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Abstract. Graphs are a common means to represent structures in models and
meta-models of software systems. In this context, the description of model do-
mains by classifying the domain entities and their relations using class diagrams
or type graphs has emerged as a very valuable principle. The constraints that can
be imposed by pure typing are, however, relatively weak; it is therefore com-
mon practice to enrich type information with structural properties (such as local
invariants or multiplicity conditions) or inheritance.

In this paper, we show how to formulate structural properties using graph con-
straints in type graphs with inheritance, and we show how to translate constrained
type graphs with inheritance to equivalent constrained simple type graphs. From
existing theory it then follows that graph constraints can be translated into pre-
conditions for productions of a typed graph transformation system which ensures
those graph constraints. This result can be regarded as a further important step of
integrating graph transformation with object-orientation concepts.

1 Introduction

Graphs and graphical representations play a central role in modeling and meta-modeling
of software systems. Graphs are used to describe essential structures of entities and their
relations. Their representation ranges from simply formatted, graph-like notations such
as class diagrams, Petri nets, automata, etc. to more elaborated diagram kinds such as
message sequence charts and to more application-specific notations for modeling, e.g.,
for industrial production processes.

In graph-based modeling and meta-modeling, graphs are used to define the static
structure, such as class and object structures, data base schemes, as well as visual symbols
and interrelations, i.e., visual alphabets and sentences. Graph manipulations describe the
dynamic changes of these structures. Classifying the possible entities and interrelations
in static system structures or visual language constructs isas a valuable principle for
the description of model domains. In the object-oriented approach, class diagrams are
the basic means to specify classification structures; e.g., in UML (Unified Modeling
Language) [11] for software systems and MOF (Meta Object Facility) [11] for visual
language specification. When applying graph transformation for modeling or meta-
modeling, type graphs are used to classify graph nodes and edges.
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One of the main principles to handle complex classification structures comes from the
object-orientation paradigm: class inheritance enhances the typing principle by adding
more abstract types on top of the ones concretely used in the (meta)models. Inheritance
allows much more compact representations by reducing redundancy. The principle of
inheritance has been carried over and formalized for graph transformation in [2]; there
we have shown that node inheritance in typed graph transformation leads to a denser
form of a graph transformation system, by a simular reduction of redundancy.

The power of pure typing to describe and constrain the static structure is, however,
relatively weak (and is not enhanced by inheritance). It is therefore common practice to
enrich type information with structural properties which further constrain the correct
instances. A typical class of such structural properties are multiplicity conditions, which
restrict correctly typed structures to those where the numbers of entities and interrelations
are within given ranges. Further constraints can be local invariants which require, e.g.,
the existence or non-existence of certain substructures. In class diagrams, some of these
constraint kinds are built-in, like multiplicities, while others have to be stated by separate
constraints using, e.g., OCL [11]. On the other hand, typed graphs can be equipped with
graph constraints, as proposed first in [9], which can be used to describe a variety of
local invariants. Note, however, that graph constraints have so far been studied for flat
graphs only (i.e., without node type inheritance).

The object-oriented and graph transformation approaches can be integrated by iden-
tifying classes with node types, and associations with edge types. In this way, class
inheritance naturally corresponds to node type inheritance. In this paper we show how
to express multiplicities and edge inheritance by graph constraints over type graphs
with inheritance. Furthermore, we give a translation of constrained type graphs with
inheritance to constrained flat type graphs. From existing theory [6] it then follows that
graph constraints can be translated into (necessary and sufficient) pre-conditions for
typed graph transformation rules. Our result can be regarded as a necessary further step
of integrating graph transformation with object-orientation concepts. Application areas
for the resulting theory are for instance: operational semantics for object-oriented sys-
tems as in [4] (leading to a theory of behavioral verification) and refactoring as in [10]
(leading to a formal underpinning). We use a running example from the former area.

The paper is organized as follows: In the next section, we recall type graphs with
node type inheritance as introduced in [2]; this will be the basis for further development.
In Section 3 defined graph constraints over type graphs with inheritance and presents a
translation to constraints over simple type graphs. Then Section 4 shows that multiplic-
ities and edge inheritance are expressible by graph constraints. Section 5 describes how
graph constraints can be ensured by typed graph transformation systems, reusing and
extending the results in [6]. All proofs are omitted due to lack of space.

