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Abstract. Reasoning about programs is mostly deduction: the reason-
ing from the abstract model to the concrete run. Deduction is useful
because it allows us to predict properties of future runs—up to the point
that a program will never fail its specification. However, even such a 100%
correct program may still show a problem: the specification itself may
be problematic, or deduction required us to abstract away some relevant
property. To handle such problems, deduction is not the right answer—
especially in a world where programs reach a complexity that makes them
indistinguishable from natural phenomena. Instead, we should enrich our
portfolio by methods proven in natural sciences, such as observation, in-
duction, and in particular experimentation. In my talk, I will show how
systematic experimentation automatically reveals the causes of program
failures—in the input, in the program state, or in the program code.

1 Introduction

I do research on how to debug programs. It is not that I am particularly fond of
bugs, or debugging. In fact, I hate bugs, and I have spent far too much time on
chasing and eradicating them. People might say: So, why don’t you spend your
research time on improving your specification, model checker, software process,
architecture, or whatever the latest and greatest advance in science is. I answer:
All of these help preventing errors, which is fine. But none can prevent surprises.
And I postulate that surprises are unavoidable, that we have to teach people how
to deal with them and to set things straight after the fact.

As one of my favorite examples, consider the sample program in Fig. 1 on
the following page. Ideally, the sample program sorts its arguments numerically
and prints the sorted list, as in this run (r✔):

sample 9 8 7 ⇒ 7 8 9

With certain arguments, sample fails (run r✘):

sample 11 14 ⇒ 0 11

Surprise! While the output of sample is still properly sorted, the output is not
a permutation of the input—somehow, a zero value has sneaked in. What is the
defect that causes this failure?
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1 /* sample.c -- Sample C program to be debugged */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 static void shell_sort(int a[], int size)
7 {
8 int i, j;
9 int h = 1;

10 do {
11 h = h * 3 + 1;
12 } while (h <= size);
13 do {
14 h /= 3;
15 for (i = h; i < size; i++)
16 {
17 int v = a[i];
18 for (j = i; j >= h && a[j - h] > v; j -= h)
19 a[j] = a[j - h];
20 if (i != j)
21 a[j] = v;
22 }
23 } while (h != 1);
24 }
25
26 int main(int argc, char *argv[])
27 {
28 int i = 0;
29 int *a = NULL;
30
31 a = (int *)malloc((argc - 1) * sizeof(int));
32 for (i = 0; i < argc - 1; i++)
33 a[i] = atoi(argv[i + 1]);
34
35 shell_sort(a, argc);
36
37 for (i = 0; i < argc - 1; i++)
38 printf("%d ", a[i]);
39 printf("\n");
40
41 free(a);
42 return 0;
43 }

Fig. 1. The sample program (almost) sorts its arguments

In principle, debugging a program like sample is easy. Initially, some pro-
grammer has created a defect—an error in the code. When executed, this defect
causes an infection—an error in the program state. (Other people call this a
fault, but I prefer the term infection, because the error propagates across later
states, just like an infection.) When the infection finally reaches a point where it
can be observed, it becomes a failure—in our case, the zero in the output. Given
that a failure has already occurred, it is the duty of the programmer to trace back
this cause-effect chain of infections back to the defect where it originated—the
defect that caused the failure.

As an experienced programmer, you may be able to walk your way through
the source code in Fig. 1 and spot the defect. When it comes to doing so in a
general, systematic, maybe even automated way, we quickly run into trouble,
though. The difficulty begins with the terms. What do we actually mean when
we say “the defect that caused the failure”? What are we actually searching for?
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2 Errors are Easy to Detect, But Generally Impossible
to Locate

An error is a deviation from what is correct, right, or true. To tell that something
is erroneous thus requires a specification of what is correct, right, or true. This
can be applied to output, input, state, and code:

Errors in the output. An externally visible error in the program behavior is
called a failure. Our investigation starts when we determine (or decide) that
this is the case.

Errors in the input. For the program input, we typically know what is valid
and what not, and therefore we can determine whether an input is erroneous
or not. If the program shows a failure, and if the input was correct, we know
the program as a whole is incorrect.

Errors in the program state. It is between input and output that things
start to get difficult. When it comes to the program state, we frequently
have specifications that allow us to catch infections—for instance, when a
pre- or postcondition is violated. Types can be seen as specifications that de-
tect and prevent illegal variable values. Common programming errors, such
as buffer overflows or null pointer dereferences, can be specified and detected
at compile time.

Errors in the code. Unfortunately, specifications apply only to parts of the
program state: conditions apply to selected moments in time; types allow
a wide range of values; tools can only check for common errors. Therefore,
there will always be parts of the state for which correctness is not specified.
But if we do not know whether a variable value is correct, we cannot tell
whether the code that generated this value is correct. Therefore, we cannot
exactly track down the moment the value got infected, and therefore, we
cannot locate the defect that caused the failure.

Of course, we can catch errors by simply specifying more. A specification that
covers each and every aspect of a program state would detect every single error.
Unfortunately, such a specification would ne no less complex and error-prone
than the program itself.

