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Abstract. Modeling the dependencies between provided and required services
within a software component is necessary for several reasons, such as automated
component adaptation and architectural dependency analysis. Parametric contracts
for software components specify such dependencies and were successfully used
for automated protocol adaptation and quality of service prediction. In this paper, a
novel model for parametric contracts based on graph grammars is presented and a
first definition of the compositionality of parametric contracts is given. Compared
to the previously used finite state machine based formalism, the graph grammar
formalism allows a more elegant formulation of parametric contract applications
and considerably simpler implementations.

1 Introduction

Specifications should not be a means by themselves, but should have beneficial applica-
tions (besides of being a specification of something).Applications of software component
specifications and software architecture specifications include automated test case gen-
eration, architectural dependency analysis [18] and component adaptation [14]. In any
of these applications, additional information on a component (besides their interfaces)
is beneficial which, on a first glance, seems to contradict the black-box use of compo-
nents. However, the conflict between the need of additional information and black-box
component (re-)use does not exist, as long as two conditions are fulfilled: Information
on the component (beyond the interfaces) does not (a) have to be understood by human
users, and (b) expose the intellectual property of the component creator. In addition, it
is beneficial, if information on the component can be easily specified or even generated
out of the component’s code.

Parametric contracts [14, 15] support automated component protocol adaptation,
quality of service prediction [16] and architectural dependency analysis by giving addi-
tional information on the inner structure of the component. In more detail, parametric
contracts request so-called service effect specifications for specifying inner-component
dependencies between provided and required services. These dependencies are simple
to model as lists in case of signature-list interfaces (which required services are needed
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by a provided service). In case of protocol modelling interfaces things are more compli-
cated, as one needs to specify sets of call sequences (which call sequences are needed
to provide a service). As service effect specifications are an abstraction of a compo-
nent’s implementation’s control-flow graph, it can automatically be extracted out of a
component’s code by control-flow analysis [10].

To make a component model compositional, all properties attached to a component
should be present for a composite component as well (i.e., there is not difference between
a basic and a composite component when neglecting the inner structure) and, in addition,
the properties of a composite component should be derivable from the properties of the
inner component plus the composition structure.

In this paper we discuss the compositionality of parametric contracts, in particular
of parametric contracts used for protocol modeling interfaces. We use graph grammars
to rewrite the graphical representation of a transition function of a finite state machine
(FSM) modelling such sets of call sequences.

The contribution of this paper is twofold: Firstly, we show in detail how parametric
contracts are modelled by a graph grammar. This is a novel contribution, as until now
parametric contracts were described by a state machines and predicates. This directly
leads to using graph grammars to component protocol adaptation. In particular, the graph
grammar model leads to simpler implementations for the practically relevant adaptation
of provides interfaces. Secondly, we show how service effect specifications of parametric
contracts are composed by using graph grammars. This is the most important contribution
with respect to applications, as until now, there was no compositional component model
for components using parametric contracts. It should be emphasised that the contribution
lies in the fruitful application of existing graph grammar formalisms to component based
software engineering, not in the extension of the formalisms themselves.

This paper is organised as follows. In section 2 we review parametric contracts, their
state machine models and give a brief introduction of the graph grammar notion used in
this paper. In section 3 we show in general how graph grammars can be used to rewrite
FSMs by interpreting their transition function as a graph. In section 4 we apply this
idea to the main topic of this paper, namely protocol adaptation by parametric contracts
and component state space composition. In section 5 we conclude by summarising the
achievements of the paper, showing the limitations of our approach and discussing future
work on open questions. Related work is discussed throughout the whole paper where
appropriate.

2 Fundamentals

2.1 The Contractual Use of Components

The essence of design-by-contract[11] can be summarised as: If the client fulfils the
precondition of the supplier, the supplier will fulfil its postcondition.

Much of the confusion about the term "contractual use" of a component comes from
the double meaning of the term "use" of a component. The "use" of a component can
mean either:

The usage of a component during run-time. This is, calling a service of a component.
Therefore it should be evident that this type of contractual component use is nothing



82 R.H. Reussner, J. Happe, and A. Habel

different as using a method contractually. Thus this case should be called the use of a
component service instead of the use of a component. As the contractual use of methods
is well elaborated in literature [11], we do not consider this case here.
The usage of a component during composition time. This is, placing a component in
a new reuse-context, like it happens when architecting systems, or reconfiguring existing
systems (e.g., updating the component).

