
Foundations of Web Transactions

Cosimo Laneve and Gianluigi Zavattaro

Department of Computer Science,
University of Bologna, Italy

Abstract. A timed extension of π-calculus with a transaction construct
– the calculus Webπ – is studied. The underlying model of Webπ relies on
networks of processes; time proceeds asynchronously at the network level,
while it is constrained by the local urgency at the process level. Namely
process reductions cannot be delayed to favour idle steps. The exten-
sional model – the timed bisimilarity – copes with time and asynchrony
in a different way with respect to previous proposals. In particular,
the discriminating power of timed bisimilarity is weaker when local ur-
gency is dropped. A labelled characterization of timed bisimilarity is also
discussed.

1 Introduction

Web Services technologies intend to provide standard mechanisms for describing
the interface and the services available on the web, as well as protocols for lo-
cating such services and invoking them (see e.g. WSDL [9] and UDDI [16]). To
describe interfaces, services, and protocols new web programming languages, the
so-called orchestration and choreography languages, are currently investigated.
Examples of these languages are Microsoft XLANG [17] and its visual environ-
ment BizTalk, IBM WSFL [13], BPEL [2], WS-CDL [12], and WSCI [12].

Most of the web programming languages also include the notion of web trans-
action, as a unit of work involving activities that may last long periods of time.
These transactions, being orthogonal to administrative domains, have the typi-
cal atomicity and isolation properties relaxed, and instead of assuming a perfect
roll-back in case of failure, support the explicit programming of the compensa-
tion activity.

Despite of the great interest for web transactions, the Web Services com-
munity has not reached a common agreement on a unique notion of this form
of transaction. The paper [14] gives a valuable critical comparison among three
transaction protocols: BTP, WS-C/T, and WS-CAF. Other few papers (we are
aware of), that discuss the formal semantics of compensable activities in this
context, rely on specific proposals: the work [8] is mainly inspired by XLANG,
the calculus of Butler and Ferreira [7] is inspired by BPBeans, the πt-calculus [5]
considers BizTalk, the work [6] deals with short-lived transactions in BizTalk.

In this paper we follow a rather different and radical approach: we define a
calculus of web transactions – the calculus Webπ – that is independent of the
different proposals discussed above and that allows to grab (we hope) the key

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 282–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Foundations of Web Transactions 283

concepts. Three major aspects are considered in Webπ: interruptible processes,
failure handlers that are activated when the main process is interrupted, and
time. Time has been considered because it is fundamental for dealing with the
typical latency of web activities or with message losses. For instance, in ticketing
services of airplane companies, the services should cancel reservations that are
not confirmed within a certain period of time. Since Webπ is an extension of
π-calculus, and the latter is emerging as one of the referring models for Web
Services orchestration and choreography (it has inspired the design of languages
such as XLANG and WS-CDL), we trust that the mathematical underpinnings
of Webπ are digestible by the web service community.

The underlying model of Webπ includes machines and processes. The formers
define networks; the latters define the computational content of locations of the
networks. A location is a uniprocessor machine, written [P]x̃, with its own
clock that is not synchronized with the clock of other locations (time progresses
asynchronously between different locations). Namely, if M and N are locations,
then progress of the compound machine is defined by the rule

M → M′

M |N → M′ |N
(1)

Names x̃ in [P]x̃ indicate that the location is responsible for accepting messages
on such names (a name always indexes a unique location). We assume that,
within a location, operations cannot be delayed in favour of idle operations –
this property is called local urgency. For example, consider two processes running
on the same location: a printer process of a warning message with a timeout
and an idle process waiting for an external event. Local urgency means that,
if the external event doesn’t occur, then the printer process cannot be delayed.
Said otherwise, the time may elapse in a location either because the process
inside progresses or because no progress is possible. These two alternatives are
respectively defined by the rules

P → Q

[P]x̃ → [Q]x̃

P �→

[P]x̃ → [φ(P)]x̃

where φ is a function making the time elapse of one unit. In particular, the
rightmost rule permits the elapsing of one time unit only in the case when no
computational step is possible inside a machine.

Processes extend the asynchronous π-calculus with transactions 〈|P ; Q|〉n
x ,

where P and Q are the body and the compensation, respectively, n indicates
the deadline, and x is the name of the transaction. The body of a transaction
executes either until termination or until the transaction fails. On failure, the
compensation is activated. A transaction may fail in two different ways, either
explicitly (when the abort message x is consumed, where x is the name of the
transaction to be aborted) or implicitly (when the deadline is reached). The
deadline may be reached either because of computational steps of the body or
because of computational steps of processes in parallel. Assuming that every
step costs one time slot, these two alternatives are defined by the rules

284 C. Laneve and G. Zavattaro

P → P ′

〈|P ; Q|〉n+1
x → 〈|P ′ ; Q|〉n

x

P → P ′

P |Q → P ′ |φ(Q)

Comparing the last rule and rule (1), we obtain a model for Webπ that is locally
synchronous and globally asynchronous.

Regarding time, we have been influenced by the work of Berger and Honda
about π-calculus with timers [4, 3]. A timer process timern(P, Q) behaves like
P , but triggers Q if P does not move within n time units. Transactions have
a rather different behaviour: in 〈|P ; Q|〉n

x the process Q may be activated pro-
vided the execution of P is not terminated. Transactions have two interruption
mechanisms: one associated to timeouts (as for the timers); the other is explicit
– the abort message. Additionally, the model of time in [4, 3] is different from
the one considered here. Berger and Honda have a rule

P → φ(P)

that allows the time elapse even if P may progress. In Webπ this rule is restricted
to locations [P]x̃, where it is reasonable to verify P �→ since P collect all the
entities competing for the location processor.

