
Composition and Decomposition in True-Concurrency

Sibylle Fröschle�
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Abstract. The idea of composition and decomposition to obtain computability
results is particularly relevant for true-concurrency. In contrast to the interleaving
world, where composition and decomposition must be considered with respect to
a process algebra operator, e.g. parallel composition, we can directly recognize
whether a truly-concurrent model such as a labelled asynchronous transition sys-
tem or a 1-safe Petri net can be dissected into independent ‘chunks of behaviour’. In
this paper we introduce the corresponding concept ‘decomposition into indepen-
dent components’, and investigate how it translates into truly-concurrent bisimu-
lation equivalences. We prove that, under a natural restriction, history preserving
(hp), hereditary hp (hhp), and coherent hhp (chhp) bisimilarity are decomposable
with respect to prime decompositions. Apart from giving a general proof tech-
nique our decomposition theory leads to several coincidence results. In particular,
we resolve that hp, hhp, and chhp bisimilarity coincide for ‘normal form’ basic
parallel processes.

1 Introduction

In the finite-state world truly-concurrent problems are typically harder than their inter-
leaving counterparts. This is demonstrated by the following examples. Model-checking
CTL is well-known to be polynomial-time but model-checking CTLP is NP-hard [1].
The problem of synthesizing controllers for discrete event systems is decidable in an in-
terleaving setting and can be computed in polynomial-time; in a truly-concurrent setting
the problem is undecidable [2]. Classical bisimilarity is polynomial-time decidable while
hereditary history preserving (hhp) bisimilarity has been proved undecidable [3]; plain
history preserving (hp) bisimilarity is decidable [4] but has been shown DEXPTIME-
complete [5, 6].

There is, however, a positive trend for true-concurrency in the infinite-state world.
The above effect seems reversed for basic parallel processes (BPP). Under interleaving
semantics a small fragment of a logic equivalent to CTL∗ is undecidable for very basic
BPP; under partial order interpretation the full logic is decidable for BPP [7]. Trace
equivalence on BPP is undecidable but pomset trace and location trace equivalence on
BPP are shown decidable in [8]. Classical bisimilarity on BPP is PSPACE-complete
[9, 10]; in contrast, for BPP, distributed bisimilarity, and with it hp bisimilarity, are
polynomial-time decidable [11]. The positive trend is further confirmed by results of
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[12, 13]: hhp bisimilarity on BPP is decidable and coincides with its strengthening to
coherent hhp bisimilarity.

We can explain this discrepancy as follows. Models such as labelled asynchronous
transition systems (lats’) [14] or labelled 1-safe Petri nets (net systems) faithfully cap-
ture how the transitions of a system are related concerning concurrency and conflict.
The way we allow concurrency and conflict to interact will directly impact on the com-
putational power of truly-concurrent equivalences and logics. The negative results of
[2] and [3] build on the insight that truly-concurrent models have the power to en-
code tiling systems. If the interplay between concurrency and conflict is restricted this
power can be lost [15], and a truly-concurrent concept may be particularly natural to
decide. BPP are infinite-state but, under truly-concurrent semantics, they have a simple
tree-like structure, which has turned out to be directly exploitable: e.g. the decidability
results of [8] follow by a reduction to the equivalence problem of recognizable tree
languages.

In this paper we advocate the following thesis. System classes with a restricted inter-
play between concurrency and conflict often have characteristic decomposition proper-
ties. These might translate into truly-concurrent equivalences or logics in a very concrete
way, and thereby allow us to decide the respective concept by a ‘divide and conquer’
approach.

The idea of decomposition provides one of the crucial techniques to establish de-
cidability and upper complexity bounds in infinite-state verification. For example, the
polynomial-time decision procedure for classical bisimilarity on normed BPP [16] is
based on the following insight:1 any normed BPP can be expressed uniquely, up to
bisimilarity, as a parallel composition of prime factors [18]. A process is prime if it
is not the nil process and it is irreducible with respect to parallel composition, up to
bisimilarity. Such a decomposition theory translates into cancellation properties of the
form “P ||Q ∼ R ||Q implies P ∼ R”, which provide the means to reduce pairs of
processes to compare into smaller pairs of processes to check. Questions about prime
decomposability were first addressed by Milner and Moller in [19].

In the interleaving world, decomposition must be considered with respect to a process
algebra operator, e.g. parallel composition, and the behavioural equivalence of choice:
can a process term P be expressed as a process term Q of particular form, a parallel
composition of prime processes, such that P and Q are bisimilar? In contrast, in true-
concurrency, decomposition can be considered at the level of the semantic model: we can
directly recognize whether a lats or net system can be dissected into independent ‘chunks
of behaviour’. Having fixed a specific decomposition view on the level of the model we
can then separately investigate whether this view translates into a given equivalence.
For example, we might suspect: if two parallel compositions of sequential systems, say
S and S′, are equivalent under a truly-concurrent bisimilarity then there is a one-to-
one correspondence between the components of S and those of S′ such that related
components are equivalent. For classical bisimilarity this decomposition property will
certainly not hold: a||b is bisimilar to a.b + b.a.

1 Very recently this result has been improved to O(n3) by an algorithm that does not use decom-
position in this sense [17].