In practice, it is the programmer who decides what is right upon examining
the program—and fixes the program according to this implied specification. In
such a cases, deciding which part of a program is in error can only be told after
the decision has been made and the error has been fixed. Once we know the
correct, right, and true code, we can thus tell the defect as a deviation from the
corrected code. In other words, locating a defect is equivalent to writing a correct
program. And we know how hard this is.

3 Causes Need Not be Errors, But Can Easily be Located

While it may be hard to pinpoint an error, the concept of causality is far less
ambiguous. In general, a cause is an event that precedes another event (the
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effect), such that the effect would not have occurred without the cause. For
programs, this means that any aspect of an execution causes a failure if it can
be altered such that the failure no longer occurs. This applies to input, state,
and code:

Causes in the input. We can change the input of the sample program from
11 14 (run r✘) to 7 8 9 (run r✔), and the failure no longer occurs. Hence,
we know that the input causes the failure.
One may argue that in any program, the input determines the behavior and
thus eventually causes any failure. However, it may be only parts of the input
that are relevant. For instance, if we run sample with 11, we find that it is
the additional 14 argument which causes the failure:

sample 11 ⇒ 11

Causes in program state. If we can change some variable during execution
such that the failure no longer occurs, we know that the variable caused the
failure.
Again, consider the failing sample run r✘. We could use an interactive de-
bugger and stop the program at main() (Line 28), change argc from 2 to 1,
and resume execution. We would find an output of 11, and thus find out
that the value of argc caused the failure.
As we can see from this example, a cause does not imply an error: The value
of argc probably is correct with respect to some implied specification; yet,
it is tied to the failure.

Causes in the code. All variable values are created by some statement in the
code; and thus, there are statements which cause values which again cause
failures.
In the sample program, there is a statement which exactly does that, and
which can (and should) be changed to make the failure no longer occur. The
interesting aspect is that we can find that statement from the causes in the
program state. If we can find a failure cause in the program state, we can
trace it back to the statement which generated it.

Once again, it is important to note that causes and errors are two orthogonal
concepts. We can tell an error without knowing whether it is a cause for the
failure at hand, and we can tell a cause without knowing whether it is an error.
In the absence of a detailed specification, though, we must rely on causality to
narrow down those statements which caused the error—in the hope that the
defect is among them.

4 Isolating Failure Causes with Automatic Experiments

Verifying that something is a cause cannot be done by deduction. We need
at least two experiments: One with the cause, and one without; if the effect
occurs only with the cause, we’re set. This implies that we need two runs of the
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Table 1. One of the state differences between r✔ and r✘ causes sample to fail

Variable Value
in r✔ in r✘

argc 4 5
argv [0] "./sample" "./sample"
argv [1] "9" "11"
argv [2] "8" "14"
argv [3] "7" 0x0 (NULL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

program—one where the failure occurs, and one where the failure does not occur.
In debugging, this second run comes at the very end after fixing the defect—
if the failure no longer occurs, this verifies that the defect actually caused the
original failure.

However, having a passing run r✔ and a failing run r✘ initially is the key
for finding causes. The initial difference in the program input causes differences
in the program state, which propagate until we see the final difference in the
program outcome. By comparing r✔ and r✘, we can extract these differences, and
compare them to get a first idea of what caused the failure.

Again, consider the sample program. Table 1 lists the sample program states,
as well as the differences, as obtained from both r✔ and r✘ when Line 9 was
reached. (a and i occur in shell sort() and in main(); the shell sort()
instances are denoted as a′ and i′.)

Formally, this set of 12 differences is a failure cause: If we change the state
of r✔ to the state in r✘, we obtain the original failure. However, of all differences,
only some may be relevant for the failure—that is, it may suffice to change only
a subset of the variables to make the failure occur. For a precise diagnosis, we are
interested in obtaining a subset of relevant variables that is as small as possible.

Delta Debugging [3] is a general procedure to obtain such a small subset.
Given a set of differences (such as the differences between the program states
in Fig. 1), Delta Debugging determines a relevant subset in which each remain-
ing difference is relevant for the failure to occur. To do so, Delta Debugging
systematically and automatically tests subsets and narrows down the difference
depending on the test outcome, as sketched in Fig. 2. Overall, Delta Debugging
behaves very much like a binary search.

Originally, Delta Debugging was designed for program inputs. However, one
may consider a program state as an input to the remainder of the program exe-
cution; hence, it is pretty straight-forward to apply Delta Debugging on program
states to isolate causes. Applied on the differences in Table 1, Delta Debugging
would result in a first test that
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Passing state Failing state

Mixed state

?Test outcome

Fig. 2. Narrowing down state differences. By assessing whether a mixed state results
in a passing (✔), a failing (✘), or an unresolved ( ) outcome, Delta Debugging isolates
a relevant difference

– runs r✔ up to Line 9,
– applies half of the differences on r✔—that is, it sets argc, argv[1], argv[2],

argv[3], size, and i to the values from r✘—, and
– resumes execution and determines the outcome.