Depending on the above case, contracts play different roles. The usage of components
at composition time is the actual important case when discussing the contractual use of
components. Consider a component C acting as supplier, and the environment acting as
client. The component offers services to the environment (i.e., the components connected
to C’s provides interface(s)). According to the above discussion of contracts, these
offered services are the postcondition of the component, because this is, what the client
can expect from a working component. According to Meyer’s above description of
contracts, the precondition specifies what the component expects from its environment
to be provided in order to enable C to offer its services (as stated in its postcondition).
Hence, the precondition of a component is stated in its requires interfaces.

Analogous to the above single sentence formulation of a contract, we can state:

If the user of a component fulfils the components’ requires interface (offers
the right environment) the component will offer its services as described in the
provides interface.

Checking the satisfaction of a requires interface includes checking for each required
service whether its service contract is a a sub-contract of the service contracts of the
corresponding provided service. Subcontracts are elobaroated in [12–p. 573].

2.2 Parametric Contracts

For a component developer it is hard to foresee all possible reuse contexts of a component
in advance (i.e., during design-time). One of the severe consequences for component
oriented programming is that one cannot provide the component with all the config-
uration possibilities which will be required for making the component fit into future
reuse contexts. Coming back to our discussion about component contracts, this means,
that in practice one single pre- and postcondition of a component will not be sufficient.
Consider the following two scenarios:

1. the precondition of a component is not satisfied by a specific environment while the
component itself would be able to provide a meaningful subset of its functionality.

2. a weaker postcondition of a component is sufficient in a specific reuse context (i.e.,
not the full functionality of a component will be used). Due to that, the component
will itself require less functionality at its requires interface(s), i.e., will be satisfied
by a weaker precondition.

As a consequence, we do not need statically fixed pre- and postconditions, but para-
metric contracts to be evaluated during deployment-time. In the first case a parametric
contract computes the postcondition which is computed in dependency of the strongest
precondition guaranteed by a specific reuse context (hence the postcondition is param-
eterised by the precondition). In the second case the parametric contract computes the
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precondition in dependency of the post-condition (which acts as a parameter of the pre-
condition). Due to this parametric mutual dependencies between the pre-condiction and
the post-condition these contracts are called "parametric" contracts. For components
a parametric contracts means, that provides- and requires-interfaces are not fixed. A
provides interface is computed in dependency of the actual functionality a component
receives at its requires interface, and a requires interface is computed in dependency of
the functionality actually requested from a component in a specific reuse context. Hence,
opposed to classical contracts, one can say:

Parametric contracts link the provides- and requires-interface(s) of the same
component. They have a range of possible results (i.e., new interfaces).

Interoperability is a special case now: if a component is interoperable with its environ-
ment, its provides interface will not change. If the interoperability check fails, a new
provides interface will be computed.

Mathematically, parametric contracts are modelled by a function p mapping a pro-
vides interface P to the minimal requires interface R = p(P ) = RC specifying the
needs of P . Hence p is a function of the set ProvC of all possible provides interfaces
of C to the set ReqC of all possible requires interfaces of C. A possible provides in-
terface is any interface offering a subset of the functionality implemented in C, the set
of all possible requires interfaces is the image of ProvC under p. Note that p not nec-
essarily is an injective function: several different provides interfaces may be mapped
to the same requires interface. Consequently, the inverse mapping, associates to each
requires interface of R ∈ ReqC a set of supported provides interfaces. To yield a single
provides interface, we use the “maximum" element of this set. Formally, this element is
the smallest upper bound of the set p−1(R). This smallest upper bound is the join of the
elements of p−1(R) which exists because if provides interfaces P1 and P2 are elements
of p−1(R) each of their elements (i.e., services, service call sequences, services with
QoS annotations) is supported, consequently, the interface describing the set of all these
elements is also itself element of p−1(R) (P1, P2 ∈ p−1(R)⇒ P1∪P2 ∈ p−1(R)). For
later use, we define the shorthand inv-p : ReqC → ProvC as inv-p(R) :=

⋃
E∈p−1(R) E.