2 Type Graphs with Node Type Inheritance

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, called inheritance edges, into type graphs. The source node of an
inheritance edge is said to be a sub-type of the target node, which is called the former
one’s super-type. Moreover, nodes are marked either as concrete or abstract; we will
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Fig. 1. A sample type graph with node type inheritance, and its abstract and concrete closure

see that only concrete type nodes can have direct instances. In host graphs only nodes
of concrete types shall occur, while graphs in rules may contain nodes of both types.

Definition 1 (type graph with inheritance). A type graph with inheritance is a triple
TGI = (TG , I, A) consisting of a type graph TG = (N,E, s, t) (with a set N of nodes,
a set E of edges, source and target functions s, t : E → N ), an acyclic inheritance
relation I ⊆ N × N , and a set A ⊆ N , called abstract nodes. For each x ∈ N ,
the inheritance clan is defined by clanI(x) = {y ∈ N | (y, x) ∈ I∗}, where I∗ is the
reflexive-transitive closure of I .

Example 1. As sample type graph we use TGI in Fig. 1. This describes a special kind of
sets, namely ordered sets, which contain a number of objecs (indicated by cnt-edges from
OrderedSet-nodes to Object-nodes) which can be put into some order (indicated by
nxt-edges among the object). We consider two possible specializations of ordered sets,
namely StringSet and IntegerSet, which are intended to contain Strings and Integers,
respectively. Note that the type graph by itself does not yet enforce this constraint: that
is, it does not rule out that StringSets contain also Integers, and vice versa.

To benefit from the existing theory of graph transformation [5], which does not recog-
nize the notion of inheritance, we define the flattening or closure of type graphs with
inheritance to ordinary ones.

Definition 2 (Closure of type graph with inheritance). Let TGI = (TG , I, A) be
a type graph with inheritance, and let TG = (N,E, src, tar). The abstract closure of
TGI is the graph TGI = (N,E, src, tar) with

– E = {(n1, e, n2) | e ∈ E,n1 ∈ clanI(src(e)), n2 ∈ clanI(tar(e))};
– src((n1, e, n2)) = n1;
– tar((n1, e, n2)) = n2.

The concrete closure of TGI is the graph ̂TGI = TGI |N−A.3

3 Given a graph G = (N, E, s, t) and a set X ⊆ N , we denote by G|X the sub-graph (X, EX =
{e ∈ E | s(e), t(e) ∈ X}, s|EX , t|EX ).
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Fig. 2. Sample clan-typed graph

Example 2. Fig. 1 also shows the abstract and concrete closure of the type graph with
inheritance TGI . Please note that for better readability of the closures, the edge types
are bundled using auxiliary nodes. Note that the inheritance edges are no longer present
in the closure, and the abstract node types and adjacent edge types are absent from the
concrete closure. Instead, for all combinations of corresponding sub-types a new edge
type is inserted — including those which do not follow our intuition, like edge type nxt
between String and Integer. We will use structural graph properties in addition to rule
out those unwanted structures.

The distinction between the abstract and the concrete closure of a type graph is necessary,
since they give rise to different instances. We will define abstract graph transformation
rules of which the left hand and right hand sides are typed over the abstract closure (see
Sect. 5), whereas ordinary host graphs and concrete rules are typed over the concrete
closure.

Definition 3 (instance graph). An abstract instance graph (G, tpA) of a type graph
with inheritance TGI is an instance graph of TGI ; i.e., tpA : G → TGI . Analogously,

a concrete instance graph (G, tpC) of TGI is a graph typed over ̂TGI .

Note that, due to the canonical inclusion incTG : ̂TGI ↪→ TGI , all concrete instance
graphs are abstract instance graphs. The construction of the closure in Def. 2 gives
rise to a characterization of instance graphs directly on type graphs with inheritance.
Namely, instance graphs can be typed over the type graph with inheritance by a pair of
functions, from nodes to node types and from edges to edge types, respectively. This pair
of functions does not constitute a graph morphism, but will be called clan morphism; it
uniquely characterizes the type morphism into the flattened type graph.