Composition and Decomposition in True-Concurrency 335

There are two axioms of independence: (1) If two independent transitions can occur
consecutively then they can also occur in the opposite order. (2) If two independent
transitions are enabled at the same state then they can also occur one after the other.
This indicates that decomposition is inherently connected to the shuffling of transitions:
the behaviour of a system corresponds to the shuffle product of the behaviour of its
independent components. Therefore, decomposition theorems provide an important tool
to establish coincidence between hp, hhp, and chhp bisimilarity: proving that the three
equivalences coincide amounts to proving that whenever two systems are hp bisimilar
there exists a hp bisimulation that satifies specific shuffle properties, the hereditary and
coherent condition.

The contribution of this paper is threefold: (1) We transfer the idea of prime decompo-
sition to the truly-concurrent world. (2) We analyse whether this concept translates into
truly-concurrent bisimulation equivalences. We show that, under a natural restriction,
hp, and also, hhp and chhp bisimilarity are indeed decomposable with respect to prime
decompositions. (3) We apply our decomposition theory to obtain coincidence results.
In particular, this gives us several positive results for hhp bisimilarity, a concept which
is renowned for being difficult to analyse. In more detail, after presenting the necessary
definitions in Section 2, we proceed as follows.

In Section 3 we introduce the notion ‘decomposition into independent components’
and a corresponding concept of prime component for the model of lats’; components are
defined as concrete sub-systems of the respective lats. We show that every non-empty
system uniquely decomposes into its set of prime components.

In Section 4 we show that hp, hhp, and chhp bisimilarity are composable with respect
to decompositions in the following sense: assume two systems S1, S2, each decomposed
into a set of independent components; whenever we can exhibit a one-to-one correspon-
dence between the components of S1 and those of S2 such that related components are
hp (hhp, chhp) bisimilar then S1 and S2 are hp (hhp, chhp) bisimilar. This is straight-
forward but guarantees the soundness of our decomposition approach. It is related to
congruence in the process algebra world: if P ∼ P ′ and Q ∼ Q′ then P ||Q ∼ P ′ ||Q′.

Section 5 is the core of the paper: we analyse whether hp, hhp, and chhp bisimilarity
are decomposable in the converse sense. We demonstrate that hp bisimilarity is not
decomposable with respect to prime decompositions. However, we identify a natural
restriction under which this is indeed given for hp, and also, hhp and chhp bisimilarity:
for systems whose prime components are, what we shall call, concurrent step connected
(csc). We obtain: whenever two csc-decomposable systems S1, S2 are hp (hhp, chhp)
bisimilar then there is a one-to-one correspondence between the prime components of
S1 and those of S2 such that related components are hp (hhp, chhp) bisimilar. The proof
of this statement is non-trivial. In particular, we require the combinatorial argument of
Hall’s Marriage Theorem.

In Section 6 we apply our (de)composition theory to prove several coincidence re-
sults. As an immediate consequence we obtain coincidence between hp, hhp, and chhp
bisimilarity for parallel compositions of sequential systems. Most interesting is, perhaps,
that this intuitive result has turned out non-trivial to prove, and that the key insight behind
it is of general significance. By employing our (de)composition theory in an inductive
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argument we extend the coincidence result to the class concurrency-degree bounded
communication-free net systems.

Most importantly, we resolve that hp, hhp, and chhp bisimilarity coincide for the
simple basic parallel processes (SBPP) of [7]. SBPP correspond to BPP in normal form,
which in the interleaving world represent the entire BPP class; in true-concurrency they
form a strictly smaller class. The coincidence for SBPP complements the positive results
already achieved for (h)hp bisimilarity on BPP. Via [11] it follows that hhp bisimilarity
on SBPP is polynomial-time decidable. Since hp and hhp bisimilarity do not coincide
for BPP in general, the coincidence for SBPP underlines that SBPP and BPP do behave
differently in the truly-concurrent world.

In Section 7 we conclude the paper and point to future research. Most of the proofs
are kept informal in this extended abstract; a detailed account can be found in [20].
Our primary model is lats’, but we also informally employ net systems, which can be
understood as a class of lats’; for the definition of net systems we also refer to [20].

2 Preliminaries

Systems. A labelled (coherent) asynchronous transition system (for this paper simply
system) is defined as a structure S = (SS , si

S , TS ,→S , IS , lS), where SS is a set of
states with initial state si

S ∈ SS , TS is the set of transitions2, →S⊆ SS ×TS ×SS is the
transition relation, IS ⊆ TS×TS , the independence relation, is an irreflexive, symmetric
relation, and lS : TS → Act is the labelling function, where Act = {a, b, . . .} is a set
of actions, such that

1. t ∈ TS =⇒ ∃s, s′ ∈ SS . s
t→S s′,

2. s
t→S s′ & s

t→S s′′ =⇒ s′ = s′′,
3. t1 IS t2 & s

t1→S s1 & s1
t2→S u =⇒ ∃s2. s

t2→S s2 & s2
t1→S u, and

4. t1 IS t2 & s
t1→S s1 & s

t2→S s2 =⇒ ∃u. s1
t2→S u & s2

t1→S u.

We lift →S to sequences of transitions in the usual way. We also lift IS to sequences
and sets of transitions, e.g. we write t1 . . . tn IS t′1 . . . t′m iff ti IS t′j for all i ∈ [1, n],
j ∈ [1, m]. In this paper we assume a further axiom:

5. s ∈ SS =⇒ ∃w ∈ T ∗
S . si

S
w→ s.