(Note that we use the more intuitive set-oriented notion of ∪ for the join-operator which
is commonly referred to as � in literature on lattices, etc.)

Like for a classical contracts, the actual parametric contract specification depends
on the actual interface model[19] and should be statically computable. In any case,
there’s no need for the software developer to foresee possible reuse contexts. Only the
specification of a bidirectional mapping between provides- and requires-interfaces is
necessary.

2.3 Finite State Machines and Component Protocols

The protocol of the services offered by a component is defined as (a subset of) the
set of valid call sequences. A valid call sequence is a call sequence which is actually
supported by the component. For example for a file open-read-close is a valid call
sequence, while read-open is not. The specified set of valid call sequences is called
the provides-protocol.
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Analogously, the protocol of the services required by a component is a set of call
sequences by which the component calls external methods. This set of sequences of calls
to external component services is called the requires-protocol.

The provides- and the requires-protocols are considered as sets of sequences. State
machines are well-known notations for protocol specification [2, 9, 13, 20]. The benefits
of a state machine specification of protocols are the representation of protocols in a
compact and precise manner and the possibility of an efficient automatic formal analysis
of protocols.

Definition 1 (Finite State Machine). A finite state machine (FSM) is a system A =
(I, Z, F, z0 , δ) where I is an input alphabet, Z is a finite set of states, F ⊆ Z is a set of
final states, z0 ∈ Z is a start state, and δ : Z × I → Z is a total transition function.

Not that every partial transition function can be extended to a total one by adding a
state ⊥ and assigning ⊥ whenever the partial function yields undefied or the state in
consideration is ⊥.

By P-FSM we denote the FSM specifying the provides protocol of a component,
while the component-requires-FSM (CR-FSM) gives the requires protocol. The P-FSMs
input alphabet is the set of methods provides by the component. In the reverse, the input
alphabet of the the CR-FSM is the set of (external) methods required by the component.
Since our implementation utilises a state-machine based approach we identify state-
machines and protocols.

When modelling call sequences, we model for each state which methods are callable
in this state. In many cases, a method call changes the state of the state machine, i.e.,
some other methods are callable after the call, while others, callable in the old state, are
not callable in the new state. An example of the P-FSM of an exemplary video-stream
component is shown in figure 1(a). The protocol described by this FSM represents the
maximum functionality which can be offered by the video-stream. Note that the video-
stream offers to manipulate the sound and the picture while playing and while pausing
the video.

2.4 Graph Grammars

Graph transformation systems and graph grammars generalize string rewriting systems
and Chomsky grammars, respectively: The objects are graphs, the rules are graph replace-
ment rules, and the application of a rule to a graph yields a graph. Graph transformation
systems and graph grammars are well-studied and applied to several areas of computer
science (see, e.g. [17, 4, 5]). In the following, we provide the basic notions on graphs
and graph grammars needed in the paper. Details and pointers to the literature can be
found e.g. in [6, 8].

We consider directed, edge-labelled graphs with a finite set of nodes and edges.
Source and target nodes of an edge are given by the source and target functions; the
labelling of an edge is given by the labelling function.

Definition 2 (Graph). A graph over an alphabet C is a system G = (V, E, s, t, l)
consisting of two finite sets V and E of nodes (or vertices) and edges, two source and
target functions s, t : E → V, and a labelling function l : E → C. The components of
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G are denoted by VG, EG, sG, tG, and lG, respectively. The set of all graphs is over C
is denoted by GC .

A graph morphism relates graphs. A graph morphism g : G → H between graphs
G and H consists of two functions gV : VG → VH and gE : EG → EH that preserve
sources, targets and labels, that is, sH◦gE = gV◦sG, tH◦gE = gV◦tG, and lH◦g = lG.
A morphism g is an inclusion if gV and gE are inclusions and an isomorphism if gV and
gE are injective and surjective. In the latter case, G and H are isomorphic denoted by
G ∼= H . A graph replacement rule consists of two graphs, the left-hand side and right-
hand side of the rule. The left- and right-hand side are related by two inclusions from a
common graph into the left- and the right-hand side.

