchmarks/.
It usually also traces substantially fewer objects except for one case: the 227 mtrt
benchmark (discussed above). The additional saving when the cycle collector is used
with the age-oriented collector is substantial for most benchmarks.

5 Related Work

The inability of reference counting to reclaim cyclic garbage structures was first noticed
by McBeth [24]]. Martinez et al. [23] (inspired by [10]) reclaim cells, which were uniquely
referenced when their count drops to zero, while when a pointer to a shared object is
deleted, a local depth-first search is applied on it. Lins [21]] postponed these traversals
while saving the values of the deleted pointer in a buffer (each such value is a candidate
to be a root of a garbage cycle) and traversed the buffer at a suitable point. Bacon et
al. [5]] extended Lins algorithm to a concurrent cycle collection algorithm. They also
improved Lins’ algorithm by performing the tracing of all candidates simultaneously,
reducing the number of traced objects. Lins [22] showed the algorithm can employ 2
graph traversals (instead of 3) per candidate by using an extra data structure.

6 Conclusion

We presented a new non-intrusive, complete, and efficient cycle collector adequate for use
with a reference-counting garbage collector. The new cycle collector runs concurrently
with the program threads, achieving negligibly short pauses of less than 2ms. It uses
the sliding-views reference-counting collector of Levanoni and Petrank [20] with the
synchronous cycle collector of Bacon and Rajan [5]]. These algorithms do not naturally
fit together since the original cycle collector expects to get a list of all reference-count
decrements, whereas the original reference-counting collector is oblivious to most of
these decrements. However, we provide a finer analysis of cycle collection showing

7 These measurements include the new techniques reducing the number of traced objects, reported
in our technical report [26]].
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that the information gathered by the reference-counting collector is enough to guarantee
reclamation of all unreachable cycles.

The use of the sliding-views mechanism yields a drastic improvement in efficiency.
Much of the work required to ensure concurrent correctness may be eliminated. We have
further added filtering techniques to optimize the collector’s performance. An additional
theoretical contribution is the completeness of the collector. The resulting cycle collector
is guaranteed to reclaim all garbage cycles, whereas the only available previously known
concurrent collector [5] had an (extremely rare) sequence of events that prevented it from
collecting an unreachable cyclic structure forever.

We implemented the proposed cycle collector and we provide the first direct com-
parison of running a cycle collector with reference counting against running reference
counting with a backup tracing collector. Our results show that with contemporary bench-
marks, the backup tracing collector outperforms the cycle collector, although it is the
most efficient cycle collector available. However, when the reference-counting collector
was run only on the old generation, the cycle collector performed equally to the backup
tracing collector, and even better on tight heaps. Thus on today’s platforms and bench-
marks cycle collection is effective when applied to the old generation only. In the future,
as heaps and live data become much larger, the techniques described in this work may
become a preferred and most effective method to reclaim garbage.

Acknowledgement. Ram Natahniel initiated our discussion on this problem by suggest-
ing to use algorithms for strongly connected components to efficiently locate garbage
cycles. Our attempts to follow this direction failed, but this paper has evolved. We thanks
Ram for many interesting discussions.
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