Axiom (1) says that every transition can occur from some state, and axiom (2) that
the occurrence of a transition at a state leads to a unique state. Axioms (3) and (4) express
the two axioms of independence mentioned in the introduction. Our additional axiom (5)
specifies that every state is reachable from the initial state. A system S is finite iff SS

and TS are finite sets. S is empty iff TS = ∅, and non-empty otherwise.
Let S be a system, and s ∈ SS . The transitions of Tc ⊆ TS are concurrently enabled

at s, Tc ∈ cenablS(s), iff ∀t ∈ Tc. ∃s′. s
t→ s′ and ∀t, t′ ∈ Tc. t 	= t′ ⇒ t IS t′.

We define the smallest upper bound on the number of transitions that are concurrently

2 in the sense of Petri net boxes.
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enabled at s by cboundS(s) = min{κ | ∀Tc ∈ cenablS(s). |Tc| ≤ κ}. S is concurrency-
degree finite iff for each s ∈ SS , cboundS(s) ∈ IN0. E.g., finitely branching systems are
always concurrency-degree finite. We only consider systems that are concurrency-
degree finite.

Partial Order Runs. A pomset is a labelled partial order; specified via a labelled strict
order, it is a tuple p = (Ep, <p, lp), where Ep is a set of events, <p a strict order relation
on Ep, and lp a labelling function lp : Ep → Act . A function g is an isomorphism
between pomset p and pomset q iff g : Ep → Eq is a bijection such that (1) lp = lq ◦ g,
and (2) e <p e′ iff g(e) <q g(e′) for all e, e′ ∈ Ep.

Assume a system S. Let r = t1t2 . . . tn ∈ T ∗
S be a sequence of transitions. We write

|r| for the length of r, that is |r| = n; for any i ∈ [1, |r|] we denote the ith transition
of r, ti, by r[i]. r is a run of S, r ∈ Runs(S), iff si

S
r→ s for some state s ∈ SS . The

pomset of r, pom(r), has as events the integers from 1 to n, where the label of event
i is lS(ti), and the strict ordering is the transitive closure of the following “proximate
cause” relation: event i proximately causes event j, written i <prox

r j, iff i < j and ti
and tj are not independent in S. We denote this strict ordering on [1,n] by ‘<r’.

Hp, Hhp, and Chhp Bisimilarity. Hp bisimilarity relates two systems whose behaviour
can be bisimulated while preserving the labelling of transitions and the causal depen-
dencies between them. Technically, this can be realized by basing hp bisimulation on
pairs of synchronous runs [5]: intuitively, two runs are synchronous if their induced
pomsets are isomorphic, and both runs correspond to the same linearization of the asso-
ciated pomset isomorphism class. Formally, this amounts to: let S1, S2 be two systems;
r1 ∈ Runs(S1) and r2 ∈ Runs(S2) are synchronous, (r1, r2) ∈ SRuns(S1, S2), iff
the identity function on [1, |r1|] is an isomorphism between pom(r1) and pom(r2). A
set H ⊆ SRuns(S1, S2) is prefix-closed iff (r1t1, r2t2) ∈ H implies (r1, r2) ∈ H. As
noted in [21] it is safe to restrict our attention to prefix-closed hp bisimulations.

Hhp bisimilarity is obtained from hp bisimilarity by the addition of a backtracking
requirement, and chhp bisimilarity furthermore imposes a padding requirement. These
conditions reflect the first and, respectively, second axiom of independence.

Definition 1. Let S1 and S2 be two systems. A history preserving (hp) bisimulation
relating S1 and S2 is a prefix-closed relation H ⊆ SRuns(S1, S2) that satisfies:

1. (ε, ε) ∈ H.
2. If (r1, r2) ∈ H and r1t1 ∈ Runs(S1) for some t1 ∈ T1, then there is t2 ∈ T2 such

that (r1t1, r2t2) ∈ H.
3. Vice versa.

A hp bisimulation H is hereditary (h) when it further satisfies:

4. If (r1t1w1, r2t2w2) ∈ H for some w1 ∈ T ∗
1 , w2 ∈ T ∗

2 , t1 ∈ T1, and t2 ∈ T2 such
that |w1| = |w2|, t1 I1 w1 (or t2 I2 w2 equivalently), then (r1w1, r2w2) ∈ H.

A hhp bisimulation H is coherent (c) when it further satisfies:

5. If (r1w1, r2w2), (r1t1, r2t2) ∈ H for some w1 ∈ T ∗
1 , w2 ∈ T ∗

2 , t1 ∈ T1, and
t2 ∈ T2 such that |w1| = |w2|, t1 I1 w1, and t2 I2 w2, then (r1t1w1, r2t2w2) ∈ H.
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S1 and S2 are ((c)h)hp bisimilar, written S1 ∼((c)h)hp S2, iff there exists a ((c)h)hp
bisimulation relating them. Given two systems S1 and S2, we also use ∼((c)h)hp to
denote the set

⋃{H : H is a ((c)h)hp bisimulation relating S1 and S2}. (Note: chhp
bisimulations are not closed under union; so, ∼chhp is not necessarily the largest chhp
bisimulation.)