The calculus Webπ is initially equipped with a reduction semantics, consist-
ing of a reduction relation and a barbed bisimulation. The reduction relation
defines reductions that take one unit of time. The barbed bisimulation, called
timed bisimilarity, is sensible to the number of internal moves (it is a strong
equivalence). Timed bisimilarity is also sensible to local urgency: its discrimi-
nating power of timed bisimilarity is weaker when local urgency is dropped.

In order to support direct proofs of equality, Webπ is also equipped with a
labelled semantics. In particular, we define a labelled transition system and con-
sider the standard notion of asynchronous bisimulation [1] that admits inputs
to be also mimicked by internal moves. It turns out that asynchronous bisimu-
lation is not a congruence because it is not substitution and time closed (this
is the same as in [3]) and it is not closed by a property checking whether a
process manifests an input that is not underneath a transaction. When asyn-
chronous bisimulation is appropriately closed, the resulting equivalence, called
labelled time bisimilarity, is equal to time bisimilarity when the discriminating
power of contexts is augmented with the match operator.

The paper is structured as follows. For the sake of presentation, we sepa-
rate processes and machines. The syntax and the reduction relation of Webπ
processes and machines are respectively defined in Sections 2 and 5. Section 3
introduces timed bisimilarity and demonstrates that the discriminating power of
timed bisimilarity is weaker when local urgency is dropped. Section 4 defines the
labelled semantics, the corresponding congruence relation, and its relationship
with timed bisimilarity. Section 6 draws some conclusive remarks.

Foundations of Web Transactions 285

2 The Calculus Webπ

The syntax relies on countable sets of names, ranged over by x, y, z, u, · · ·. Tuples
of names are written ũ. Natural numbers {0, 1, 2, 3, · · ·} or ∞ are ranged over by
n, m, · · ·. The syntax of Webπ defines processes P .

P ::= 0 | x ũ | x(ũ).P | (x)P | P |P | !x(ũ).P | 〈|P ; P |〉n
x

A process can be the inert process 0, a message x ũ sent on a name x that
carries a tuple of names ũ, an input x(ũ).P that consumes a message x w̃ and
behaves like P{w̃/ũ}, a restriction (x)P that behaves as P except that inputs and
messages on x are prohibited, a parallel composition of processes, a replicated
input !x(ũ).P that consumes a message x w̃ and behaves like P{w̃/ũ} | !x(ũ).P ,
or a (web) transaction 〈|P ; Q|〉n

x that behaves as the body P except that, if
the body does not terminate, the compensation Q is triggered after n steps or
because of a transaction abort message x . The label n, called the time stamp of
the transaction, is a natural number or ∞. The timeless transaction 〈|P ; Q|〉x

is an abbreviation for 〈|P ; Q|〉∞
x , and we assume that ∞ + 1 = ∞. It is possible

to write out-of-time transactions 〈|P ; Q|〉0x: the semantics (in particular, the
structural congruence) will simplify these processes on-the-fly. It is worth to
notice that the syntax of Webπ processes extends the asynchronous π-calculus
with the transaction process.

The input x(ũ).P , restriction (x)P , and replicated input !x(ũ).P are binders
of names ũ, x, and ũ, respectively. The scope of these binders are the processes P .
We use the standard notions of α-equivalence, free and bound names of processes,
noted fn(P), bn(P), respectively. In particular,

– fn(〈|P ; Q|〉n
x) = fn(P)∪fn(Q)∪{x} and α-equivalence equates (x)(〈|P ; Q|〉n

x)
with (z)(〈|P{z/x} ; Q{z/x}|〉n

z) provided z �∈ fn(〈|P ; Q|〉n
x);

In the following we let
∏

i∈I Pi be the parallel composition of the processes
Pi. We also let τ.P be the process (z)(z | z().P) where z �∈ fn(P).

Remark 1. 1. The process 〈|P ; Q|〉n
x is intended to define a “web” transaction

(the keyword “web” is always omitted in the following). It has not to be
confused with “database” transactions, which usually grant atomicity and
isolation properties. These two properties are usually not retained by trans-
actional activities over the web.

2. An high-level programming language using Webπ transactions should neglect
names marking transactions, such as x in 〈|P ; Q|〉n

x . Our insight is that these
names are process identifiers of transactions, therefore they are dynamically
generated by the run-time support of the language. This design choice may
be easily implemented by using a distinguished name called this. Then pro-
grammers may write 〈|P ; Q|〉n, which means (this)(〈|P ; Q|〉n

this). A further
consequence of this insight is that two different transactions always bear dif-
ferent names marking them. Even if we conform with this intuition in every
example, we purposely do not enforce in Webπ a discipline for the use of
names marking transactions.

286 C. Laneve and G. Zavattaro

2.1 The Reduction Relation

Following the tradition of π-calculus [15], the reduction relation of Webπ is defined
by using a structural congruence that equates all agents one never wants to
distinguish.