Definition 3 (Rule). A rule r = 〈L ← K → R〉 consists of two graphs L and R, the
left-hand side and the right-hand side of r, and two inclusions K → L and K → R
from a common graph K. A rule r is an edge replacement rule if L is a graph with two
nodes and a connecting edge and K is obtained from L by removing the connecting
edge. The application of a rule r to a graph G amounts to the following steps:

(1) Find a graph morphism g : L → G and check the following two conditions.
Dangling condition: No edge in G− g(L) is incident to a node in g(L−K).
Identification condition: For all distinct items x, y ∈ L, g(x) = g(y) only if
x, y ∈ K. (This condition is understood to hold separately for nodes and edges.)

(2) Remove g(L −K) from G, yielding a graph D = G− g(L −K).
(3) Add R −K to tD, yielding a graph H = D + (R −K).

An example of the application of a rule to a graph is given in figure 2.
The graph G directly derives H via r and g, denoted by G ⇒r,g H or G ⇒ H . A

sequence of direct derivations G = G0 ⇒r1,g1 . . .⇒rn,gn Gn
∼= H via r1, . . . rn ∈ R

is a derivation from G to H (of length n), denoted by G⇒∗
R H . If the derivation is of

length at least one, we also write G⇒+
R H .

A graph grammar consists of an alphabet, a nonterminal alphabet, a set of rules, and
a start graph. The generated language consists of all graphs without nonterminal labels
derivable from the start graph via the rules of the grammar.

Definition 4 (Graph Grammar). A graph grammar is a system G = 〈C, N,R, S〉,
where C and N ⊆ C are alphabets,R is a finite set of rules, and S is a start graph. IfR
is a set of edge replacement rules, G is an edge replacement graph grammar. The graph
language L(G) generated by G consists of all graphs without nonterminal labels which
can be derived from S by applying the rules ofR: L(G) = {G ∈ GC−N | S ⇒∗

R G}.
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3 Refining Finite State Machines by Graph Grammars

3.1 Finite State Machines as Graphs

Usually, a finite state machine is drawn as a graph with additional information concerning
the start and the final states. It can be represented as a graph by adding two nodes begin
and end and edges with label Start and Final, respectively, from begin to the start state
and the final states to end.

Let A = (I, Z, F, z0 , δ) be a finite state machine. Then G(A) = (V, E, s, t, l)
denotes the graph over the alphabet C = I ∪ {Start, Final} with node set V = Z ∪
{begin, end}, edge set E = Z × I ∪ {ez0} ∪ {ef | f ∈ F}, and source, target, and
labelling functions s, t, and l with

(1) s(z, i) = z, t(z, i) = δ(z, i), and l(z, i) = i for all z ∈ Z and i ∈ I,
(2) l(ez0) = Start, begin = s(ez0), and t(ez0) = z0 ,
(3) l(ef ) = Final, f = s(ef ), and t(ef ) = end for all f ∈ F.

For convenience, start and final states are depicted in the classical way, that is, by an
arrow pointing to the start state and a black dot inside each final state. The nodes begin
and end are not drawn. An example of the representation of a FSM as a graph using the
drawing conventions is given in figure 1(a).

3.2 Substuitution of Transitions in Finite State Machines

Substitutions of transitions in a finite state machine by finite state machines will be
implemented by edge replacement graph grammars.

Example 1 (Substitution of Transitions by FSMs). Consider the FSM in figure 1(a). The
transition b from the start state to the final state shall be replaced by the FSM given in
figure 1(b).

The result of the substitution is shown in figure 1(c). The ε-transitions are needed
to maintain the structure of the original finite state machine. Without these ε-transitions

(a) Original FSM (b) FSM for
substitution

(c) FSM resulting from the substitution

Fig. 1. Substitution of transitions by FSMs
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(by just linking the transitions connected to the start state with the source of transition b
and the ones connected to the final state with the destination of transition b) it would be
possible to go from the final state back to the start state. This contradicts the structure
of the original FSM.

The implementation of the substitution of transitions by FSMs by an edge replace-
ment graph grammar is done as follows: The FSMs are transformed into graphs and a
set of substituting rules is defined.