Further Concepts. Let A, B be alphabets. For r ∈ A∗, if B ⊆ A, let r↑B denote the
sequence obtained by erasing from r all occurrences of letters which are not in B. If
B = Tc for some system c we write r↑c short for r↑Tc.

The shuffle of n words u1, . . . , un ∈ A∗ is the set u1 ⊗ · · · ⊗ un of all words of
the form u1,1u2,1 · · ·un,1u1,2u2,2 · · ·un,2 · · ·u1,ku2,k · · ·un,k with k ≥ 0, ui,j ∈ A∗,
such that ui,1ui,2 · · ·ui,k = ui for 1 ≤ i ≤ n [22]. We carry this notation over to pairs
(u, w) ∈ A∗ × B∗ satisfying |u| = |w|, considering that such entities can be viewed as
words in (A × B)∗.

3 Decomposed Systems

We now introduce our notion of ‘decomposition into independent components’. Com-
ponents are defined as concrete sub-systems of the respective system.

Let S be a system. A system c is a sub-system of S iff

1. Sc ⊆ SS ,
2. si

c = si
S ,

3. Tc ⊆ TS ,
4. →c = →S ∩ (Sc × Tc × Sc),

5. Ic = IS ∩ (Tc × Tc), and
6. lc = lS �Tc .

Let c1 and c2 be two sub-systems of S. We say c1 and c2 are independent (with respect
to S), written c1 IS c2, iff Tc1 IS Tc2 . The empty sub-system of S is defined by cS

empty =
({si

S}, si
S , ∅, ∅, ∅, ∅).

Definition 2. A decomposition of a system S is a set D = {c1, . . . , cn}, n ∈ IN, of
sub-systems of S such that

1. ∀i, j ∈ [1, n]. (i 	= j =⇒ ci IS cj), and
2. Runs(S) =

⋃{r1 ⊗ · · · ⊗ rn | ri ∈ Runs(ci) for all i ∈ [1, n]}.

A decomposed system is a pair (S, D), where D is a decomposition of system S.

Every system S has at least one decomposition: the one consisting of S itself. A
system may well have many different decompositions: e.g., P = a.0 || b.0 || c.0 can be
decomposed into {(a.0 || b.0), c.0}, into {a.0, (b.0 || c.0)}, and into {a.0, b.0, c.0}. Every
non-empty system will, however, uniquely decompose into a set of prime components.

Definition 3. A sub-system c of a system S is a divisor of S iff there exists a decompo-
sition D of S such that c ∈ D. A system S is prime iff S is non-empty, and cS

empty and
S are the only divisors of S.

Theorem 1. Each non-empty system S has a unique decomposition D such that for all
c ∈ D c is prime.
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Proof (Sketch). This can be established following the standard proof of unique prime
factorization of natural numbers (see e.g. [23]). Instead of proceeding by induction on
IN, we proceed by induction on the smallest upper bound on the number of transitions
that can occur concurrently at the initial state. This is possible due to our restriction to
concurrency-degree finite systems.

Definition 4. We define the prime components of a system S, denoted by PComps(S),
as follows: if S is empty we set PComps(S) = ∅, otherwise we define PComps(S) to
be the decomposition associated with S by Theorem 1.

Theorem 2. Let S be a finite system. PComps(S) is computable.

Proof (Sketch). Let S be a non-empty finite system. We partition TS into non-empty
subsets such that each subset is a connected component with respect to the dependence
relation (the complement of IS). The sub-systems naturally induced by these sets of
transitions are prime and together they form a decomposition of S.

Convention 1. In the context of a decomposed system (S,D) we use the following
decomposition functions: K : TS → D, defined by K(t) = ci ⇐⇒ t ∈ Tci , and
Ks : T ∗

S → P(D), defined by Ks(w) = {K(t) | t ∈ w}. (K is a function by clause (1)
of the definition of decomposition, and the irreflexivity of independence.)
If it is clear from the context that a system S is non-empty and there is no other decom-
position specified, we understand S as the decomposed system S = (S,PComps(S)).

4 Composition

Hp, hhp, and chhp bisimilarity are composable with respect to decompositions in the
following sense: whenever we can exhibit a one-to-one correspondence between the
components of two decomposed systems such that related components are hp (hhp,
chhp) bisimilar then the two systems are hp (hhp, chhp) bisimilar.

Theorem 3. Let x ∈ {hp, hhp, chhp}; let (S1,D1) and (S2,D2) be two decomposed
systems. If there exists a bijection β : D1 → D2 such that c1 ∼x β(c1) for each c1 ∈ D1
then we have S1 ∼x S2.

Proof (Sketch). Let (S1,D1) and (S2,D2) be two decomposed systems. Assume we
are given a bijection β : D1 → D2, say β = {(c1

1, c
1
2), . . . , (c

n
1 , cn

2 )}, and a family
{Hi}n

i=1 such that for all i ∈ [1, n] Hi is a hp bisimulation relating ci
1 and ci

2. We define
H =

⋃{r1 ⊗ · · · ⊗ rn | ri ∈ Hi for all i ∈ [1, n]}. It is straightforward to check that
H is a hp bisimulation relating S1 and S2. Furthermore, it is routine to establish: if for
all i ∈ [1, n] Hi is hereditary then H will also be hereditary; if for all i ∈ [1, n] Hi is
coherent then H will also be coherent.
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5 Decomposition

It is trivial that hp, hhp, and chhp bisimilarity are not decomposable in the converse
sense: as we saw P = a.0 || b.0 || c.0 can be decomposed into {(a.0 || b.0), c.0} and
also into {a.0, (b.0 || c.0)}; but certainly we cannot exhibit a bijection between the two
decompositions such that related components are bisimilar. The more natural question
to ask is whether a notion of equivalence is decomposable with respect to prime decom-
positions.