Definition 1. The structural congruence ≡ is the least congruence closed with
respect to α-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity, and 0 as identity), and the following axioms:

1. the scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P)

〈|(z)P ; Q|〉n
x ≡ (z)〈|P ; Q|〉n

x , if z �∈ {x} ∪ fn(Q)
〈|P ; (z)Q|〉0x ≡ (z)〈|P ; Q|〉0x , if z �∈ {x} ∪ fn(P)

2. the repetition law:
!x(ũ).P ≡ x(ũ).P | !x(ũ).P

3. the transaction laws:

〈|0 ; Q|〉n
x ≡ 0

〈|〈|P ; Q|〉n
y |R ; R′|〉m

x ≡ 〈|P ; Q|〉n
y | 〈|R ; R′|〉m

x

4. the floating laws:

〈|z ũ |P ; Q|〉n
x ≡ z ũ | 〈|P ; Q|〉n

x

〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x
The scope laws and the repetition law are standard; let us discuss the trans-
action and floating laws that are unusual. The law 〈|0 ; Q|〉n

x ≡ 0 defines com-
mitted transactions, namely transactions with 0 as body. These transactions,
being committed, are equivalent to 0 and, therefore, cannot fail anymore. The
law 〈|〈|P ; Q|〉n

y |R ; R′|〉m
x ≡ 〈|P ; Q|〉n

y | 〈|R ; R′|〉m
x moves transactions outside

parent transactions, thus flattening the nesting of transactions. Notwithstand-
ing this flattening, parent transactions may still affect children transactions by
means of transaction names. The law 〈|z ũ |P ; R|〉n

x ≡ z ũ | 〈|P ; R|〉n
x floats mes-

sages outside transactions, thus modelling the fact that messages are particles
that independently move towards their inputs. The intended semantics is the
following. If a process emits a message, this message traverses the surround-
ing transaction boundaries, until it reaches the corresponding input. The law
〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x models floatings of messages
from compensations of out-of-time transactions whose bodies contain an input
guarded process (failed transactions, see below).

The dynamic behaviour of processes is defined by the reduction relation. The
main technical difficulty of this notion is time elapsing. In web models, time of
different machines does not progress synchronously. Therefore we assume that
each machine of the network has its own clock that is not synchronized with other

Foundations of Web Transactions 287

clocks. On the contrary, all the processes running in the same location, compete
for the same processor time. This competition is modelled in Webπ by assuming
that every reduction costs one time slot. Henceforth, when a subprocess performs
a reduction, the flow of time is communicated to all the competing processes.
This “flow of time” communication is a formal expedient for describing the
elapse of one time slot without defining any machine clock. Should we have used
a machine clock, as it happens in practice for running processes, then the time
stamps of transactions could have been replaced with an absolute clock time that
is compared with the machine clock when the transaction thread is executed.

The operation of decreasing by 1 the time stamps of active transactions on
the same machine is modelled by the time stepper function below, that adapts
the corresponding function in [4] to Webπ. The definitions of this function and
another auxiliary function are in order:

input predicate inp(P): this predicate verifies whether a process contains an
input that is not underneath a transaction. It is the least relations such that:

inp(x(ũ).P)
inp((x)P) if inp(P)
inp(P |Q) if inp(P) or inp(Q)
inp(!x(ũ).P)

time stepper function φ(P): this function decreases the time stamps by 1.
For the missing cases, φ(P) = P .

φ((x)P) = (x)φ(P)
φ(P |Q) = φ(P) |φ(Q)

φ(〈|P ; R|〉0x) =
{ 〈|φ(P) ; φ(R)|〉0x if inp(P)

〈|φ(P) ; R|〉0x otherwise
φ(〈|P ; R|〉n+1

x) = 〈|φ(P) ; R|〉n
x

The stepper function is defined by induction on the syntax. The critical processes
are the out-of-time transactions 〈|P ; R|〉0x. In this case, the input predicate
is used to verify whether (a) the body P contains input-guarded processes or
(b) not. In (a) the compensation is active, and the time must elapse for the
transactions therein (and for transactions inside the body). In (b), since inp(P)
is false, the time only elapses for the transactions inside the body. In fact, this
definition is sound provided the time stepper function does not modify the input
predicate and preserves structural congruence. For example, if inp(P) is false
then 〈|P ; R|〉0x ≡ P , and since φ(〈|P ; R|〉0x) = 〈|φ(P) ; R|〉0x, we must verify that
〈|φ(P) ; R|〉0x is structurally congruent to φ(P). This is actually the case, as a
consequence of the following proposition.

Proposition 1. 1. inp(P) if and only if inp(φ(P)).
2. P ≡ Q implies inp(P) = inp(Q) and φ(P) ≡ φ(Q).

The input predicate permits the formal definitions of failed and commited
transactions.

288 C. Laneve and G. Zavattaro

Definition 2. A transaction 〈|P ; Q|〉0x is failed if inp(P) is true; it is commit-
ted if inp(P) is false.

We observe that a failed transaction 〈|P ; Q|〉0x may be always rewritten into a
structurally congruent process (z̃)〈|y(ũ).P ′ |P ′′ ; Q|〉0x, for some z̃, y, ũ, P ′, and
P ′′. This “canonical form” has been used in the second floating law and is used
in the definition of the following reduction relation.

Definition 3. The reduction relation → is the least relation satisfying the re-
ductions:

(com)

x ṽ |x(ũ).P → P{ṽ/ũ}
(fail)

x | 〈|z(ũ).P |Q ; R|〉n+1
x → 〈|z(ũ).P |φ(Q) ; R|〉0x

and closed under ≡, (x)-, and the rules:

P → Q

P |R → Q |φ(R)

P → Q

〈|P ; R|〉n+1
x → 〈|Q ; R|〉n

x

P → Q

〈|y(ṽ).R |R′ ; P |〉0x
→ 〈|y(ṽ).R |φ(R′) ; Q|〉0x

Rule (com) is standard in process calculi and models the input-output inter-
action. Rule (fail) models transaction failures: when a transaction abort (a
message on a transaction name) is emitted, the corresponding transaction is ter-
minated by turning the time stamp to 0, thus activating the compensation (see
the last inference rule). On the contrary, aborts are not possible if the transac-
tion is already terminated, namely every input-guarded process in the body has
completed its own work (this is never the case if the body contains replicated
inputs). The inference rules lift reductions to parallel and transaction contexts,
updating them because a time slot is elapsed.

