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Abstract. We show how parallel composition of higher-dimensional au-
tomata (HDA) can be expressed categorically in the spirit of Winskel
& Nielsen. Employing the notion of computation path introduced by
van Glabbeek, we define a new notion of bisimulation of HDA using open
maps. We derive a connection between computation paths and carrier se-
quences of dipaths and show that bisimilarity of HDA can be decided by
the use of geometric techniques.
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1 Introduction

In his invited talk at the 2004 EXPRESS workshop, van Glabbeek [IT] put higher-
dimensional automata (HDA) on top of a hierarchy of models for concurrency.
In this article we develop a categorical framework for expressing constructions
on HDA, building on work by Goubault in [12}[13].

Following up on a concluding remark in [I3], we introduce a notion of bisim-
ulation of HDA, both as a relation and using open maps [19]. Our notion differs
from the ones introduced by van Glabbeek [I0] and Cattani-Sassone [4].

Employing recent developments by Fajstrup [§], we show that bisimilarity of
HDA is equivalent to a certain dipath-lifting property, which can be attacked
using (directed) homotopy techniques. This confirms a prediction from [I3].

Due to space limitations, we had to omit some of the more technical points
in this paper. An extended version is published in [6].

The author is indebted to Eric Goubault and Emmanuel Haucourt for many
valuable discussions during his visit at CEA in Paris, and to Lisbeth Fajstrup
and Martin Raussen at the Department of Mathematical Sciences in Aalborg.

2 Cubical Sets

Cubical sets were introduced by Serre in [22] and have a variety of applications
in algebraic topology, both in homology, cf. [20], and in homotopy theory, cf. [2,
[BL18]. Compared to the more well-known simplicial sets, they have the distinct
advantage that they have a natural sense of (local) direction induced by the order
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on the unit interval. This makes them well-suited for applications in concurrency
theory, cf. [9].

A precubical set is a graded set X = {X,, },,en together with mappings 5;'/(71) :
X, —Xn1,i=1,...,n,v=0,1, satisfying the precubical identity

0765 = 65187 (i <) (1)

These are called face maps, and if x = 61’-’11 e 61”:y for some cubes z, y and some
(possibly empty) sequences of indices, then x is called a face of y. If all v; = 0,
x is said to be a lower face of y; if all v; = 1, = is an upper face of y.

As above, we shall omit the subscript (n) in (5;’(n) whenever possible. Elements
of X, are called n-cubes.

A cubical set is a precubical set X together with mappings €;(,) : Xy, — Xp1,
i=1,...,n4+ 1, such that

61_161 (Z < .])
€i€j = €16 (i <) blej = Q€0 (i>]) (2)
id (i =)

These are called degeneracies, and equations ([Il) and [2]) together form the cubical
identities.

The standard example of a cubical set is the singular cubical complex of a
topological space, cf. [20]: If X is a topological space, let S, X = Top(I", X), the
set of all continuous maps I™ — X, where [ is the unit interval. If the maps 6}
and €; are given by

6";f(t1>"'atn71) :f(tla"'7ti717y7ti7---atnfl)
€if(te, .o ovtn) = flt1,. o tiy oo ytn)

(the notation #; means that ¢; is omitted) then SX = {S,, X} is a cubical set.

Morphisms of (pre)cubical sets are required to commute with the structure
maps, i.e. if X, Y are two (pre)cubical sets, then a morphism f : X — Y is
a sequence of mappings f = {f, : X,, — Y, } that fulfill the first, respectively
both, of the equations

6;jfn :fn—lég €ifn :fn+1€i

This defines two categories, pCub and Cub, both of which are presheaf cate-
gories over certain small categories of elementary cubes, cf. [I7], hence they are
Cartesian closed, complete, and cocomplete. The forgetful functor

Cub — pCub

has a left adjoint, providing us with a “free” functor in the opposite direction
which we shall denote F'.