The example of Figure 1 demonstrates hp bisimilarity is not decomposable in this
sense, either. On the one hand, A and B are hp bisimilar. The additional transition b′

3
in B can easily be hidden by adopting the following strategy: if b′

3 occurs as the first
transition we will match it against b1. Then in both systems ‘parallel b’ is the only
remaining behaviour, and b′

1 can safely be matched by b2. If we start out with b′
1 we will

match it against b1. Then the a-transition is disabled in both systems, and this time it will
be safe to match b′

3 by b2. On the other hand, a bijection between the prime components
of A and those of B can clearly not be found.

A1 A2

BA

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b′
1 b′

3 b′
2a′b1 b2a

Fig. 1. The transitions of A and B are labelled as their names suggest: e.g. l(b′
1) = b. A consists

of two prime components: A1 and A2; B has only one prime component: B itself

A and B are not (c)hhp bisimilar: at (b1b2, b
′
1b

′
3) we can backtrack (b1, b

′
1); then

the a-transition becomes available in A but not in B. In Section 7 we will briefly
discuss whether (c)hhp bisimilarity may be decomposable with respect to prime de-
compositions. Here we want to analyse whether there are conditions under which we
do obtain decomposition for hp bisimilarity; this is important with respect to establish-
ing coincidence results. We will find that, on systems whose prime components are,
what we shall call, concurrent step connected (csc), hp, and also hhp and chhp, bisim-
ilarity are indeed decomposable with respect to prime decompositions: whenever two
csc-decomposable systems are hp (hhp, chhp) bisimilar then there is a one-to-one corre-
spondence between their prime components such that related components are hp (hhp,
chhp) bisimilar.

We start out by explaining two special types of runs, which will play a key role in
the proof. A run r is a concurrent step iff all the transitions on r occur independently of
each other. A run r is maximal with respect to initial concurrency iff whenever a further
transition t is executed at r, t will occur causally dependent on some transition on r.



Composition and Decomposition in True-Concurrency 341

Definition 5. Let S be a system, and r ∈ Runs(S).
r is a concurrent step of S, written r ∈ csteps(S), iff we have:

∀k, l ∈ [1, |r|]. (k 	= l ⇒ r[k] IS r[l]).
r is maximal with respect to initial concurrency, written r ∈ icmax (S), iff we have:

∀t ∈ TS . (rt ∈ Runs(S) ⇒ ∃i ∈ [1, |r|]. i <rt |rt|).
Clearly, in pairs of synchronous runs, and hence in hp bisimilarity, concurrent steps

are always matched against concurrent steps.

Fact 1. Let S1 and S2 be two systems. For all (r1, r2) ∈ SRuns(S1, S2) we have:
r1 ∈ csteps(S1) ⇐⇒ r2 ∈ csteps(S2).

With the concept ‘maximal with respect to initial concurrency’ it is easy to identify
a scenario which, given two decomposed systems (S1,D1), (S2,D2), allows us to infer
that two components c1 ∈ D1, c2 ∈ D2 are hp (hhp, chhp) bisimilar:

Lemma 1. Let x ∈ {hp, hhp, chhp}; let (S1,D1), (S2,D2) be two decomposed sys-
tems. For any pair c1 ∈ D1, c2 ∈ D2 we have: if there exists (r1, r2) ∈ ∼x such that for

i = 1, and 2
{

ci 	∈ Ks(ri), and
∀c′

i ∈ Di\ci. ri ↑c′
i ∈ icmax (c′

i)

}
then c1 ∼x c2.

Proof (Sketch). Given entities as above, we can extract a hp (hhp, chhp) bisimulation
relating c1 and c2 from any hp (hhp, chhp) bisimulation containing (r1, r2). This is so
because: (1) the full behaviour of c1 and c2 has still to be matched at (r1, r2), and (2) the
causal dependencies will force that behaviour of c1 has to be matched against behaviour
of c2, and vice versa.

From the example of Figure 1 it is clear that, given two hp bisimilar systems, we
may never be in a position to apply this lemma. A and B are hp bisimilar but there
is no (r1, r2) ∈ ∼hp such that, via Lemma 1, we can deduce c1 ∼hp c2 for any
c1 ∈ PComps(A), c2 ∈ PComps(B): if B, the only prime component of B, is not
contained in Ks(r1) then (r1, r2) = (ε, ε); but we neither have ε ∈ icmax (A1) nor
ε ∈ icmax (A2).