Definition 4 (clan morphism). Let TGI = (TG , I, A) be a type graph with in-
heritance. A clan-morphism from G to TGI is a pair ctp = (ctpN : NG →
NTG , ctpE : EG → ETG) such that for all e ∈ EG the following holds:

– ctpN ◦ sG(e) ∈ clanI(sTG ◦ ctpE(e)) and
– ctpN ◦ tG(e) ∈ clanI(tTG ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph. ctp is called concrete if ctp−1
N (A) = ∅.

Example 3. Fig. 2 shows a sample instance graph typed over TGI of Fig. 1. The edge
typing is not shown explicitly, but follows uniquely from the node typing. The typing is
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done by a clan morphism which maps each node to its node type and each edge to an
edge type between potentially more abstract node types holding the source and target
types of the instance edge in their clans.

Proposition 1 (universal clan morphism, see [1]). Let TGI = (TG , I, A) be a type
graph with inheritance. There is a universal clan morphism uTG : TGI →TG such that
for each clan morphism ctp : G→TG there is a unique graph morphism tp : G→TGI
with uTG ◦ tp = ctp.

We often write G for the clan-typed graph (G, ctpG). To formalize the relationship
between abstract and concrete rules (see Sect. 5), we introduce the notion of type refine-
ment. This imposes an order over the set of clan morphisms of a given instance graph:
one clan morphism is said to be finer than another if it assigns more concrete node types
to the instance graph nodes.

Definition 5 (type refinement and typed graph morphism). Let TGI = (TG , I, A)
be a type graph with inheritance, and let ctp, ctp′ : G → TG be clan typings. ctp is a
refinement of ctp′, denoted ctp ≤ ctp′, if

– ctpN (n) ∈ clanI(ctp
′
N (n)) for all n ∈ NG, and

– ctpE = ctp′
E .

Given clan-typed graphs (G, ctpG) and (H, ctpH) over TGI , a morphism g : G → H
is called type-refining if g ◦ ctpH ≤ ctpG, and type-preserving if g ◦ ctpH = ctpG.

We write (G, ctpG) ≤ (H, ctpH) if G = H and ctpG ≤ ctpH . We write g : G→c H to
denote that G and H are both concrete and g is an injective type-preserving morphism,
and g : G →a H to denote that g is an injective type-refining morphism. The following
proposition states some facts regarding type-refining and type-preserving morphisms.

Proposition 2. Let G,H be clan-typed graphs, and let g : G → H be type refining.

1. There is a unique clan-typed graph K ≤ G such that g : K →H is type-preserving;
2. For any clan-typed graph K ≥ G, g : K → H is type-refining.
3. For any clan-typed graph K ≤ H , g : G → K is type-refining.

3 Structural Properties over Type Graphs with Inheritance

The following definition extends the concept of graph constraints, originally introduced
in [9] (where they are called consistency constraints). There are two points of change:

– We define constraints over concrete clan-typed graphs rather than ordinary typed
graphs. However, this is not a real extension since (due to Prop. 1), there is a one-to-
one correspondence between concrete clan morphisms and type morphisms to the
concrete closure of the type graph.

– We allow constraints with multiple, disjunctively interpreted conclusions, rather
than a single conclusion, as in [9, 6]. This is a real extension, as it properly enlarges
the set of properties expressible through graph constraints.

Whenever we mention “clan-typed graphs” in the following, we mean graphs with a
clan morphism to some implicit, globally given type graph with inheritance TGI .
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Definition 6 (graph atoms and formulae). Let L,G be clan-typed graphs, such that
G is concrete.

– A concrete [abstract] graph atom A over L is a tuple (n : L→c P,Con) [(n : L→a

P,Con)], where n is an injective type-preserving [type-refining] morphism, and
Con is a set of injective type-preserving [type-refining] morphisms starting in P . If
L = ∅ we also write (P,Con) for A.

– A is said to be satisfied by an injective type-preserving [type-refining] morphism
m : L →c G [m : L →a G], denoted m |=c A [m |=a A], if for all injective type-
preserving [type-refining] morphisms p : P →c G [p : P →a G] such that m = p◦n,
there is a (q : P → C) ∈ Con and an injective type-preserving [type-refining]
morphism c : C →c G [c : C →a G] such that p = c ◦ q. If L = ∅ (i.e., the empty
graph) then we also write G |=c A [G |=a A].