A (pre)cubical set X = {X,,} is said to be k-dimensional if X,, = 0 for
n > k. The full subcategories of k-dimensional objects in our cubical categories
are denoted pCub” respectively Cub”. The free-forgetful adjunction above passes
to the k-dimensional categories.
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3 Product and Tensor Product

The product of two (pre)cubical sets is given by
(XXY),=X,xY,

with face maps and degeneracies defined component-wise. This is a product in
the categorical sense. A (pre)cubical relation between (pre)cubical sets X, Y is
a (pre)cubical subset of the product X x Y.

The tensor product of two precubical sets Z = X ® Y is given by

Zn= || XpxY,
ptg=n

with face maps

(6fw,y) (i <p)

,Y) € X, XY,
(w80 y) (zp+1) (Y EXexTy

i (z,y) = {

The category Cub inherits this tensor product, however some identifications
have to be made to get well-defined degeneracy maps, cf. [3]. The tensor product
of two cubical sets Z = X ® Y is then given by

= (U 5m0)
ptqg=n

where ~,, is the equivalence relation generated by, for all (z,y) € X, x Y,
r+s=mn—1,letting (e,112,y) ~n (x,€1y). If ®y denotes the equivalence class
of (z,y) € X, x Y, under ~,,, the face maps and degeneracies of Z are given by

Sfr@y  (i<p)
T®6 )y (i>p+1)

6T RY (t<p+1)
T®€_py (i=p+1)

5?(96@.1/):{ ei(x®y)={

4 Transition Systems

We shall construct our category of higher-dimensional automata as a special
arrow category in Cub. To warm up, we include a section on how transition sys-
tems can be understood as an arrow category in Cub', the category of digraphs.
Though our exposition differs considerably from the standard one, see e.g. [23],
the end result is basically the same.

A digraph is a 1-dimensional cubical set, i.e. a pair of sets (X1, Xo) together
with face maps 6°,6" : X1 — X( and a degeneracy mapping € = €1 : Xo — X1
such that 6% = é'e = id. Morphisms of digraphs (X1, Xo), (Y1,Yp) are thus
mappings f = (f1, fo) commuting with the face and degeneracy mappings. A
predigraph is a 1-dimensional precubical set. Note that we allow both loops and
multiple edges in our digraphs.
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The category of digraphs has a terminal object * consisting of a single vertex
and the degeneracy edge on that vertex. A transition system is a digraph which is
freely generated by a predigraph together with a specified initial point, hence the
category of transition systems is (x| F’ pCub1>7 the comma category of digraphs
freely generated by predigraphs under *. In the spirit of [23], passing from a
predigraph to the digraph freely generated by it means that we add idle loops
to each vertex, hence allowing for transition system morphisms which collapse
transitions.

As for labeling transition systems, we note that there is an isomorphism
between the category of finite sets and the full subcategory of pCub’ induced
by finite one-point predigraphs, given by mapping a finite set X' to the one-
point predigraph with edge set Y. Identifying finite sets with the digraphs freely
generated by their associated predigraphs, we define a labeled transition system
over X to be a digraph morphism A : (x| FpCub1> — Y which is induced by
a predigraph morphism. This last convention is to ensure that idle loops are
labeled with the idle label ex.

Say that a morphism A € Cub’ is non-contracting if Aa = ex implies a = e5%a
for all edges a, and note that if the source and target of \ are freely generated
by precubical sets, then A is non-contracting if and only if it is in the image of
the free functor pCub® — Cub®.

For morphisms between labeled transition systems we need to allow functions
that map labels to “nothing,” i.e. partial alphabet functions. The category of
finite sets with partial mappings is isomorphic to the full subcategory ¥ of Cu b
induced by digraphs freely generated by finite one-point predigraphs. Hence we
can define the category of labeled transition systems to be the non-contracting
comma-arrow category (x| FpCub! = Y), with objects pairs of morphisms—the
second one non-contracting

*— X = X

and morphisms pairs of arrows making the following square commute:

* *

| ]

X1 — X5

I

21—>22

We shall always visualise non-contracting morphisms by double arrows.

Note that our transition systems have the special feature that there can be
more than one transition with a given label between a pair of edges; in the
terminology of [23] they are not extensional. Except for that, our definition is in
accordance with the standards.