Let A be a FSM, I ′ ⊆ I a subset of input symbols selected for substitution, and
sub: I ′ → A a mapping assigning a FSM of the set of FSMs A to each selected input
symbol. For i ∈ I ′, let Ai = sub(i) denote the FSM associated with the input symbol
i. Then the edge replacement graph grammar G = 〈C, N,R, S〉 associated with A and
sub is as follows: S = G(A) is the start graph, N = I ′ is the set of input symbols
selected for substitution, and R = {ri | i ∈ I ′} is a set of rules where, for i ∈ I ′,
ri = 〈Li ← Ki → Ri〉 is constructed as follows. Li is the handle induced by i, that is
the graph ({v1, v2}, {e}, s, t, l) with s(e) = v1, t(e) = v2, and l(e) = i, Ki is obtained
from Li by removing the edge e, and Ri is the graph Gε(Ai) obtained form G(Ai) by
replacing the symbols Start and Final by the symbol ε. The label alphabet C consists
of all symbols occurring in the start graph or some rules.

Example 2 (Application of Rules). The rule for the substitution in example in figure 1(b)
is shown at the top of figure 2. The application of the rule to the graph of the FSM in
figure 1(a) results in the direct derivation G⇒ H shown in figure 2.

Fig. 2. Application of a rule

There is a close relationship between the iterated application of a substitution and the
application of rules induced by the substitution [6]. We use the relationship for defining
the iterated application of a substitution of transitions by FSMs.

Definition 5 (Substitution of Transitions by FSMs). Let A be a FSM, sub a substitu-
tion, and G = 〈C, N,R, G(A)〉 the associated edge replacement graph grammar. Then
the iterated application of sub to A is the graph language L(G) = {H ∈ GC−N |
G(A)⇒∗

R H}.
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The edge replacement graph grammar starts in the graph of the FSM and replaces
nonterminal labeled edges as long as possible. If the edge replacement graph grammar
is non-recursive3, then there are no infinite derivations from the start graph. Moreover,
the rewrite relation ⇒R satisfies the diamond property, that is for every pair of direct
derivation G ⇒R H1 and G ⇒R H2 with H1 ∼= H2 for some M there are direct
derivations H1 ⇒R M and H2 ⇒R M .

Fact 1. Let G be a non-recursive edge replacement graph grammar associated with a
FSM and a substitution. Then L(G) has exactly one element.

If the edge replacement graph grammar is recursive, then there is a symbol i with
derivation G ⇒+ H from the handle of i to a graph containing the symbol i. Since
every symbol, in particular i, occurs in the start graph, there is an infinite derivation
beginning with the start graph. Since there is exactly one rule for each nonterminal
symbol, there is no chance to derive a terminal graph.

Fact 2. Let G be a recursive edge replacement graph grammar associated with a FSM
and a substitution. Then L(G) is empty.

For every non-recursive edge replacement graph grammarG, we can find a linear ordering
on the nonterminals such that every rule is strictly order-preserving, that is the symbol
on the left-hand side is less that the nonterminal symbols on the right-hand side. Vice
versa, if we can find such an ordering, then the grammar is non-recursive. Thus, we
obtain the following.

Lemma 1. It is decidable whether an edge replacement graph grammar is recursive.

Proof. Similar to the proof for left-recursive context-free string grammars in [1]. If the
edge replacement grammar is a non-recursive, then there is a linear order < on the
nonterminal symbols such that for every rule, the nonterminal symbol on the left-hand
side is less than all nonterminal symbols on the right-hand side: Let � be the relation
A � B if and only if G ⇒∗ H where G is a handle with label A and H is a graph
containing the label B. By definition of recursion, � is a partial order. (Transitivity is
easy to show.) � can be extended to a linear order < with the desired property. If < is a
linear order on the nonterminal symbols such that for every rule, the nonterminal symbol
in the left-hand side is greater than all nonterminal symbols in the right-hand side, then
there does not exist a nonterminal symbol A with derivation G ⇒+ H from a handle
G with label A to a graph H containing the nonterminal symbol A, i.e. the grammar is
non-recursive.

If one considers a transition as function call, this problem can be seen as recursion
of a function. In the context of function calls and parametric contracts it has been solved
in [14].