In order to clarify the semantics, the reductions of few sample processes are
reported. The process

z |x | 〈|x().0 ; y |〉n
z

has the following two computations (n > 0):

z |x | 〈|x().0 ; y |〉n
z ≡ x | z | 〈|x().0 ; y |〉n

z

→ x | 〈|x().0 ; y |〉0z by (fail) and parallel closure
≡ x | y | 〈|x().0 ; 0|〉0z

z |x | 〈|x().0 ; y |〉n
z → z | 〈|0 ; y |〉n−1

z by (com) and parallel closure
≡ z

In the first computation, the message x is not consumed because the body of the
transaction is cancelled on transaction failure. In the second one, the message y
cannot be produced because the compensation process is garbage collected on
transaction commit.

Foundations of Web Transactions 289

Consider now the process P = (z, z′)(x | 〈|x().0 ; y |〉1z | 〈|x().0 ; y |〉1z′). It
evolves as follows

P ≡ (z, z′) (〈|x |x().0 ; y |〉1z | 〈|x().0 ; y |〉1z′)
→ (z, z′)〈|x().0 ; y |〉0z′ by (comm), restriction and transaction closure

and in a similar way, but with z instead of z′. We remark that the process
Q = x | x().y has a similar behaviour. However the processes φ(P) and φ(Q)
have different behaviours. In particular φ(P) ≡ x | y | y , while φ(Q) = Q.

In Webπ it is easy to delay a process P of n steps. To this aim, let x �∈ fn(P)
then

(x)〈|x().0 ; P |〉n
x

behaves like 0 for n time units, and evolves to P afterwards.
It is worth to notice that the reduction relation of processes does not define

the dynamics of temporarily blocked transactions as the one above. Indeed, by
definition (x)〈|x().0 ; P |〉n

x �→ if n > 0. This sloppiness is due to the fact that
the process reduction is defined in a compositional way and therefore cannot
express the absence of a reduction, which is a global property of the processor
running the process. One solution to this problem is to introduce a rule like
P → φ(P) in [4]. However this solution is at odd with local urgency: it states
that a machine (processor) may idle, even if there are some actions that can
be performed. We prefer to keep the present reduction (intensional) semantics
and to stick to an extensional semantics that is a congruence, thus defining the
meaning of a process when it is plugged in any possible context.

3 Timed Bisimilarity

The extensional semantics of Webπ – the timed bisimilarity – relies on the notions
of barb and contexts. A process P has a barb x, and write P ↓ x, if P manifests
an output on the free name x. Formally:

x ũ ↓ x
(z)P ↓ x if P ↓ x and x �= z

(P |Q) ↓ x if P ↓ x or Q ↓ x

〈|P ; R|〉0z ↓ x if P ↓ x or (inp(P) and R ↓ x)
〈|P ; R|〉n+1

z ↓ x if P ↓ x

Therefore inputs (both simple and replicated) have no barb. This is standard in
asynchronous calculi: an observer has no direct way of knowing if the message
he has sent has been received.

Context processes, noted C[·], are defined by the following grammar:

C[·] ::= [·] | x(ũ).C[·] | (x)C[·] | C[·]|P | !x(ũ).C[·]
| 〈|C[·] ; P |〉n

x | 〈|P ; C[·]|〉n
x

290 C. Laneve and G. Zavattaro

Definition 4. A timed barbed bisimulation S is a symmetric relation between
processes such that P S Q implies

1. if P ↓ x then Q ↓ x;
2. if P → P ′ then Q → Q′ and P ′ S Q′;

Timed bisimilarity, denoted with ∼t, is the largest timed barbed bisimulation that
is also a congruence.

As an illustration of timed bisimilar processes we discuss few examples. The
following identity adapts an equation of asynchronous bisimilarity [1] to Webπ,
thus suggesting that timed bisimilarity is asynchronous:

〈|x(u).x u | τ.0 ; P |〉1z ∼t 〈|τ.(v)v().0 ; P |〉1z
It is worth to notice that 0 �∼t x(u).x u. For instance the context C[·] =

(z)([·] |x w | 〈|x(u).0 ; v |〉1z) separates the two processes. Due to local urgency,
the transaction z cannot fail in C[0] (thus the message v cannot be produced),
while it can fail in C[x(ũ).x ũ] (thus activating the compensation v).

Timed bisimilarity may be inferred by considering only a subset of contexts
and applying substitutions.

Lemma 1. (Context Lemma) Let timed-prime bisimilarity, in notation ∼′
t, be

the largest timed barbed bisimulation such that if P ∼′
t Q then, for every R, x,

n, S, w̃, z̃: 〈|P{w̃/z̃} ; R|〉n
x |S ∼′

t 〈|Q{w̃/z̃} ; R|〉n
x |S. Then ∼t=∼′

t.

It is worth to notice that the corresponding lemma about π-calculus reduces
contexts to those whose shape is [·]{ũ/ṽ} |R.

We conclude this section by demonstrating that the discriminating power of
∼t is weaker when local urgency is dropped. To this aim, we consider a new
reduction relation of processes denoted with →φ defined by augmenting Defini-
tion 3 (where →φ is substituted for →) with the idle rule:

(idle)

P →φ φ(P)

The (idle) rule allows time to pass asynchronously even when other reduc-
tions are possible. Let ∼idle

t be defined as ∼t considering the reduction rela-
tion →φ instead of →. Then (x)x().0 ∼idle

t (x)x().0 | z().z while (x)x().0 �∼t

(x)x().0 | z().z . However a model of time similar to (idle) can be simulated
with the local urgency assumption. It sufficies to put in the context a process
always able to perform internal synchronizations; thus letting the time to pass.