– A concrete [abstract] graph formula F over L is a boolean formula over concrete
[abstract] graph atoms over L. The satisfaction relation |=c [|=a] is extended to
graph formulae by defining the semantics of the boolean operators in the usual way.
We call F a constraint if L = ∅, and an application condition otherwise.

Example 4. Fig. 3 shows three atoms over the type graph with inheritance TGI in Fig. 1.
In this and later pictures we depict graph atoms (L → P, {P → Ci}i) more compactly
as L → P → {Ci}i.

– A1 is satisfied by a morphism that selects an element without an outgoing nxt-edge;
– A2 is satisfied by a graph if every OrderedSet is empty, i.e., contains no elements;
– A3 is satisfied by a graph if for every OrderedSet and every pair of distinct elements

contained in it, (at least) one element as an outgoing nxt-edge. Note that the graphs
in the set on the right hand side are to be interpreted disjunctively.

A2 and A3 range over the same graph L, viz. the empty graph: in fact, they are constraints
and can be combined into the formula A2∧A3. A1, on the other hand, cannot be combined
with A2 or A3 into one formula, since they are atoms over different graphs.

We can now define the flattening of an abstract atom and an abstract formula.

Definition 7 (flattening). Let K,L be clan-typed graphs such that K ≤ L and K is
concrete.

– For any abstract graph atom A = 〈n : L →a Q,Con〉, the K-flattening of A is
defined by:

flatK(A) =
∧

{(n : K →c P,flatP (Con)) | P ≤ Q}
flatP (Con) = {q : P →c C | (q : Q →a D) ∈ Con, C ≤ D} .

– For any abstract graph formula F over L, the K-flattening flatK(F ) is defined
by replacing each abstract graph atom A occurring in F by the corresponding
K-flattening flatK(A).

In the next secion we give some examples of flattening. The following theorem is the main
contribution of this paper. It states that satisfaction of an abstract atom or formula over
an abstract clan-typed graph L by a type-refining morphism m : L →a G is equivalent
to satisfaction of the flattening of that atom or formula with respect to the concrete clan-
typed graph K ≤ L for which m : K →c G is type-preserving (which uniquely exists
due to Prop. 2.1). This allows us to re-use existing theory on concrete graph formulae.
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Fig. 3. Three example graph atoms

Theorem 1 (flattening of abstract graph formulae). Let K,L,G be clan-typed graphs
such that K ≤ L, and let m : K→cG. For any abstract graph atom A and graph formula
F over L the following holds:

(m : L →a G) |=a A iff (m : K →c G) |=c flatK(A)
(m : L →a G) |=a F iff (m : K →c G) |=c flatK(F ) .

The proof relies on the fact that the flattening defined in Def. 7 “predicts” all concrete
ways in which the abstract atom and formula could be satisfied, by taking conjunctions
resp. disjunction over all concrete instance graphs that are ≤-predecessors of the abstract
premises and conclusions.

4 Multiplicities and Edge Inheritance as Graph Formulae

In this section we show that two existing classes of constraints on type graphs with
inheritance can be translated to abstract graph formulae. This serves to give some intu-
ition about graph formulae, and to demonstrate that they are expressive enough to cover
practically useful examples. (It should be noted, however, that there are many graph
constraints that do not fall into either of these classes: for instance, A3 in Fig. 3 cannot
be expressed through multiplicities or edge inheritance.

Multiplicities. By enriching a type graph with multiplicities we can restrict the class of
instance graphs to those which are not only correctly typed but also satisfy additional
constraints concerning the number of nodes and edges for each type. These constraints
are expressed using so-called multiplicities.

Definition 8 (multiplicities). A multiplicity is a pair [i, j] ∈ N × (N ∪{∗}) with i ≤ j
or j = ∗. The set of multiplicities is denoted Mult . The special value ∗ indicates that
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the maximum number of nodes or edges is not constrained. For an arbitrary finite set X
and [i, j] ∈ Mult , we write |X| ∈ [i, j] if i ≤ |X| and either j = ∗ or |X| ≤ j.

As usual, we use multiplicities to decorate the nodes and edges of type graphs. For the
nodes, the multiplicity indicates the total number of instances; for the edges, we use
multiplicities expressing the number of incoming, respectively outgoing edges for each
target, respectively source instance.