3 A symbol i in an edge replacement graph grammar is recursive if there exists a derivation
G ⇒+

R H from the handle of i to a graph containing the symbol i. An edge replacement edge
replacement graph grammar with at least one recursive symbol is recursive.
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4 Applications to Protocol Adaptation with Parametric Contracts
and Component Composition

Parametric contracts enable the deployer of a software component to determine the
services a software component can provide in its current environment. Therefore, the re-
quires interface is computed out of the components provides interfaces and
service-effect-specifications. The result is intersected with the interfaces provided by
the component’s environment yielding an interface that contains only the services (of
the component’s requires interface) the environment can offer. This reduced requires
interface is transformed into a reduced provides interface that includes only the services
the component can provide in the current context.

It is also possible to compute the requirements of a component depending on the
services needed by its environment. Therefore, the provides interfaces of a component
are intersected with the (joined) interfaces required by its environment yielding a reduced
provides interface that contains only the services that are needed by the environment.
The result and the service-effect-specifications of the component are used to determine
a reduced requires interface that asks only the services from the environment that are
currently needed.

4.1 Computation of Requires Interfaces

The CR-FSM of a component can be derived from its P-FSM and its service-effect-
specifications. Therefore, each transition in the P-FSM representing a service call is
substituted by the associated service-effect-specification. This results in a new protocol
consisting of the external services used by the component.

More formally speaking we have a P-FSM AP and a set of service-effect-specifica-
tions A, all given as finite state machines. Additionally, the function v : IP → A
associates every input symbol of AP with a service-effect-specification in A.

Informally, we proceed as follows. Firstly, a graph grammar G is defined substituting
each transition with the associated service-effect-specification. (The substitution without
graph grammars is described in [14, 15].) The definition of G is similar to the one given
in section 3 except that no ε-transitions are used for integrating the FSM into its new
context, but special calling and return transitions. The requires protocol is a projection of
this protocol where the calling and return transitions will be replaced by ε-symbols. But
for the moment, they are needed for the construction of the adapted provides interface as
described in section 4.2. Secondly, we apply this graph-grammar G to the provides proto-
col. The result of this application forms the requires protocol. Hence, the "algorithm" of
computing the requires protocol is simply the application of G to the provides protocol.
This is the minimal requires interface, as no substitution performed by G is superfluous.
The time-complexity of this approach is bounded by the number of transitions of the
P-FSM.

More formally, let G be a graph grammar according to section 3 with the origi-
nal FSM Ap, the FSM set for substitution A, and the mapping function v. Instead of
defining Es and Ef for the right-hand side of rule ri (the rule associated with input
symbol i in IP ) as above, set Es = {e|s(e) = n1, lV

′(t(e)) = Start, lE (e) = i′}
and Ef = {e|lV ′(sRi

(e)) = Final, t(e) = n2, lE (e) = return}, where i′, return /∈
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play stop

volume_up volume_down brightness_up 
brightness_down contrast_up contrast_down 
speed_up speed_down

pauseplay

brightness_up brightness_down contrast_up contrast_down 
speed_up speed_down save_to_file

1 2 3

4

(a) Provides Protocol

  VideoPlayer::play

SoundPlayer::play

(b) Seff play

  VideoPlayer::stop

SoundPlayer::stop

(c) Seff stop

Fig. 3. Substitution of transitions by FSMs

rplay:

play’
VideoPlayer::play

SoundPlayer::play

returnplay

RKL
1 2 1 2 1 2

rstop:

stop’
VideoPlayer::stop

SoundPlayer::stop

returnstop

L K R
1 2 1 2 1 2

Fig. 4. Rules for substitution

IP

⋃
Ai∈Ai

Ii are new edge labels and lV
′ is the node label function of GAi . Es contains

exactly one edge from the source of the substituted edge i to the node associated with
the start state of Ai. Instead of labelling it with ε as above, a new edge label i′ is defined
marking the transition as a service call. Ef consist of edges from all nodes corresponding
to the final states of Ai to the destination the substituted edge. The ε label used in section
3 is replaced by a general return label tagging the edge as a return-transition from a
called service.

As an example of the approach described above, consider the provides automaton of
a video-stream component shown in figure 3(a). The video-stream component maps its
provided services on a video-player and sound-player component. The service-effect-
specifications for play and stop are given in figures 3(b) and 3(c).