The scenario of Lemma 1 will, however, certainly be available if for the system class
under study we can show: the matching in hp bisimilarity respects prime components
in that: let (r1, r2) ∈ ∼hp; if, in (r1, r2), a transition of prime component c1 is matched
to a transition of prime component c2, then, in (r1, r2), any other transition of c1 is
also matched to a transition of c2, and vice versa. Then, given (r1, r2) ∈ ∼hp, r1 is
‘maximal with respect to initial concurrency’ for all but one prime component c1 such
that c1 	∈ Ks(r1) iff the analogue is true for r2. On second thought, to guarantee the
applicability of Lemma 1 it is sufficient to obtain that the matching of concurrent steps
(rather than the matching of all runs) respects prime components: concurrent steps can
be seen as the minimum to consider when we want to achieve maximality with respect
to initial concurrency.

We now identify a system class, as large as intuitively possible, which naturally
satisfies this criteria: csc-decomposable systems. They have the following characteristic:
each of their prime components is cstep connected (csc) in that: whenever we have
computed a concurrent step r and we compute one further concurrently enabled transition
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t then there is the possibility of computing a sequence of transitions w such that the last
transition of w is causally dependent on t and some transition of r. In short we may say:
every concurrent step has a causal link with any further concurrently enabled transition.

Definition 6. Let S be a system.
Let r ∈ Runs(S), and k, l ∈ [1, |r|]. w ∈ T+

S is a causal link at r between the events k
and l, denoted by w ∈ clinksS(r, k, l), iff we have:

rw ∈ Runs(S) & k <rw |rw| & l <rw |rw|.
S is cstep connected (csc) iff for all r ∈ csteps(S) with |r| ≥ 1 we have:

∀t ∈ TS . (rt ∈ csteps(S) ⇒ ∃k ∈ [1, |r|]. ∃w ∈ T+
S . w ∈ clinksS(rt, k, |rt|)).

S is csc-decomposable iff every prime component of S is csc. (Note that non-empty csc
systems are always prime.)

Example 1. Consider Figure 1. B is not csc: we can do b′
1, and then b′

3, but there is no

causal link between b′
1 and b′

3. Sequential systems (¬(∃s, s′, t, t′. t IS t′ & s
tt′
→S s′)),

such as A1 and A2, and initially sequential systems (∀r ∈ csteps(S). |r| ≤ 1) are
trivially csc.

Lemma 2. Let S1 and S2 be two csc-decomposable systems. For all (r1, r2) ∈ ∼hp

such that ri ∈ csteps(Si) for i = 1, or 2 equivalently (Fact 1), we have:
∀k, l ∈ [1, |r1|]. (K(r1[k]) = K(r1[l]) ⇐⇒ K(r2[k]) = K(r2[l])).

Proof (Sketch). We proceed by induction on the length of two related concurrent steps.
Let (r1, r2) be given as above. Assume, in (r1, r2), a transition of prime component
c1 is matched to a transition of prime component c2, and we want to match a further
concurrently enabled c1-transition, t1. There will be a causal link at r1t1 between event
|r1t1| and one of the previously matched c1-events. By induction hypothesis we can
assume these are all matched by c2-events. But then t1 has to be matched by a c2-
transition: otherwise the causal link could not be matched in a partial order preserving
fashion.

It is routine to derive the following corollaries:

Corollary 1. Let S1 and S2 be two csc-decomposable systems.

1. For all (r1, r2) ∈ ∼hp such that ri ∈ csteps(Si) for i = 1, or 2 equivalently
(Fact 1), we have: |Ks(r1)| = |Ks(r2)|.

2. If S1 ∼hp S2 then |PComps(S1)| = |PComps(S2)|.

Corollary 2. Let S1 and S2 be two csc-decomposable systems, and let (r1, r2) ∈ ∼hp

such that ri ∈ csteps(Si) for i = 1, or 2 equivalently (Fact 1). For any pair of compo-
nents c1 ∈ PComps(S1), c2 ∈ PComps(S2) such that K(r1[k]) = c1 and K(r2[k]) =
c2 for some k ∈ [1, |r1|] we have: r1 ↑c1 ∈ icmax (c1) ⇐⇒ r2 ↑c2 ∈ icmax (c2).

For hhp and chhp bisimilarity there is now a simple argument that proves, for csc-
decomposable systems, the two bisimilarities are indeed decomposable with respect to
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prime decompositions (c.f. [20]). This argument relies on backtracking; considering hp
bisimilarity it is only obvious that, given two csc-decomposable systems S1, S2 with
S1 ∼hp S2, a bijection between PComps(S1) and PComps(S2) exists, and further, for
each c1 ∈ PComps(S1) there is c2 ∈ PComps(S2) such that c1 ∼hp c2, and vice versa.
To prove decomposition for hp bisimilarity we need something more sophisticated: the
combinatorial argument of Hall’s Marriage Theorem (e.g. see [24]).

Theorem 4. Let x ∈ {hp, hhp, chhp}; let S1, S2 be two csc-decomposable systems.
If S1 ∼x S2 then there exists a bijection β : PComps(S1) → PComps(S2) between
the prime components of S1 and those of S2 such that c1 ∼x β(c1) for each c1 ∈
PComps(S1).

Proof. Let x, S1, S2 be given as above, and assume S1 ∼x S2. We shall prove that
a bijection β exists as required. By Corollary 1(2) we have (A) |PComps(S1)| =
|PComps(S2)|, and it only remains to show that an injective map can be found. For
each c1 ∈ PComps(S1) let C2c1

be the set of prime components of S2 which are
x bisimilar to c1. By Hall’s Marriage Theorem the required injection exists if and only
if the following condition is fulfilled:

(∗) ∀C1 ⊆ PComps(S1). |
⋃

c1∈C1

C2c1
| ≥ |C1|.