Definition 9 (Type graph with multiplicities). A type graph with multiplicities is a
tuple TGM = (TGI ,mN ,msrc ,mtar ) consisting of a type graph with inheritance
TGI and additional functions mN : NTGI → Mult , called node multiplicity function,
and msrc ,mtar : ETGI → Mult , called edge multiplicity functions.

The satisfaction of multiplicity constraints is expressed by counting inverse images with
respect to the clan typing.

Definition 10 (Semantics of type graphs with multiplicities). A clan-typed graph
G over TGI = (TG , I, A) is said to satisfy a type graph with multiplicities
(TGI ,mN ,msrc ,mtar ) if the following conditions hold:

– for all n ∈ NTG , |ctp−1
G (clanI(n))| ∈ mN (n);

– for all e ∈ ETG and p ∈ ctp−1
G (clanI(src(e))), |ctp−1

G (e)∩ src−1
G (p)| ∈ mtar (e);

– for all e ∈ ETG and p ∈ ctp−1
G (clanI(tar(e))), |ctp−1

G (e)∩ tar−1
G (p)| ∈ msrc(e).

We now show how a type graph with multiplicities TGM can be translated to an abstract
graph formula that is satisfied by precisely those clan-typed graphs that also satisfy
TGM . In order to do that, we introduce two special types of graphs: for all i ∈ N ,

– For all n ∈ N , Gn
i is the graph consisting of i distinct n-typed nodes.

– For all e ∈ E, Ge,src
i is the set of graphs with i distinct e-typed edges and all source

nodes glued together; dually, Ge,tar
i is the set of graphs with i distinct e-typed edges

and all target nodes glued together.

Definition 11 (Multiplicities as abstract graph formulae). Given a type graph with
multiplicities TGM = (TGI ,mN ,msrc ,mtar ), we define

FTGM =
∧

n∈NTGI
Fn ∧

∧
e∈ETGI

(F src
e ∧ F tar

e )

where Fn, F src
e and F tar

e are abstract graph formulae defined as follows:

– Fn regulates the node multiplicity of n. Let mN (n) = [i, j]; then Fn = An≥i∧An≤j

if j �= ∗ and Fn = An≥i otherwise, where

An≥i = (∅, {∅ → Gn
i })

An≤j = (Gn
j+1, ∅) .

– F src
e regulates the edge source multiplicity of e. Let msrc(e) = [i, j]; then F src

e =
Asrc

e≥i ∧ F src
e≤j if j �= ∗ and F src

e = Asrc
e≥i otherwise, where

Asrc
e≥i = (Gtar(e)

1 , {qtar : G
tar(e)
1 → H | H ∈ Ge,tar

i })

F src
e≤j =

∧
{(H, ∅) | H ∈ Ge,tar

j+1 }

with qtar mapping the sole node of G
tar(e)
1 to the unique target node of H .
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Fig. 4. Type graph with multiplicities, respectively edge inheritance

– F tar
e regulates the edge target multiplicity of e, and is the exact dual ofF src

e (obtained
by switching src and tar everywhere in the above definition).

The following theorem states that this formula indeed expresses the multiplicity seman-
tics according to Def. 10. The proof is omitted here.

Theorem 2 (semantics of multiplicities). For all type graphs with multiplicity TGM
and all graphs G clan-typed over TGI , G satisfies TGM (in the sense of Def. 10) if
and only if G |=a FTGM .

Example 5 (multiplicity constraints). In Figure 4 (left hand side), the type graph TGI
of Fig. 1 has been extended with multiplicities at edge types. For the notation of mul-
tiplicities we follow UML. Each object has always to belong to precisely one ordered
set. This statement contains two constraints: a lower and an upper bound, which in this
case are both equal to 1. Vice versa, ordered sets are allowed to contain arbitrarily many
objects, which is indicated by an asterisk. The nxt relation on objects is constrained to a
partial order where at most one object is nxt, but each object may have arbitrarily many
predecessors. This results in the five graph constraints depicted in Figure 5. (Note that
we have omitted the empty initial graph.) The first constraint states that every object
is contained in a set (which is a positive constraint), the next two that an object is not
allowed to have two outgoing containment edges, neither to different nor to the same
OrderedSet node (which are negative constraints), and the last two constraints (also
negative) express that an object does not have two successor objects.