Now, we create a graph grammar G that substitutes the transitions of the P-FSM as
described above. Therefore, the start graph S of G is set to the graph representation of
the provides automaton AP shown in figure 3(a) and the non terminal alphabet NE is
set to the input alphabet IP = {play, stop, ...} of AP . The total label alphabet
contains IP , the input symbols of the service-effect-specifications, and a set of new
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S =

...

play stop

⇒rstop
play

...

stop’
VideoPlayer::stop

SoundPlayer::stop

return

⇒rplay
play’

VideoPlayer::play

SoundPlayer::play
...

return stop’
VideoPlayer::stop

SoundPlayer::stop

return

⇒ . . .
Fig. 5. Derivation of the CR-FSM

input symbols I ′
P = {return, play’, stop’ ...}. Last but not least, the rules

are created as shown in figure 4. For rule rplay the play-transition is replaced by the
service-effect-specification of play. The transition play’ on the right-hand side of the
rule indicates that the service called play is executed. After this transition follows the
start-state of the service-effect-specification of play, the calls to the video player and
sound player components and the final-state which is connected to the target of the
play-transition with a return-transition. The structure of rstop and all other rules is
analogous.

The computation of the requires protocol from the start-graph of G amounts in the
derivation shown in figure 5. First, rule rstop is applied on start-graph S, the graph
representation of the provides automaton (it is only partially depicted) and the transition
stop is substituted by the corresponding service-effect-specification. Next, rule rplay is
applied. This process is continued until all provided services are replaced by its service-
effect-specifications.

The result of the application of G on S is a FSM that can be easily transformed to
the requires protocol of the video stream component. Therefore, the symbols introduced
above (I ′

P = {return, play’, stop’ ...}) are substituted by ε. The resulting
FSM describes the service calls made by the component to its environment. Transform-
ing this ε-FSM into a deterministic FSM and minimising the result leads to a good
representation of the call sequences used by the component. For parametric contracts,
the next step is to intersect the result with the P-FSMs of the component’s environment
as described in the beginning of this section.

4.2 Computation of Provides Interfaces

We are not only interested in the services required by a component depending on its
environment, but also in the services that can be provided in the current environment.
Therefore, we need to determine the P-FSM of the component depending on the protocols
and services offered by its environment. This is done by intersecting the CR-FSM of
the component with P-FSMs of its environment. The result is a CR-FSM containing
only those services that are required by the component and can be provided by its
environment. This reduced CR-FSM is used to determine a reduced P-FSM containing
only those call sequences that can by provided by the component in the current context.

Therefore, we need to reconstruct a graph that has a structure similar to the result of
our graph grammarG given in section 4.1. We can use this graph to apply the inverse rules
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of G and derive the reduced P-FSM of the component. Finally, we need to intersect the
result with the original P-FSM to clean up all service-effect-specifications that could not
be transformed back to a single service call. This is required since during the intersection
with the environment some states and transitions of the CR-FSM are removed and thus,
some service-effect-specifications are incomplete and the inverse rules of G cannot be
applied.

For the first step we define an asymmetric intersection between two finite state ma-
chines:

Definition 1 (Asymmetric Intersection)
Let A = (IA, ZA, FA, z0A, δA) and B = (IB , ZB , FB , z0B , δB) be two finite state
machines with IA ⊆ IB , and I′

B ⊆ IB − IA. The asymmetric intersection of A and
B is given by A×B = (IB , ZA × ZB , F, (z0A, z0B), δA×B). Where (z1, z2) ∈ F, if
z1 ∈ FA and z2 ∈ FB . The state transition function δA×B is given by

δA×B((z1, z2), i) =

⎧⎪⎨
⎪⎩

(δA(z1, i), δB(z2, i)), if i ∈ IA

(z1, δB(z2, i)), if i ∈ I′
B

undefined, otherwise

The asymmetric intersection creates a new FSM whose accepted language L(A×B) is
a subset of L(B) but (usually) not of L(A). One can consider it as a finite state machine
accepting the common language of A and B while ignoring all input symbols in I ′

B

for automaton A. Note, if I ′
B is the empty set, the asymmetric intersection matches the

regular FSM intersection.
Let GReq be the result of the application of G, G′

Req the result of the intersection,
and AReq and A′

Req the corresponding FSMs. Then, set A = A′
Req, B = AReq and

I ′
B to the symbols newly introduced by the construction of G (for example return,
play’ and stop’ for the video-stream component). Then the result of the asymmetric
intersection is structural similar to the result of the application of G, but does contain
only the service calls that are supported by the environment. So, we can use the inverse
graph grammar G−1 of G for the construction of the reduced P-FSM.