This test results in the same output as the original run; that is, the six dif-
ferences applied were not relevant for the failure. With this experiment, Delta
Debugging has narrowed down the failure-inducing difference to the remaining
six differences. Repeating the search on this subset eventually reveals one single
variable, a[2], whose zero value is failure-inducing: If, in r✔, we set a[2] from
7 to 0, the output is 0 8 9—the failure occurs. We can thus conclude that the
zero being printed is caused by a[2]—which we can confirm further by changing
a[2] in r✘ from 0 to 7, and obtaining the output 7 11. Thus, in Line 9, a[2]
being zero causes the sample failure.

The idea of determining causes by experimenting with mixed program states
(rather than by analyzing the program or its run, for instance) may seem strange
at first. Yet, the technique has been shown to produce useful diagnoses for pro-
grams as large as the GNU compiler (GCC). As detailed in [2], scaling up the
general idea, as sketched here, requires capturing and comparing program states
as memory graphs [4]. Also, Delta Debugging must do more than simple binary
search; it needs to cope with interferences of multiple failure-inducing elements
as well as with unresolved test outcomes [3].

5 Locating the Statements That Cause the
Failure—Automatically

The tricky question is now: How do we get from failure-causing states to failure-
causing statements? One straight-forward way might be to look at the statements
which created the value. Alas, we won’t find such a statement for a[2]; it is never
assigned a value before Line 9.
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However, it turns out that at the start of main(), in Line 28, it is not a[2]
which causes the failure, but argc—if we change the value of argc from 4 (its
value in r✘) to 3 (its value in r✔), the failure no longer occurs. Since initially,
argc caused the failure, and later, a[2], there must have been some moment in
time where this transition from argc to a[2] took place. This transition can be
isolated using binary search over time: it takes place at Line 35, at the call

shell sort(a, argc);

This is where argc stops to be a cause, and a[2] begins. This transition implies
that Line 35 causes a[2] to cause the failure—or, in other words, that we can
change Line 35 to make the failure no longer occur. Line 35 is a failure cause.

So, let us focus on Line 35 to see whether it is not only a cause, but in fact, er-
roneous. Let us assume that in the declaration shell sort(int a[], int size),
the parameter size stands for the number of elements in a[]. Then, the call in
Line 35 is wrong—simply because argc is not the number of elements in a[],
but off by one. The correct call would be

shell sort(a, argc - 1);

By changing the statement, we can re-run the test to see whether the failure still
occurs. It does not; hence, we have proven that the defect actually caused the
failure—and successfully fixed the program.

In this example, the cause transition from argc to a[2] occurred right at the
place of the defect. As a programmer, though, I may also have decided to change
shell sort() instead such that size is the number of elements in a plus one.
I could also decrease the value of argc or introduce a new variable arguments
initialized with argc - 1. This number of alternatives shows that it is difficult
to predict an exact change, say, in an evaluation. Therefore, when evaluating
whether cause transitions are effective in locating defects, one uses a measure of
closeness: If we cannot predict the exact location of the defect, how close are we
in locating it?

To evaluate a defect locator, one thus ranks the statements of the program ac-
cording to their likelihood to be defective. In our case, we’d rank the locations of
cause transitions at the top, followed by “close” locations—that is, those related
by one control or data dependency—and followed by less close locations by doing
an exhaustive breadth-first search along the system dependency graph. The as-
sumption is that a programmer starts with the most likely locations (at the top)
and then walks down the list until he or she finds the defect. In a case study [1],
it turned out that cause transitions are the best defect locators available—they
locate the failure-inducing defect twice as well as the best methods known so
far. The technique is implemented as part of the ASKIGOR debugging server
(Fig. 3).

Yet, we have just begun to explore the idea of making experimenting a part
of program analysis. There is still a long way to go before these techniques can
become part of the mainstream: in particular, extracting and mixing program
states becomes a challenge if the program is deeply interwoven with its environ-
ment. On the other hand, having automated diagnoses is not only convenient
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Fig. 3. ASKIGOR with a diagnosis for sample

for the programmer, but also may enable new generations of self-aware systems:
Think of a Web server, for instance, that automatically determines a failure cause
in its own code, and thus disables the appropriate configuration module—at least
as a temporary fix until the code is corrected.

6 Conclusion: Prevent Errors and Prepare for Surprises

Why focus on cure, when prevention is so much better? Of course, we should
continue to strive for systems that have as few defects as possible. But this must
not mean to neglect the cure altogether. In a world where software systems
become more and more complex, we must be prepared for surprises. And a
surprise is exactly what happens when the given abstraction fails, or where
there simply is no abstraction that could tell what’s right and what’s wrong.

Program analysis has long been based on abstraction alone—deducing predic-
tions from the program code that hold for future program runs. To analyze past
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program runs, though, requires a much wider portfolio of techniques—simply
because there is much more data to take into account: Besides program code, we
can look at actual runs, test outcomes, version histories—any artifact created
during development is welcome. And if induction to derive common patterns
from all these instances is not enough, we can use experimentation to generate
even more. Fortunately for us, we now have the computational power available to
apply all these techniques. What we need is a confluence of static and dynamic
analysis, of deduction and induction techniques—to foster the understanding of
today’s programs, and to bring surprises and their damage to a minimum.
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this paper.
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