The next step is to flatten these graph constraints; i.e., we formulate graph constraints
w.r.t. the concrete closure ̂TGI also given in Fig. 1. Some representatives of the flattened
constraints are shown in Fig. 6. The first of these is the complete flattening of the first
constraint in Fig. 5; the second and third show two of the four atomic constraints that
constitute the flattening of the second constraint in Fig. 5.

Edge Inheritance. As we have seen, node inheritance is used to formulate a compact
type graph in the sense that edge types between super types stand for all combinations
of edge types between their sub-types (including themselves). This might lead to a type
graph with too loose type information concerning edges. In the following, we introduce
edge type inheritance, which aims at restricting the combinations of sub-types allowed.
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Fig. 5. Multiplicity constraints as abstract graph atoms

Fig. 6. Flattened multiplicity constraints

Definition 12 (type graph with edge inheritance). A type graph with edge inheritance
is a tuple (TG , I, A) where I ⊆ (N × N) ∪ (E × E) is an acyclic relation such
that TGI = (TG , I|N , A) is a type graph with (node) inheritance, and moreover,
(e, f) ∈ I ∩ (E × E) implies src(e) ∈ clanI(src(f)) and tar(e) ∈ clanI(tar(f)).

The idea is that if a type edge e inherits from another type edge f , then f can occur
as an edge type only for concrete graph edges whose source and target node types are
not in the clan of the source type, resp. target of e. The semantics of edge inheritance
can either be expressed by redefining the closure, or directly as a constraint on the clan
morphism. In other words, if the source or target node of an edge would allow e as an
edge type, then no proper super-type of e may be used.

Definition 13 (semantics of type graphs with edge inheritance). A clan-typed graph
G over TGI is said to satisfy a type graph with edge inheritance (TG , I, A) for which
TGI = (TG , I|N , A) if for all x ∈ EG and (e, ctpG(x)) ∈ I , ctpG(srcG(x)) /∈
clanI(srcTG(e)) and ctpG(tarG(x)) /∈ clanI(tarTG(e)) .

We now construct an abstract graph formula which expresses the same constraint.

Definition 14 (edge inheritance as an abstract formula). Given a type graph with
edge inheritance TGEI = (TG , I, A), define FTGEI =

∧
(e,f)∈IE

Asrc
e,f ∧ Atar

e,f where

Asrc
e,f = (Gsrc(e),f,tar(f), {qe,f : Gsrc(e),f,tar(f) → Gsrc(e),e,tar(e)})

Atar
e,f = (Gsrc(f),f,tar(e), {qe,f : Gsrc(f),f,tar(e) → Gsrc(e),e,tar(e)}) .
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Fig. 7. Edge inheritance as graph constraints

Fig. 8. Flattened edge inheritance constraints

with Gn1,e,n2 for n1 ∈ clanI(src(e)) and n2 ∈ clanI(tar(e)) being the graph consist-
ing of two nodes typed over n1 and n2, and one edge typed over e. qe,f is the unique
type-refining morphism between the source and target graph.

The following theorem states that this formula indeed expresses the satisfaction of the
edge inheritance relation, according to Def. 13. The proof is omitted here.

Theorem 3 (semantics of edge inheritance). For all type graphs with edge inheritance
TGEI = (TG , I, A) and all graphs G clan-typed over (TG , I|N , A), G satisfies TGEI
(in the sense of Def. 13) if and only if G |=a FTGEI .

Example 6 (edge inheritance constraints). In Figure 4 (right hand side) we extended
the type graph of Fig. 1 with edge type inheritance, depicted by (dashed) inheritance
arrows between edges. Hence this type graph expresses (among other things) that an
instance may not contain a nxt-edge from a String-typed node to anything but another
String-typed node — in particular not to an Integer-typed node — or to a node typed
by a subtype of String(of which there are none in this example).

Similarly to the example above, we flatten these graph constraints, i.e., we formulate
graph constraints w.r.t. the concrete closure ̂TGI given in Fig. 1. The constraints shown
in Fig. 8 are the complete flattening of the first constraint in Fig. 7. Note that the first
flattened constraint is always true, and the second describes a handle not allowed by the
edge inheritances.