The inverse graph grammar G−1 of G is constructed by inverting all rules of G. The
inverse rule r−1 of r is given by L−1 = R, K−1 = K, and R−1 = L. So, only the
left-hand and right-hand side of the rules are exchanged.

The application of G−1 on the result of the asymmetric intersection is a graph whose
complete service-effect-specifications have been substituted by the corresponding ser-
vice calls and whose incomplete ones still exist. Hence, the final step is to clean up the
result by intersecting it with the original P-FSM. This yields a reduced P-FSM containing
only the call sequences that can be provided by the component in its current context.

The resulting P-FSM is maximal, as all provided service sequences are included.
This is because all possible substitutions are performed by G−1 which means that an
implemented services is available in all states where its requires call sequences (i.e.,
the left-hand side of the rule in G−1 corresponding to the service) are present in the
CR-FSM.

The time-complexity is bounded by the number of substitutions to be performed
which is approximately the number of transitions of the CR-FSM divided the average
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number of edges ("transitions") of the left-hand sides of the rules of G−1. (This is in
principle the same time-complexity as the computation of the requires-protocol, however,
in the latter case the number of edges in the left-hand sides of the rules in G is is one,
while the number of edges in the left-hand sides of the rules in G−1 is higher than one,
as the left-hand sides in G−1 are service effect automata.

4.3 Compositional State Spaces

As mentioned, service effect automata are an abstraction of a component’s internal
state space. As transitions model calls to external services, all internal computations in-
between two calls of an external service, are modelled by a single state of the service effect
automaton. As service effect automata are part of our component model and component
models should be compositional, in the following we will apply the above described
mechanism of substituting a transition of a FSM by another FSM to the compositionality
of components with service effect automata. Compositionality relates to a composition
operator O taking two or more components and compsiting it to a new (composed)
component. We consider as composition operator the use-relationship. We denote a
component using others as C1 and set set of components C2 . . . Cn directly connected
to its requires interface(s) as C. Hence, O(C1, C) =: Cc denotes the composition of
C1 . . . Cn. As this composition is again a component, it can be itself a parameter to
the composition operator which if one wishes to include components indirectly used
by C1 in the composition. As Cc offers the same services as C1 does, we are now
interested in the service effect automata of Cc for these services. Formally speaking
we have a service effect automaton AP of a service s of component C1 and a set of
service-effect-specificationsA, all describing the bahaviour of services implemented by
components C. We are now interested in the service effect automaton of service s of the
composed component Cc. Like in the other applications of edge substitution, the function
v : IP → A associates every input symbol of AP with a service-effect-specification in
A. Now we proceed like on the above construction of requires interfaces (section 4.1)
with the only difference that AP denotes a service effect automaton (and not a provides
protocol) and the result of the substitution is the service effect automaton of service s
of component Cc. For computing the requires protocol of component Cc, we use the
provides protocol of Cc (which is per definition identical to the provides protocol of C1)
and all service effect automata of Cc (constructed as described above) and proceed as
shown in section 4.1.

Note that the here presented approach to compositionality is not restricted to service
effect automata. Muchmore, any state model with a partial function from transitions to
a set of state models to be substituted can be composed by the approach described.

5 Conclusion and Future Work

We presented three applications of a graph grammar approach to finite state machine
rewriting, namely (a) computation of requires protocols in dependency of provides pro-
tocols given invariant service effect automata, (b) the inverse: computation of provides
protocols in dependency of requires protocols given invariant service effect automata
and (c) the composition of service effect automata of components connected by a direct
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use-relationship. These computations form the base for various applications in com-
ponent based software engineering, such as automated component adaptation [14] and
analyses of component based architectures [18]. The main benefits of using edge re-
placenent graph grammars are (a) a unified formal base of the above computations, (b)
an important theory comparable with the theory on context-free string grammars [6], and
(c) its simplicity (compared to the existing state machine based approach [14, 15]). In
the future, we plan to explore the application of using hierarchical graph transformation
[3] to model recursively inserted service effect automata.
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