To express parallel composition of transition systems, we follow the approach
of [23] and use a combination of product, relabeling and restriction. In our con-
text, the product of two transition systems x — X; — Xy, * — Xy — X is the
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transition system x — X7 X X A, )1 x Yo, where the arrow A is given by the
universal property of the product Xy x X5. We note that, indeed, the product of
two one-point digraphs with edge sets X respectively X5 is again a one-point
digraph, with edge set

{(a,b), (a,ex), (ex,b) | a € Xq1,b € 3o}

One easily shows A to be non-contracting, and the so-defined product is in fact
the categorical product in the category <>|<¢Fp(:ub1 =3Y).

A relabeling of a transition system is a non-contracting alphabet morphism
under the identity, i.e. an arrow in (x | FpCub’ =Y) of the form

T —— %

—

Restriction of transition systems is defined using pullbacks; given a transition
system % — Xy — Y5 and a mapping o : Xy — Y5, we define the restriction of
X5 to Xy by the pullback

e

Xl ........... > X2

ElT)EQ

where the mapping * — 3; is uniquely determined as }'; is a one-point digraph.
It is not difficult to show that the so-defined morphism X; — X is in fact
non-contracting.

5 Higher-Dimensional Automata

The category Cub has a terminal object % consisting of a single point and all its
higher-dimensional degeneracies. The category of higher-dimensional automata
is the comma category (x| FpCub), with objects cubical sets freely generated by
precubical sets with a specified initial 0-cube.

For labeling HDA, we follow the approach laid out in [12,[13]. We assume
the finite set X of labels to be totally ordered and define a precubical set !X’
as follows: 15 = {x}, !X is the set of (not necessarily strictly) increasing
sequences of length n of elements of Y, and

65&7;)(3317"'axn) = ('Tla"'v'iiv"'7xn)
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Then we let !X be the free cubical set on !X,

Let 'Y be the full subcategory of Cub induced by the cubical sets |3 as above. We
show in [6] that !X, like the category ¥ in the preceding section, is isomorphic to the
category of finite sets and partial (and not necessarily order-preserving) mappings.

Define a morphism f : X — Y of cubical sets to be mon-contracting if
f(x) = 8% f(x) implies z = €60z for all z € X,,, n € N, i = 1,...,n. Note
again that if the cubical sets X, Y are freely generated by precubical sets, then
a morphism f : X — Y is non-contracting if and only if it is the image of a
precubical morphism under the free functor.

The category of labeled higher-dimensional automata is then defined to be
(¥ | FpCub = !¥), with objects * — X == ¥ and morphisms commutative
diagrams

¥ %

|

X1 — X»

I

1X) —— 12

Note that by this construction, the label of an n-cube is the ordered n-tuple of
the labels of all its 1-faces.

6 Constructions on HDA

As in [12], we replace the product of transition systems by the tensor product of

higher-dimensional automata. The tensor product of two HDA * — X, 2y 1
* — Xy - 155 is defined to be

*—>X1®X2>L®;t'21®|22

The following lemma, where X7 W X5 denotes the disjoint union of X and Xy
with the order induced by declaring X1 < X5, ensures that this in in fact a HDA:

Lemma 1. Given alphabets X1, X, then 1Y @ 1Yo = (X1 W Xy).

For relabeling HDA we use non-contracting morphisms under the identity,
and we note that if g is defined by the diagram

then non-contract ability of g follows from f and A being non-contracting.
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If we want to express the tensor product of two HDA * — X — !X, * —
Y — 1Yy with non-disjoint alphabets Xy, Y5, we can do so by following the
tensor product above with a relabeling !X ® 1Xy — (X U X5) induced by the
natural projection Xy WXy — X1UXs (which is not necessarily order-preserving).
This projection is a total alphabet morphism, hence the relabeling map is indeed
non-contracting.

For restrictions we again use pullbacks:

Proposition 1. Given a higher-dimensional automaton * — Xo — 135 and an
injective mapping !X — X5, then x — X7 — X1 as defined by the pullback
diagram

Hu
121 T> 15

s again a higher-dimensional automaton.