Proposition 2. P ∼t Q implies P ∼idle
t Q.

Proof. (Sketch) Let τ∗ be the process (x)(x | !x().x). An easy check gives that,
for every P , P →φ Q if and only if τ∗ |P → τ∗ |Q. The proposition follows
directly by this property. ��

Foundations of Web Transactions 291

4 The Labelled Semantics

Even if the context lemma restricts the shape of contexts for inferring timed
bisimilarity, direct proofs remain particularly difficult. A standard device to
avoid such quantification consists of introducing a labelled operational model
and equipping it with an (asynchronous) bisimulation.

Let µ range over input labels
�
x(ũ) and

◦
x(ũ), bound output labels (z̃)x ũ

where z̃ ⊆ ũ, and
�
τ and

◦
τ . Let � range over {�, ◦}; we define

◦
�
x(ũ) =

◦
x(ũ),

◦
(z̃)x ũ= (z̃)x ũ, and

◦
�
τ=

◦
τ . Let also fn(

�
τ) = ∅, fn(

�
x(ũ)) = {x}, fn(x ũ) = {x}∪ ũ,

and fn((z̃)x ũ) = {x}∪ũ\z̃. Finally, let bn(µ) be z̃ if µ = (z̃)x ũ, be ũ if µ =
�
x(ũ),

and be ∅, otherwise. We implicitly identify terms up to α-renaming ≡α: that is,
if P ≡α Q and Q

µ−→ P ′ then P
µ−→ P ′.

Definition 5. The transition relation of Webπ processes, noted
µ−→, is the least

relation satisfying the rules:

(in)

x(ũ).P
�
x(ũ)−→ P

(out)

x ũ
x ũ−→ 0

(res)

P
µ−→ Q x �∈ fn(µ)

(x)P
µ−→ (x)Q

(open)

P
(ṽ)x ũ−→ Q w �= x w ∈ ũ\ṽ

(w)P
(wṽ)x ũ−→ Q

(par)

P
µ−→ Q bn(µ) ∩ fn(R) = ∅

P |R µ−→ Q |φ(R)
(com)

P
(w̃)x ṽ−→ P ′ Q

�
x(ũ)−→ Q′ w̃ ∩ fn(Q) = ∅

P |Q
�
τ−→ (w̃)(P ′ |Q′{ṽ/ũ})

(repin)

!x(ũ).P
�
x(ũ)−→ P | !x(ũ).P

(abort)

〈|P ; R|〉n+1
x

◦
x()−→ 〈|P ; R|〉0x

(self)

P
x−→ Q

〈|P ; R|〉n+1
x

◦
τ−→ 〈|Q ; R|〉0x

(trans)

P
µ−→ Q

bn(µ) ∩ (fn(R) ∪ {x}) = ∅

〈|P ; R|〉n+1
x

◦
µ−→ 〈|Q ; R|〉n

x
(trans-b)

P
◦
µ−→ Q

bn(
◦
µ) ∩ (fn(R) ∪ {x}) = ∅ inp(P)

〈|P ; R|〉0x
◦
µ−→ 〈|Q ; φ(R)|〉0x

(trans-c)

P
◦
µ−→ Q

bn(
◦
µ) ∩ (fn(R) ∪ {x}) = ∅ ¬inp(P)

〈|P ; R|〉0x
◦
µ−→ 〈|Q ; R|〉0x

(trans-f)

R
µ−→ R′ bn(µ) ∩ (fn(P) ∪ {x}) = ∅ inp(P)

〈|P ; R|〉0x
◦
µ−→ 〈|φ(P) ; R′|〉0x

The transitions of P |Q have mirror cases that have been omitted.

292 C. Laneve and G. Zavattaro

The first seven rules are almost standard in π-calculus. Exceptions are (repli-
cated) inputs whose transitions are labelled with

�
x(ũ), and rule (par) that uses

the time stepper function. The symbol � is used to mark input transitions that
are not underneath a transaction. These transitions must be blocked if they are
due to bodies of failed transactions. Transitions that are underneath transac-
tions are marked with a ◦ symbol: see rule (trans). These transitions are never
blocked: see rules (trans-b) and (trans-c). We discuss the other rules. Rule
(abort) models transaction termination due to an abort message. It amounts
to turning the time stamp to 0. We remark that abort is not possible if the time
stamp is already 0. The label is marked with ◦ because the transition is assumed
to be underneath a transaction. Rule (self) is similar to (abort), taking into
account the case when the abort message is raised by the body of the trans-
action. Rule (trans) lifts transitions to transaction contexts and decreases the
transaction time stamp because a transition of the body is going to occur. This
rule applies also to outputs transitions, thus looking at odd with the reduction
relation, where messages are moved outside transaction bodies by means of a
structural rule. Actually this is only apparent: in the reduction relation, the
decreasing of the time stamp is performed by the contextual rules for parallel
composition (by φ) or for transactions. Rules (trans-b) and (trans-c) lift tran-
sitions of bodies of transactions to out-of-time transaction contexts. According

to this rule output transitions are always enabled because
◦

(z̃)x ũ= (z̃)x ũ. On
the contrary, input and τ transitions are enabled provided they are underneath
not failed transaction contexts. The two rules separate the cases whether the
compensation is active or not. Rule (trans-f) lifts transitions of compensations
to failed transaction contexts. We observe that the transition in the conclusion
is labelled with a ◦. This means that the transition cannot be blocked by an
external failed transaction boundary.

