
Kaveri: Delivering the Indus Java Program
Slicer to Eclipse�

Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff

Department of Computing and Information Sciences,
Kansas State University,

234 Nichols Hall, Manhattan KS, 66506, USA
{ganeshan, rvprasad, hatcliff}@cis.ksu.edu

Abstract. This tool paper describes a modular program slicer for Java built using
the Indus program analysis framework along with it’s Eclipse-based user interface
called Kaveri. Indus provides a library of classes that enables users to quickly as-
semble a highly customized non-system dependence graph based inter-procedural
program slicer capable of slicing concurrent Java programs. Kaveri is an Eclipse
plugin that relies on the above library to deliver program slicing to the eclipse
platform. Apart from the basic feature for generating program slices from within
eclipse along with an intuitive UI to view the slice, the plugin also provides the
capability for chasing various dependences in the application to understand the
slice.

1 Introduction

Program slicing is a well known analysis that can be used to identify parts of the program
that influence or are influenced by a given set of program points (slice criteria). There
have been a large number of publications along with a small number of implementations
for languages such as FORTRAN, ANSI C, and Oberon. 1 Most of the implementations
have been targeted to particular applications of program slicing such as program com-
prehension, testing, program verification, etc. Moreover, only few robust slicing tools
exist for languages like Java and C++.

From our experience we have found that the properties required of a slice depend on
the application. For example, the program slice needs to be executable for program ver-
ification applications such as Bandera[2] but not for program comprehension purposes.
Similarly, the slice needs to be “residualizable” for some applications and such trans-
formations can again be constrained by the application. Hence, program slicers need to
be modular and flexible (customizable) as opposed to being monolithic and rigid.

� This work was supported in part by the U.S. Army Research Office (DAAD190110564), by
DARPA/IXO’s PCES program (AFRL Contract F33615-00-C-3044), by NSF (CCR-0306607)
by Lockheed Martin, and by Intel Corporation.

1 Please refer to Jens Krinke’s Dissertation[1] for a brief informative overview of available
implementations.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 269–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 G. Jayaraman, V.P. Ranganath, and J. Hatcliff

Expr Stmt

ReadyControl
Cloning

IR

CFG

IR’

SOOTSource

Annotation

Destructive Update

Points−to Analysis

Thread Graph

Call Graph

Escape Analysis

DependenceAnalysis

Slicing Engine

Classes

Artifacts
Association
Inheritance
Input/Output

Slicing Criteria Factory
Slicing Criteria

.

ResidualizationJimple

Fig. 1. Bird’s eye view of classes and artifacts in Indus Java Program Slicing Library

2 Indus Java Program Slicer

Drawing from the our experience with Bandera slicer, we have implemented a program
slicing library that can handle almost full Java2. To the best of our knowledge, this is the
first publicly available Java implementation of a program slicer for Java.

Indus modules work on Jimple (SOOT [3]) representation of Java programs and
bytecode.

The key features of Indus Java Program Slicing library apart from generating back-
ward and forward slices are as follows.

Batteries Included. The program slicing library, directly or indirectly, requires various
high level analyses such as escape analysis [4], monitor analysis, safe-lock analysis [5],
and analyses to calculate and prune various dependences – intra- and inter-procedural
data dependence, control [6] dependence, interference [7] dependence, ready depen-
dence and synchronization dependence [5]. These high level analyses rely on low-level
information such as object-flow information [8], call graph, and thread graph [4]. All of
the above analyses and other related analyses are available in Indus.

Modularity. Most of the above mentioned analyses are available as independent mod-
ules. Hence, the user can use only the required analyses. Each analysis implementation
is decoupled from it’s interface to enable easy experimentation with various implemen-
tations. This is a recurring theme in Indus which is leveraged in the slicer.

Non-SDG Based. Most slicing related work is based on program/system dependence
graphs (PDG/SDG) that contain dependence edges to account for various aspects of
the language such as unconditional jumps, procedure calls, aliasing, etc. This can be an
obstacle for reusability. Instead, in Indus, the logic to handle such aspects is encoded

2 With the exception of dynamic class loading, reflection, and native methods.

Kaveri: Delivering the Indus Java Program Slicer to Eclipse 271

in the slicing algorithm to decrease coupling and increase cohesion. As a result, depen-
dence information is readily reusable, fine-tuning of slicing algorithm is simplified, and
maintenance becomes easy.

Program Slicing = Analysis. In Indus, program slicing is considered to be pure program
analysis – program slicing only calculates the program points that belong to a slice. This
simplifies the slicing algorithm and enables the same slicing algorithm to be used with
different transformations as required by the applications.

Inter-Procedural and Context-Sensitive. The slicer considers calling contexts (where
possible) to generate precise inter-procedural slices. The user can generate context-
sensitive slice criteria to further improve precision. Scoping, a feature that can be used
to control the parts of the system that need to be analyzed, can be used to to restrict the
scope of slicing to a single method, a collection of methods, a collection of methods
belonging to a collection of classes, etc.