The arrow * — 131 is uniquely determined as !3; has only one cube in
dimension zero. We will need the injectivity of o later, to show that our to-be-
defined notion of bisimilarity is respected by restrictions.

7 Bisimulation

In this section we fix a labeling cubical set L and work in the non-contracting
double comma category (x| FpCubll L) of HDA over L. The morphisms

N/

in this category respect labelings, hence they are non-contracting themselves: If
f(z) = €6 f(x) for some z € X and some i, then A(z) = p(f(x)) = €69\ ()
and thus z = ¢;6{x.

A computation path, cf. [I0], in a precubical set X is a finite sequence (x1, ...,
x,,) of cubes of X such that for each k = 1,...,n — 1, either x;, = §Yzx11 or
Ty1 = O}y for some i. A computation path (z1,...,x,) is said to be acyclic
if there are no other relations between the z; than the ones above. A rooted
computation path in a HDA * —— X is a computation path (ix,...,x,), and a
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Tn

'
L
|
|
'
I
R N

ik

Fig. 1. An acyclic rooted computation path which ends in a 2-cube z,

cube z of the HDA is said to be reachable if there is a rooted computation path
(¢%,...,x). Figure [[lshows an example of an acyclic rooted computation path.

We say that a precubical set X is a computation path if there is a computa-
tion path (z1,...,x,) of cubes in X such that all other cubes in X are faces of
one of the x;, and similarly for acyclic computation paths. An elementary com-
putation step is an inclusion (z1,...,2,) < (T1,...,%Tn,Tnt1) of computation
paths.

Let CPath be the full subcategory of the category of HDA induced by the
acyclic rooted computation paths, then it is not difficult to see that any mor-
phism in CPath is a finite composite of elementary computation steps and iso-
morphisms.

Following the terminology of [19], we say that a morphism f : X — Y is
CPath-open if it has the right-lifting property with respect to morphisms in
CPath. That is, we require that for any morphism m : P — @ € CPath and any
commutative diagram as below, there exists a morphism 7 filling in the diagram

P—X

Q——Y

Lemma 2. A morphism f: X — Y is CPath-open if and only if it satisfies the
property that for any reachable x € X and for any ' € Y such that f(z) = 692
for some i, there is a z € X such that x = 8%z and 2’ = f(2).

Following established terminology, this could be called a “higher-dimensional
zig-zag property.”

ThlS suggests the followmg definition of bisimulation of HDA: Given two HDA
 —ox A L, » - Y -2 L over the same alphabet, then a bisimulation
of X and Y is a cubical relation R C X x Y which respects initial states and
labelings, i.e. (ix, j*) € Ro, and if (z,y) € R then Az = py; and for all reachable
z € X,y €Y such that (z,y) € R,

— if x = )2z for some z, then y = §2 for some 2’ so that (z,2') € R
— if y = &Y%’ for some 2/, then x = 6%z for some z so that (z,2') € R

Note that bisimilarity is indeed an equivalence relation.
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Proposition 2. Two HDA'Y, Z are bisimilar if and only if there is a span of
CPath-open maps Y «— X — Z.

Note that when restricted to labeled transition systems, bisimulation of HDA
is equivalent to strong bisimulation [21], the only difference being that strong
bisimulation requires the existence of corresponding transitions, whereas HDA-
bisimulation actually specifies a correspondence.

8 Bisimulation Is a Congruence

We show that bisimulation is a congruence with respect to the constructions on
HDA introduced in Section[6l For relabelings this is clear, and for tensor product
we have the following lemma.

Lemma 3. Given CPath-open morphisms f € (x| FpCubll L), g € (x| FpCubl
LM), then f ® g € (x| FpCubll L ® M) is again CPath-open.

Hence if we have spans of CPath-open morphisms Y; S X, 572, LR

Xy 22, Zs, then Y1 ® Y5 and Z; ® Z5 are bisimilar via the span of CPath-open

morphisms Y] ® Yo 18/ X1 ® Xo 91892 Z1Q Zs.