The following statement guarantees that transitions in the bodies of failed
transactions preserve the input predicate. If this was not the case, a committed
transaction could become failed, thus enabling transitions of the compensation.

Proposition 3. If P
◦
µ−→ Q and inp(P) then inp(Q).

We are now in place for formalizing a correspondence result between the
labelled and the reduction semantics.

Proposition 4. Let P be a Webπ process. Then

1. P ↓ v if and only if P
(z̃)v ũ−→ , for some z̃ and ũ;

2. P
�
τ−→ Q implies P → Q;

3. P → Q implies there is R such that R ≡ Q and P
�
τ−→ R.

The labelled bisimulation that we consider recalls the asynchronous bisimu-
lation [1] for processes. In the following definition �, • range over {�, ◦}

Foundations of Web Transactions 293

Definition 6. An asynchronous bisimulation is a symmetric binary relation S
between processes such that PSQ implies

1. if P
�
τ−→ P ′ then Q

•
τ−→ Q′ and P ′SQ′,

2. if P
(ṽ)x ũ−→ P ′ and ṽ ∩ fn(Q) = ∅, then Q

(ṽ)x ũ−→ Q′ and P ′SQ′;

3. if P
�
x(ũ)−→ P ′ and ũ ∩ fn(Q) = ∅, then

(a) either Q
•
x(ũ)−→ Q′ and P ′SQ′,

(b) or Q
•
τ−→ Q′ and P ′S(Q′ |x ũ).

Asynchronous bisimilarity, in notation ∼a, is the largest asynchronous bisimu-
lation.

The item 3 of the definition of asynchronous bisimulation allows to match an
input transition with a τ transition. This item permits to equate the following
processes, that have been already discussed in the previous Section:

〈|x(u).x u | τ.0 ; P |〉1z ∼a 〈|τ.(v)v().0 ; P |〉1z

Remark 2. Our approach is different from [3]. Berger uses a standard bisimu-
lation definition on a transition system extended with the Honda-Tokoro rule

0
x(ũ)−→ x ũ [11]. On the contrary, we stick to the approach in [1], where a slightly

modified bisimulation (with the item 3.(b)) is applied to a standard transition
system.

Asynchronous bisimulation equates structurally congruent processes:

Proposition 5. P ≡ Q implies P ∼a Q.

In contrast with asynchronous π-calculus, ∼a is not a congruence for Webπ
because it is not closed with respect to input, parallel composition, and transac-
tion contexts. This may be remedied by appropriately closing the equivalence.
With respect to [3], where closures regarded substitutions and time, we also need
to close by the input predicate.

Definition 7. A binary relation R over processes is

– substitution-closed if P RQ implies, for every substitution σ, Pσ RQσ;
– time-closed if P RQ implies φ(P) Rφ(Q);
– input-predicate-closed if P RQ implies inp(P) = inp(Q).

These are counterexamples showing that the asynchronous bisimulation ∼a

is neither substitution-closed, nor time-closed, nor input-predicate-closed.

1. As regards substitution closure, we adapt a counterexample in [3]. Let

P
def
= (a)(x a | !y(u).u)

Q
def
= (a)(x a | !y(u).u | (z)〈|y(u).(u | a().b) ; 0|〉2z)

294 C. Laneve and G. Zavattaro

We have that P ∼a Q but P{y/x} �∼a Q{y/x} because Q{y/x} may produce
the message b while this is not the case for P{y/x}. The main difference
between this counterexample and the one reported in [3] is that we do not
exploit nesting of transactions. The equivalence result between P and Q relies
on the fact that, in general, !y(u).u | (z)〈|y(u).(u |x(ṽ).P) ; 0|〉1z) ∼a!y(u).u
and (a)(x a) ∼a (a)(x a | (z)〈|a().b ; 0|〉1z).

2. As regards time closure, we adapt another counterexample in [3]. Let

P
def
= (z)〈|τ.x ; 0|〉1z

Q
def
= (z)〈|τ.τ.0 ; x |〉1z

then P ∼a Q but φ(P) �∼a φ(Q) because φ(Q) x−→ and φ(P) cannot.
3. As regards input-predicate closure, let

P
def
= 0

Q
def
= (z)z()

then P ∼a Q and inp(P) �= inp(Q). Since inp(P) is different from inp(Q),
it is possible to separate P and Q by using contexts such as 〈|[·] ; y |〉0x.

Definition 8. Labelled timed bisimilarity, in notation �a, is the greatest asyn-
chronous bisimulation contained into ∼a that is also substitution-closed, time-
closed, and input-predicate closed.

Lemma 2. �a is a congruence.

We are now in place to report the correspondence result between the labelled
timed bisimilarity and the timed bisimulation congruence.

Proposition 6. P �a Q implies P ∼t Q.

Proof. By Proposition 4, �a is a timed barbed bisimulation, and by Lemma 2
it is also a congruence. The statement follows because ∼t is the largest one. ��

The converse implication of Proposition 6 also holds in the asynchronous
π-calculus (with strong semantics) [10]. The technique shows that if P ∼t Q
then the bisimulation game between P and Q of �a holds (the closures of the
definition of �a hold easily). This is obtained by means of small contexts checking
that bound outputs of P and Q are the same up-to alpha-equivalence. These
contexts disappear after few steps (namely, if P

µ−→ P ′ then C[P] τ−→ · · · τ−→
P ′). Unfortunately, this technique applies badly to Webπ because such “checking
steps” make the time elapse in P and Q. Namely, if P

µ−→ P ′ then C[P] τ−→
· · · τ−→ φn(P ′), for some n (rather than n = 0). Since we are missing a direct
proof (even if we conjecture the equality �a=∼t), we use an alternative, weaker
technique that has been proposed for the weak asynchronous bisimulation [1].