Choose an arbitrary subset C1 of PComps(S1). Let C̄1 = PComps(S1)\C1, and
consider r1 ∈ csteps(S1) such that (B) Ks(r1) = C̄1, and ∀c1 ∈ C̄1. r1 ↑ c1 ∈
icmax (c1); this is clearly possible. There must be r2 such that (r1, r2) ∈ ∼x; set
C̄2 = Ks(r2), and C2 = PComps(S2)\C̄2. By Corollary 2 we obtain ∀c2 ∈ C̄2. r2 ↑
c2 ∈ icmax (c2). On the other hand, (B) and Corollary 1(1) give us |C̄1| = |C̄2|, and
considering (A) we gain (C) |C1| = |C2|. Next we show that for each remaining com-
ponent c2 ∈ C2 there is a component c1 ∈ C1 such that c1 ∼x c2. With (C) this will
immediately establish | ⋃

c1∈C1

C2c1
| ≥ |C1|, and thereby (∗).

Assume C2 is non-empty, and choose any c2 ∈ C2. Consider r′
2 such that r2r

′
2 ∈

csteps(S2), Ks(r′
2) = C2\c2, and ∀c′

2 ∈ C2\c2. r′
2 ↑ c′

2 ∈ icmax (c′
2); this is clearly

possible. Note that altogether we have (D) Ks(r2r
′
2) = PComps(S2)\c2, and ∀c′

2 ∈
PComps(S2)\c2. r2r

′
2 ↑ c′

2 ∈ icmax (c′
2). There must be r′

1 such that (r1r
′
1, r2r

′
2) ∈

∼x. Corollary 1(1) gives us |Ks(r1r
′
1)| = |Ks(r2r

′
2)|, and by (D), (A), and (B) this

implies Ks(r1r
′
1) = PComps(S1)\c1 for some c1 ∈ C1. By Corollary 2 we obtain

∀c′
1 ∈ PComps(S1)\c1. r1r

′
1 ↑c′

1 ∈ icmax (c′
1). But altogether this means we can apply

Lemma 1 to infer c1 ∼x c2. Thus, c1 provides a component exactly as required.

6 Coincidence Results

We now apply our composition and decomposition theory to prove several coincidence
results on hp, hhp, and chhp bisimilarity. First of all, our theory gives us a general proof
technique: whenever we consider whether (any two of) the three equivalences coincide
for a class of csc-decomposable systems, we can restrict our attention to the respective
class of prime components. This is immediate by the following argument:
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Argument 1. Assume two csc-decomposable systems S1 and S2 that are hp bisimilar.
By Theorem 4(hp) we obtain a bijection between the prime components of S1 and those
of S2 such that related components are hp bisimilar. Then, provided that hp, hhp, and
chhp bisimilarity coincide for the class of the prime components, by Theorem 3(chhp)
we can conclude that S1 and S2 are chhp (and thus also hhp) bisimilar.

It is folklore that for sequential systems hp, hhp, and chhp bisimilarity all coincide
with classical bisimilarity (e.g. see [13]). Furthermore, we have already mentioned that
sequential systems are csc. Then, with the previous argument we obtain:

Theorem 5. Hp, hhp, and chhp bisimilarity coincide for parallel compositions of se-
quential systems. (Formally, a parallel composition of sequential systems is a system
which can be decomposed into sequential components.)

Consider the following generalization of the class ‘parallel compositions of sequen-
tial systems’: each system S is a parallel composition of initially sequential components
such that each component may, by performing a transition, fork into a parallel compo-
sition of initially sequential sub-components, each of which may in turn evolve into a
parallel composition of initially sequential sub-components, and so on; this description
is complete in that we do not allow any communication between parallel threads. This
system class is best known as, and most conveniently captured by, communication-free
net systems3. (Formally, a net system N is communication-free iff ∀t ∈ TN . |•t| = 1.)

If a communication-free net system S is concurrency-degree bounded in that the
smallest upper bound on the number of transitions that can be concurrently enabled in S
with respect to any state, cbound(S), is given by a natural number, then, for each proper
component c of S, cbound(c) will be strictly smaller than cbound(S). With Argument 1
we then obtain coincidence for concurrency-degree bounded communication-free net
systems by induction on cbound(S).

Definition 7. Let S be a system. The smallest upper bound on the number of transitions
that can be concurrently enabled in S with respect to any state, cbound(S), is defined by
max{cboundS(s) | s ∈ SS}. S is councurrency-degree bounded iff cbound(S) ∈ IN0.

Theorem 6. Two councurrency-degree bounded communication-free net systems are hp
bisimilar iff they are hhp bisimilar iff they are chhp bisimilar.

By translating Argument 1 into a tableau system, we achieve coincidence for simple
basic parallel processes (SBPP). These can be interpreted as an orthogonal class of
communication-free net systems3: we lift the restriction to concurrency-degree bounded
systems, but require our systems to be finitely representable. Following [7], SBPP
are defined by process expressions of the grammar: E ::= S | E ||E, where ‘||’
is parallel composition and S is an initially sequential process expression given by:
S ::= 0 | a.E | S + S | X , where 0 is the empty process, a.E, where a ∈ Act , is action
prefix, ‘+’ is nondeterministic choice, and X is an ‘initially sequential process’variable.
Every SBPP can effectively be transformed into a chhp bisimilar SBPP in normal form.