5 Ensuring Abstract Graph Formulae

Having defined the concept of abstract graph formulae and shown their utility in for-
malizing node multiplicities and edge inheritance, we now turn to the issue of ensuring
graph constraints (not arbitrary formulae) in a given graph transformation system. A
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graph transformation system is said to ensure a graph constraint if all the graphs that
can be derived satisfy the constraint; in other words, if the constraint is an invariant on
the derivable graphs. The method for enforcing a constraint is by including appropriate
preconditions (which are themselves graph formulae) in the rules, using a technique
worked out recently for sub-classes of concrete constraints in [6].

We first define abstract and concrete rules with application conditions, and their
matching. The following definition extends that in [2].

Definition 15 (abstract and concrete rules). An abstract rule typed over a type graph
TGI = (TG , I, A) with inheritance is given by p = (L l← K r→ R,FL, FR), where
L,K,R are abstract clan-typed graphs, l and r are type-preserving graph morphisms,
FL and FR are abstract graph formulae, and ctp−1

R (A) ⊆ r(NK).
p is called concrete if L,K,R are concrete clan-typed graphs and FL, FR are con-

crete graph formulae.
Concrete rule p′ refines abstract rule p, if L′ ≤ L, K ′ ≤ K, R′ ≤ R and ctp′

R|N ′
R

=
ctpR|N ′

R
, and moreover, F ′

L = flatL′(FL) and F ′
R = flatR′(FR). The set of all concrete

refinements of an abstract rule p is denoted by p̂.

Example 7 (abstract rules). Fig. 9 shows two abstract rules, modelling the insertion of
a new string into an ordered set. InsertFirstStringinserts a string into an empty set (the
emptyness is ensured by the application condition), whereas InsertNextString handles
the case of a non-empty set: an existing object will become the predecessor of the newly
inserted String. Note that, if this existing object already has a successor, application of
the rule will violate the multiplicity constraint in Fig. 5. We will show below (Ex. 8) that
this condition is obtained automatically by translation from the multiplicity constraints.
(Note that Fig. 9 only shows the left and right hand sides; the interface graph can be
deduced from the node identities.)

Fig. 9. Abstract rules for inserting a String into an OrderedSet

Definition 16 (rule matching and application). Let p = (L l← K r→ R,FL, FR) be a
derivation rule, G and H concrete clan-typed graphs, and m : L→G a type-preserving
graph morphism.

– If p is a concrete rule, then m is a match of p in G if
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• m is a match of the untyped rule 〈L l← K r→ R〉 in the untyped graph G,
• m |=c FL.

Given a match m, a concrete direct derivation G
p,m
=⇒ H exists if there is a span of

type-preserving morphisms G←D→H and a co-match m∗ : R→H of p in H that
give rise to a derivation in the classical theory of (untyped) graph transformations
[5]. The derivation is valid if m∗ |=c FR.

– If p is an abstract rule, then m is a match of p in G if
• m is a match of the untyped rule 〈L l← K r→ R〉 in the untyped graph G;
• tK(x1) = tK(x2) for tK = ctpG ◦m◦ l and x1, x2 ∈ NK with r(x1) = r(x2);
• m |=a FL.

Given a match m, an abstract direct derivation G
p,m
=⇒ H exists if there is a span of

type-preserving morphisms G←D→H and a co-match m∗ : R→H of p in H that
give rise to a derivation in the sense of [2]. The derivation is valid if m∗ |=a FR.

The following is the main theorem of [1], extended to the more general application
conditions used in the paper. It can be proved using Theorem 1.

Theorem 4 (equivalence of abstract and concrete derivations). Given
an abstract rule pa = (L ← K → R,FL, FR), concrete clan-
typed graph G,H and a structural match morphism m : L → G
(i.e. a match with respect to the untyped rule 〈L ← K → R〉), the following
statements are equivalent:

1. m is a match of pa in G, yielding a valid abstract direct derivation: G
pa,m=⇒ H .

2. m is a match of the concrete rulepc = (Lc←Kc→Rc, F
c
L, F c

R) inGwithpc ∈ p̂a and

m : Lc →c G type-preserving, yielding a valid concrete direct derivation: G
pc,m=⇒ H .