Foundations of Web Transactions 295

Let us extend the Webπ syntax with the rule:

P ::= · · · | [x = y]P

A match process [x = y]P executes P provided x is equal to y. Let [xi = yi]i∈IP
be the sequence of name matches [xi = yi] followed by the process P . The
semantics of name match is defined by the structural congruence rule

[x = x]P ≡ P .

Let also inp([x = x]P) = inp(P). Finally, let ∼t,M be the largest timed barbed
bisimulation that is a congruence with respect to contexts in Webπ extended with
the name match (namely C[·] ::= · · · | [x = y]C[·]). It is easy to demonstrate
that �a⊆∼t,M⊆∼t (the first containment is proved with arguments similar to
Proposition 6).

Lemma 3. If P ∼t,M Q then P �a Q.

Proof. It is easy to verify that ∼t,M is substitution-closed, timed-closed, and
input-predicate-closed. We demonstrate that, for any move P

µ−→ P ′, there

exist contexts C[·] such that C[P] ∼t,M C[Q] implies Q
µ′

−→ Q′ and one of the
items 1 – 3 of Definition 6 is satisfied. We report only the two most significant
cases. Let �, • ∈ {◦, �}.

P
�
x(ũ)−→ P ′. We consider the context C[·] = x ũ | [·]. Then C[P] → P ′. As P ∼t,M Q
then C[P] ∼t,M C[Q], and there is Q′ such that C[Q] → Q′ and P ′ ∼t,M Q′.

There are two cases, either Q
•
x(ũ)−→ Q′ (thus the item 3.(a) of the Definition 6

is satisfied) or Q
•
τ−→ Q′′ and P ′ ∼t,M Q′′ |x ũ (thus the item 3.(b) of the

Definition 6 is satisfied).

P
(ṽ)x ũ−→ P ′. Let ũ = u1 . . . un. Let also F = {i | ui /∈ ṽ}, B = {i | ui ∈ ṽ},
E = {(i, j) | i < j and ui = uj and ui, uj ∈ B}, D = {(i, j) | i < j and ui �=
uj and ui, uj ∈ B}. Consider the context

Cµ[·] = x(z1 . . . zn).(
∏

i∈F [zi = ui]ai | ∏
i∈B,u∈fn(P)∪fn(Q)[zi = u]bi,u

| ∏
(i,j)∈E [zi = zj]ci | ∏

(i,j)∈D[zi = zj]di) | [·]

where all the names ai, bi,u, ci, di are fresh and pairwise different. Then
Cµ[P] → P ′′ ∼t,M

∏
i∈H ei |P ′, where ei are a subset of labels of ai, bi,u, ci, di.

As P ∼t,M Q are timed bisimilar, then also Cµ[Q] → Q′′ where P ′′ ∼t,M

Q′′. By definition of C[·], it must be the case that Q′′ ∼t,M

∏
i∈fi ei |Q′,

for some Q′ and Q
(ṽ)x ũ−→ Q′. An easy reasoning permits to state that, if

d �∈ fn(R) ∪ fn(R′), then d |R ∼t,M d |R′ if and only if R ∼t,M R′. Ap-
plying this result we conclude that P ′ ∼t,M Q′ (thus the item 2. of the
Definition 6 is satisfied). ��

296 C. Laneve and G. Zavattaro

5 Machines

In this section we study the syntax and the reduction relation of Webπ machines.
The extensional semantics is omitted in this contribution: a thorough analysis of
the extensional semantics for machines (and the induced equality on processes)
will be addressed in the full paper.

The syntax of machines M is defined by the following rules.

M ::= 0 | [P]x̃ | (x)M | M |M
A machine may be empty; a location [P]x̃ running the process P and accepting
all messages on names in the set x̃; a machine (x)M with local name x; or a
network of locations. The symbols 0 and | are overloaded because they also
denote the empty and parallel processes, respectively; the actual meaning is
made clear from the context. The index x̃ in the location [P]x̃ indicates a set
x̃, even if it is denoted with the same notation of tuples.

We assume that a name may index at most one machine. Formally, let
ln(M) be defined as ln(0) = ∅, ln([P]x̃) = x̃, ln((x)M) = ln(M) \ {x},
and ln(M |N) = ln(M) ∪ ln(N). Networks M |N are constrained to satisfy the
property ln(M) ∩ ln(N) = ∅.

The structural congruence ≡ is the least congruence closed with respect to
α-renaming, satisfying the abelian monoid laws for parallel (associativity, com-
mutativity and 0 as identity), and the following axioms:

1. the scope laws:

(u)0 ≡ 0, (x)(z)M ≡ (z)(x)M,
M | (x)N ≡ (x)(M |N) , if x �∈ fn(M)
[(x)P]z̃ ≡ (x)[P]z̃x , if x /∈ z̃

2. the lifting law:
[P]x̃ ≡ [Q]x̃ , if P ≡ Q

The first three scope laws are standard. The last one is used to extrude a name
outside a machine; the effect is that the extruded name is added to the set of
the names on which the machine is the receptor. The lifting law lifts to machines
the structural congruence defined on processes.