3 As their unfoldings communication-free net systems also capture the class of communication-
free weighted Petri nets.
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Definition 8. Let Vars = {X1, X2, . . .} be a set of process variables, and Vars⊗ =
{α, β, . . .} the set of finite multisets over Vars . We identify α = {X, X, Y } with the
parallel composition X ||X ||Y ; the empty multiset is recognized as the process 0.
A SBPP in normal form is a pair E = (E0, ∆E), where E0 ∈ Vars⊗, and ∆E is a
finite family of recursive equations {Xi := Ei | 1 ≤ i ≤ m}. The Xi are distinct, and
the Ei are of the form: a1.α1 + a2.α2 + . . . + an.αn, where n ≥ 1, and ∀i ∈ [1, n].
αi ∈ Vars⊗. Further, ∀i ∈ [0, m], Ei at most contains the variables {X1, . . . , Xm}.

Theorem 7. Two SBPP are hp bisimilar iff they are hhp bisimilar iff they are chhp
bisimilar.

Proof (Sketch). The tableau proof system of Figure 2 gives rise to a decision procedure
that decides whether two SBPP in normal form are hp bisimilar, and at the same time,
whether they are chhp bisimilar. Rule Match provides matching for initially sequential
processes; rule Decomp reflects our decomposition theory, and provides the means to
reduce pairs of processes to check into smaller pairs of processes to compare. Theo-
rem 4(hp) implies forward soundness of Decomp for hp bisimilarity, Theorem 3(chhp)
gives us backwards soundness of Decomp for chhp bisimilarity. Finiteness, complete-
ness for hp bisimilarity, and soundness for chhp bisimilarity of the tableau system can
then be proved by using the standard arguments.

Rec
X = Y

E = F
where (X := E) ∈ ∆E , (Y := F ) ∈ ∆F

Match

∑n
i=1 ai.αi =

∑m
j=1 bj .βj

{αi = βf(i)}n
i=1 {αg(j) = βj}m

j=1

where f : [1, n] → [1, m], g : [1, m] → [1, n] are functions such that
∀i ∈ [1, n]. ai = bf(i), and similarly for g.

Decomp
α = β

{X = Y }(X,Y )∈b

where b : α → β is a bijection (relating variable instances).

A node n is a successful terminal iff A node n is an unsuccessful terminal iff

n: 0 = 0, or n: α = β, and a bijection b as required by rule
Decomp does not exist, or

n: X = Y , and there is a node na: X = Y
above n in the tableau.

n:
∑n

i=1 ai.αi =
∑m

j=1 bj .βj , and f and g as
required by rule Match do not exist.

Fig. 2. A tableau system with respect to two SBPP in normal form E and F

7 Conclusions

There are further applications of our decomposition theory. In analogy to Argument 1
decidability of hp (hhp, chhp) bisimilarity on a class of finite-state csc-decomposable
systems reduces to decidability on the respective class of prime components (recall The-
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orem 2). Further, if a system is specified in terms of csc components, our decomposition
theory is profitable with respect to tackling the state explosion problem: we do not need
to check hp (hhp, chhp) bisimilarity on the global state space but we can proceed by
checking the respective equivalence on pairs of components.

One might speculate that (c)hhp bisimilarity is decomposable with respect to prime
decompositions for systems in general: with the help of backtracking one might be able
to prove a general version of Lemma 2; though this may be hard, or at least technically
tedious, to carry through. Furthermore, as pointed out to me by Lasota, in the formulation
of a general version of Lemma 2 and the decomposition theorem, one will have to address
the issue of (c)hhp bisimilar choices: let P = (P1 ||P2) + (P1 ||P2) and Q = P1 ||P2;
clearly P ∼(c)hhp Q but since P is prime there is no bijection between the prime
components of P and those of Q.

It is, of course, also possible to investigate whether a truly-concurrent equivalence
satisfies the unique decomposition property usually investigated in the interleaving set-
ting. (Given some class of process terms, is each of them uniquely, up to the equiv-
alence, represented as a parallel composition of primes?) Indeed, unique decompo-
sition with respect to distributed bisimilarity has been proved for BPP [25]. Note,
however, that decomposition in this sense is not sufficient to establish the results of
Section 6.

We hope this paper motivates the particular significance of composition and de-
composition for true-concurrency: decomposition characteristics of a system class may
translate into truly-concurrent equivalences or logics in a very concrete way, and thereby
lead us to decision procedures and/or coincidence results. In this spirit, the ideas of the
paper can be taken further: one could investigate whether a similar approach is possible
with respect to temporal logics, and, orthogonally, whether our decomposition theory
can be generalized by integrating a concept of synchronization. Indeed, the latter idea
stands behind the result that (c)hhp bisimilarity is decidable for a class of live free-
choice systems [13]. This is so far the only positive result on hhp bisimilarity for a
class that admits a flexible form of synchronization. ([26] presents that hhp bisimilar-
ity is decidable for trace-labelled systems but the proof turned out to be incomplete
[15].)
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