In the following, we want to use the translation of graph constraints to application
conditions of graph rules as described in [6]. Therefore, we have to restrict the class
of graph formulae we use to the ones defined in [6]. If we restrict our concrete graph
constraints GC = (P,Con) to those with |Con| ≤ 1, they become equivalent to the
positive and negative graph constraints of [6]: the case of |Con| = 1 corresponds to
positive graph constraints, while the case of |Con| = 0 correspond to negative graph
constraints.4 Another difference is that, in [6], the morphisms in Con are allowed to be
arbitrary, but that does not add expressiveness (although it does add compactness) to
those we have defined here, which have injective morphisms only. The following is the
relevant result from [6].

Theorem 5 (from concrete constraints to left application conditions). Given a con-
crete constraint GC and a concrete rule p = 〈L ← K → R〉, there is a left ap-
plication condition accL such that for all direct derivations G

p,m
=⇒ H we have:

m |=c accL ⇔ H |=c GC .

By combining this with Theorems 1 and 4, we can prove the following.

4 The result of [6] has since been extended in [8] to and beyond our graph formulae, namely to
arbitrarily nested formulae as in [13], which means that the results below also hold for arbitrary
formulae.
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Fig. 10. Derived application conditions

Theorem 6 (from abstract constraints to left application conditions). Given an ab-
stract constraint GC a and an abstract rule pa with left hand side La, there is a set S of
concrete application conditions such that for all direct derivations G

pa,m=⇒ H we have:
(∃F ∈ S : m |=c F ) ⇔ H |=a GC a.

Thus, given some abstract graph constraint formula Fa typed over type graph TGI with
inheritance, we can flatten it to a concrete graph formula Fc as described in Section
3. Fc can be considered as simply typed over concrete closure ̂TGI and translated to
a concrete left application condition accL that guarantees Fa. Note that accL is also
typed over ̂TGI . Unfortunately, there is no straightforward way to translate accL to an
abstract application condition.

Example 8 (additional application constraints for abstract rules). Consider the con-
straints in Figs. 5 and 7, respectively and the abstract rules in Fig. 9. Fig. 10 shows
some of the elements of S derived for this case according to Th. 6.

For rule InsertFirstString, the multiplicity constraints (Fig. 5) do not lead to inter-
esting application conditions, since the left-hand side does not contain an Object; but the
edge inheritance constraints (Fig. 7) induce the two application conditions shown in the
figure. These essentially express that the OrderedSet involved has to be a StringSet.
For rule InsertNextString, the multiplicity constraint on nxt-edges leads to the third
application condition of Fig. 10 (among others). This expresses that the node with iden-
tity 2 in the left hand side of the rule (which has the abstract type Object in the rule
but concrete type String in the condition) may not have an outgoing nxt-edge; see also
Fig. 3.

6 Conclusions

In the literature, a variety of formal integrations of object-orientation and formal specifi-
cation techniques exist. They are considered in the context of precise semantics for UML
as well as for precise meta-modeling. It is the declared aim of the precise UML group
[12] to come up with a precise standard semantics of the whole language UML, and then
to use it for verification purposes. There are various approaches being developed, each
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formalizing certain aspects of UML with the intention of using the resulting precision
for formal reasoning. In [3], the authors are especially concerned with the formalization
of classes and their relations, inheritance and constraints on the basis of description
logics. This work is dedicated entirely to the static part and does not regard the dynamic
behavior of objects. Precise meta-modeling is considered in [14], where MOF and graph
transformation concepts are integrated. While the aim and the basic ideas are similar to
ours, the formalization chosen in [14] is different and not as comprehensive; in particular,
it does not deal with constraints.

In addition to formulating a precise semantics, one has also to consider the process by
which constraints are enforced. In this paper we have shown one way in which this can
be done (by translation to application conditions). We are not aware of other approaches
in the literature.

Summarizing, in this paper we have obtained a further, important step of integrat-
ing graph transformation with object-orientation concepts: now, type inheritance, con-
straints, and graph transformation concepts are integrated in one comprehensive formal
framework. This offers the possibility to check properties for object-oriented software
models. On the meta-model level, the results in our paper can be used to check constraints
for model transformation. Further work is needed to carry over other analysis techniques
to typed graph transformation with inheritance, to come up with a comprehensive visual
and precise framework for object-oriented modeling and meta-modeling.
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