The reduction relation for machines is the least relation closed under ≡, (x)-,
and parallel composition, and satisfying the reductions:

(intra)
P → Q

[P]x̃ → [Q]x̃

(time)
P �→

[P]x̃ → [φ(P)]x̃

(deliv)

[x ṽ |P]z̃ |[Q]ỹx

→ [P]z̃ |[x ṽ |Q]ỹx

As a consequence of the closure under parallel composition, time progress asyn-
chronously between machines. Namely, if M → M′ then also M |N → M′ |N. In
particular, the time of N does not elapse. Rule (intra) lifts the local reductions
to the machine. Rule (time) reflects our approach for modeling the time. In par-
ticular, as local computations are urgent, this rule permits the elapsing of one

Foundations of Web Transactions 297

time unit – the application of φ – only in the case when no internal computa-
tion is possible inside a machine. Rule (deliv) delivers a message to the unique
machine having x in the index. This rule does not consume time both in the
sender and in the receiver machines. This does not mean that communication
takes no time. Delays of deliveries follow from asynchrony between machines and
nondeterminism of reductions due to (deliv). Alternatively, one could extend
the syntax of machines by adding messages in parallel with machines and replac-
ing (deliv) with two rules: one putting a message outside the sender machine,
the other actually delivering the message to the receiver machine. The present
solution has been preferred for simplicity.

It is worth to notice that, in the present model, a message may be either
consumed in the same machine in which it has been produced (see rule (com)
in the reduction relation of processes) or delivered to another machine in the
network (the unique responsible for accepting that message). This appears a
bit counterintuitive: a machine that is not responsible to accept messages on a
given name may actually consume messages that have been produced locally.
In fact, in practice this scenario never occurs. If a machine defines a name x
and exports it to other machines, then the machines receiving x may use it
with output capability only. Since Webπ processes are unrestricted, the present
reduction relation of machines results a conservative extension of the practical
scenario.

6 Conclusions

We have studied Webπ, a process calculus extending the asynchronous π-calculus
with a timed transaction construct. The main theoretical contribution of this
paper is the investigation of the extensional semantics of Webπ, the timed bisim-
ilarity, and of its labelled counterpart.

A number of issues have been overlooked. We retain that the following twos
are particularly significant to judge the benefits of Webπ. First of all, Webπ has
been motivated by the need of assessing the proposals of web programming lan-
guages. It will be foundational if it is possible to translate these proposals in
Webπ, in particular the transactional protocols that are defined therein. The
techniques developed in this paper will be necessary for comparing the trans-
lations. The next step is therefore the translation in Webπ of some emerging
technology, such as BPEL.

The second issue has a theoretical flavour. The identity of ∼t and �a has
been only conjectured because we were not able to provide a direct proof. To
measure the discriminating power of �a, we have introduced an operator that
is able to perform several tests and emit a message in one step. This expedient
appears useless when machines are used because it is possible to delegate a
different location to perform the tests and emit the message (the time spent by
a location for a computation has no effect on the time of other locations). While
this remark does not help in solving our conjecture, it prompts the investigation
of the extensional semantics of machines.

298 C. Laneve and G. Zavattaro

References

1. R. M. Amadio, I. Castellani, and S. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

2. T. Andrews and et.al. Business Process Execution Language for Web Services.
Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG,
Siebel Systems, 2003.

3. M. Berger. Basic theory of reduction congruence for two timed asynchronous
π-calculi. In CONCUR ’04: Proceedings of the 15th International Conference on
Concurrency Theory, volume 3170 of LNCS, pages 115–130. Springer-Verlag, 2004.

4. M. Berger and K. Honda. The two-phase commitment protocol in an extended
pi-calculus. In EXPRESS ’00: Proceedings of the 7th International Workshop on
Expressiveness in Concurrency, volume 39.1 of ENTCS. Elsevier Science Publish-
ers, 2000.

5. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions.
In FMOODS’03, Proceedings of the 6th IFIP International Conference on Formal
Methods for Open Object-based Distributed Systems, volume 2884 of LNCS, pages
124–138. Springer-Verlag, 2003.

6. R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join cal-
culus. In CONCUR 2002: Proceedings of the 13th International Conference on
Concurrency Theory, volume 2421 of LNCS, pages 321–337. Springer Verlag, 2002.

7. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In COORDINATION’04, Proceed-
ings of the 6th International Conference on Coordination Models and Languages,
volume 2949 of LNCS, pages 87–104. Springer-Verlag, 2004.

8. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In Proceedings of 25 Years of CSP, London, 2004.

9. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL 1.1). W3C Note, 2001.

10. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi.
In ICALP ’98, Proceedings of the 25th International Colloquium on Automata,
Languages, and Programming, volume 1443 of LNCS, pages 844–855. Springer-
Verlag, 1998.

11. K. Honda and M. Tokoro. On asynchronous communication semantics. In Proceed-
ings of Object-Based Concurrent Computing (ECOOP ’91), volume 612 of LNCS,
pages 21–52. Springer Verlag, 1992.

12. N. Kavantzas, G. Olsson, J. Mischkinsky, and M. Chapman. Web Services Chore-
ography Description Languages. Oracle Corporation, 2003.

13. F. Leymann. Web Services Flow Language (wsfl 1.0). Technical report, IBM
Software Group, 2001.

14. M. Little. Web services transactions: Past, present and future. Proceedings of the
XML Conference and Exposition, Philadelphia, USA, 2003.

15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992.

16. OASIS. Introduction to UDDI: Important features and functional concepts. Or-
ganization for the Advancement of Structured Information Standards, 2004.

17. S. Thatte. XLANG: Web services for business process design. Microsoft Corpora-
tion, 2001.

	Introduction
	The Calculus Webπ
	Timed Bisimilarity
	The Labelled Semantics
	Machines
	Conclusions