Congruency of bisimilarity with respect to restriction is implied by the next
lemma.

Lemma 4. Given a CPath-open morphism f: X — Y € (x| FpCubll L) and
a mon-contracting injective morphism o : L' — L, then the unique morphism
f' X' =Y’ defined by the double pullback diagram

X/ ................................................ >X
r /
s
h
1o
N Y »Y N
» ”J
A~
L/T>L

1s again CPath-open.

Hence if Y, Z € (x| FpCub |l L) are bisimilar via a span of CPath-open maps
Y « X — Z, the above lemma yields a span of CPath-open maps Y’ «+— X' — 7’
of their restrictions to L'.

9 Geometric Realisation of Precubical Sets
We want to relate CPath-openness of a morphism of higher-dimensional au-

tomata to a geometric property of the underlying precubical sets. In order to do
that, we need to recall some of the technical apparatus developed in [9[8].
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The geometric realisation of a precubical set X is the topological space

X = | | Xnx[0,1"/ =

neN

where the equivalence relation = is induced by identifying
((‘52’3:, tl, ey tn—l) = (x;tl, e ,ti_l, v, tz’, e atn—l)

forallz € X,,, neN,i=1,...,n,v=0,1, t; € [0,1]. Geometric realisation is
turned into a functor from pCub to Top by mapping f : X — Y € pCub to the
function |f] : | X| — |Y| defined by

Ifl (x5t o otn) = (f(2)st1, ..oy tn)

This is similar to the well-known geometric realisation functor from simplicial
sets to topological spaces, cf. [1].

Given ¢z € X,, € X, we denote its image in the geometric realisation by
|z] = {(x;t1,...,t,) | t; € [0,1]} C |X]|. The carrier, carr z, of a point z € |X|
is z itself if z € Xj, or else the unique cube x € X such that z € int |z|, the
interior of |z|. The star of z is the open set

Stz = {z' € |X| | carrz<carrz’}

There is a natural order on the cubes [0,1]™ which is “forgotten” in the
transition pCub — Top. One can recover some of this structure by instead
defining functors from pCub to the d-spaces or the spaces with distinguished
cubes of M. Grandis [I4[15L[16], however here we take a different approach as
laid out in [9].

Given a precubical set X and z,y € X, we write x <y if x is a face of y. This
defines a preorder < on X. If = is a lower face of y we write z <~ y, if it is an
upper face we write z <t y. The precubical set X is said to be locally finite if
the set {y € X | z <y} is finite for all z € X.

Define a precubical set X to be non-selflinked if 6Yx = 6%z implies i = j,
v=ypforall z € X i,j € Ny, v,u € {0,1}. Note [0-Lemma 6.16]: If x <y
in a non-selflinked precubical set, then there are unique sequences vq,..., vy,
11 < --- < iy such that z = 6;’11 -~-6i”1fy.

The geometric realisation of a non-selflinked precubical set contains no self-
intersections; if (z,s1,...,8,) = (x,t1,...,t,), then s; = ¢; for all i = 1,... n.
By [9-Thm. 6.27], the geometric realisation of a non-selflinked precubical set is a
local po-space; a Hausdorff topological space with a relation < which is reflexive,
antisymmetric, and locally transitive, i.e. transitive in each U, for some collection
U = {U,} of open sets covering X . In our case, the relation < is induced by the
natural partial orders on the unit cubes [0, 1], and a covering U is given by the
stars St|x| of all vertices x € Xj.

A dimap between local po-spaces (X, <y), (Y, <y) is a continuous mapping
f X — Y which is locally increasing: for any x € X there is an open neighbour-
hood U > x such that for all z1 <x z2 € U, f(x1) <y f(x2). Local po-spaces
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and dimaps form a category IpoTop, and by [OFProp. 6.38], geometric realisation
is a functor from non-selflinked precubical sets to local po-spaces.