Concurrent Programs. This implementation can slice concurrent programs by con-
sidering data interference and other synchronization related aspects that are inherent to
concurrent programs. Information from escape analysis and monitor analysis is used to
improve the precision of concurrent program slices.

Highly Customizable. Using Indus libraries, the user can assemble a slicer that is
customized for the end-application. For example, the user may choose cloning based
residualization for differencing purposes or destructive-update based residualization for
program verification purposes.

To verify that our library is indeed customizable to multiple application domains and
also to realize a long term goal of having an UI to visualize program slices, we developed
Kaveri.

3 Kaveri: A Program Slicing Plugin for Eclipse

Kaveri is a plugin that contributes program slicing as a feature to Eclipse [9]. Kaveri
utilizes the Indus program slicing library to perform slicing, thereby, hiding the details of
assembling a slicer customized for the purpose of program comprehension.As a program
comprehension aid, Kaveri contributes the following features to Eclipse.

Slice Java Programs by Choosing Slice Criteria. The user can pick the criteria, gen-
erate the program slice, and view the slice all using the Java source editor. The plugin
handles the intricacies such as mapping from Java to Jimple and driving the slicer.

View the Slice in the Java Editor. The part of the source code included in the slice is
highlighted in the editor. This aids slice-based program comprehension.

Perform Additive Slicing. “What program points are common to slices based on criteria
b and c?” is a common question during program comprehension. It can be answered by
intersecting the slices based on criteria b and c. In Kaveri, the user can achieve this by
associating different highlighting schemes to slices based on b and c, and viewing both
the slices in the editor at the same time. Similarly, Chops can be realised by intersecting
backward and forward slices.

272 G. Jayaraman, V.P. Ranganath, and J. Hatcliff

Support for Program Comprehension. Understanding dependence relations between
various program points helps understand the generated program slice. In Kaveri, this is
achieved by “chasing” dependences.

– The user can view which program points in a Java statement/expression are included
in the slice via slice comprehension view, an eclipse view displays the Java-to-Jimple
mapping for a Java statement/expression along with Jimple level slice annotations.

– As Kaveri annotates the parts of the source file in the editor, the user can use the
built-in annotation navigation facility in Eclipse to keep track of dependence navi-
gation. However, to compensate for the genericity of this facility, Kaveri maintains
the dependence-based path taken by the user. The user can navigate this path and
backtrack on it via a dependence history view.

– Kaveri also supports path queries that can be used to find sequences of program
points that are related via a pattern of dependences and other relations specified by
a language such as regular expressions.

The user can also generate a scoped slice based on scope specifications to understand
the relation between certain program points independent of external influences.

Perform Context-Sensitive Slicing. In Kaveri, the user can identify calling contexts
(from a inverted call tree of a finite depth) to be used in the generation of context-
sensitive program slices.

We have successfully used Kaveri with code bases of ≤ 10K lines of Java application
code (< 80K bytecodes) (excluding library code). All software and related artifacts
pertaining to Indus and Kaveri are available at [10].

References

1. Krinke, J.: Advanced Slicing of Sequntial and Concurrent Programs. PhD thesis, Fakultät
für Mathematik und Informatik, Universität Passau (2003)

2. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby, Zheng, H.:
Bandera: Extracting finite-state models from Java source code. In: Proceedings of the 22nd
International Conference on Software Engineering (ICSE’00). (2000) 439–448

3. Sable Group: Soot, a Java Optimization Framework. (http://www.sable.mcgill.ca/soot/)
4. Ranganath, V.P., Hatcliff, J.: Pruning interference and ready dependences for slicing con-

current java programs. In: Proceedings of Compiler Construction (CC’04). Volume 2985.,
Springer-Verlag (2004) 39–56

5. Hatcliff, J., Corbett, J.C., Dwyer, M.B., Sokolowski, S., Zheng, H.: A formal study of slic-
ing for multi-threaded programs with JVM concurrency primitives. In: Proceedings on the
International Symposium on Static Analysis (SAS’99). (1999)

6. Ranganath, V.P., Amtoft, T., Banerjee, A., B.Dwyer, M., Hatcliff, J.: A new foundation for
control-dependence and slicing for modern program structures, Springer-Verlag (2005) To
appear in the Proceedings of European Symposium On Programming (ESOP’05).

7. Krinke, J.: Static slicing of threaded programs. In: Proceedings ACM SIGPLAN/SIGFSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE’98). (1998)
35–42 ACM SIGPLAN Notices 33(7).

8. Ranganath, V.P.: Object-Flow Analysis for Optimizing Finite-State Models of Java Software.
Master’s thesis, Kansas State University (2002)

9. OTI: Eclipse, an open extensible IDE written in Java. (http://www.eclipse.org)
10. SAnToS Laboratory: Indus. (http://indus.projects.cis.ksu.edu)

	Introduction
	Indus Java Program Slicer
	Kaveri: A Program Slicing Plugin for Eclipse