Let I denote the unit interval [0,1] with the natural (total) order, and define
a dipath in a local po-space (S, <) to be a dimap p : I — S. We recall [8-
Def. 2.17]: Given a locally finite precubical set X and a dipath p : I — |X|, then
there exists a partition of the unit interval 0 =¢; <.-- <311 = 1 and a unique
sequence xq,...,x; € X such that

— T #F Tip1

— 1 € [ti, ti41] implies p(t) € ||

— t € ]t;, tip1[ implies carrp(t) = x;
— carrp(t;) € {wj_1,2;}

The sequence (z1,...,x) is called the carrier sequence of the dipath p, and
we shall denote it by carrsp. It can be shown, cf. [8FLemma 3.2], that for all
i=2,...,n,either x;_1 <4~ x; or x; <T x;_1. Note that the definition in [§] makes
an extra assumption on X which, in fact, is not necessary. Figure [2] shows an
example of a carrier sequence.

'
o -
'
'
'
'

Fig. 2. A dipath and its carrier sequence

In general we call a sequence of cubes (1, . . ., x,) a carrier sequence if z; 1<~
x; or x; <7 x;_q for all i = 2,...,n. Note that computation paths are carrier
sequences, and conversely, that carrier sequences can be turned into computation
paths by adding in some intermediate cubes. The next lemma shows that any
carrier sequence actually is the carrier sequence of a dipath.

Lemma 5. Given a carrier sequence (1, ..., &) in a locally finite non-selflinked
precubical set X and z € int|xz,|, there exists a dipath p : I — |X| such that
carrsp = (x1,...,x,) and p(1) = z.

We can similarly fix z € int |z1] and get a dipath p with p(0) = z, but we
will only need the former case. We shall also need the following two technical
lemmas.

Lemma 6. Given locally finite non-selflinked precubical sets X, Y, a morphism
f: X =Y, and a dipath p : I — |X|, then carrs(|f| o p) = f(carrsp).

Note that, taking p to be a constant dipath, the lemma implies that carr | f|(z) =
f(carr z) for any z € | X]|.
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Lemma 7. Given locally finite non-selflinked precubical sets X, Y, a morphism
f:X =Y, adipathq: I — Y|, and a carrier sequence (x1,...,2,) in X such
that carrs ¢ = (f(21), - .., f(x2)), then there exists a dipath p : I — | X| such that
carrsp = (x1,...,2,) and g = |f| o p.

Note again the implication of the lemma for constant dipaths: If z € X
and 2’ € |Y| are such that carrz’ = f(x), then there exists z € |X| such that
carrz = x and 2’ = | f|(2).

10 Bisimulation and Dipaths

In this final section we again fix a labeling cubical set L and work in the cat-
egory of higher-dimensional automata over L. Recall that in this category, all
morphisms are non-contracting.

First we note the following stronger variant of Lemma [2] which follows by an
easy induction argument.

Lemma 8. A morphism f: X — Y is CPath-open if and only if it satisfies the
property that for any reachable x1 € X and for any computation path (y1,...,Yn)
in'Y with y1 = f(x1), there is a computation path (x1,...,2,) in X such that
yi = f(x;) foralli=1,...,n.

We call a HDA * —— X special if the cubical set X is freely generated
by a locally finite non-selflinked precubical set, and for the rest of this section
we assume our HDA to be special. Note that this is not a severe restriction:
Local finiteness is hardly an issue, and the requirement on a precubical set to
be non-selflinked is a natural one which is quite standard in algebraic topology,
cf. [IFDef. TV.21.1].

A point z € |X| in the geometric realisation of a HDA * —— X is said to be
reachable if there exists a dipath p : I — | X| with p(0) = |i*| and p(1) = 2. This
notion of “geometric” reachability is closely related to the one of computation
path reachability defined in Section [Tt

Proposition 3. A point z € | X| in the geometric realisation of a special HDA

% — X is reachable if and only if carr z is reachable.

We can now prove the main result of this article, linking bisimulation of HDA
with a dipath-lifting property of their geometric realisations:

Theorem 1. Given a morphism f : X — Y of two special HDA, then f
is CPath-open if and only if, for any reachable z € |X| and for any dipath
q: I — |Y]| such that q(0) = |f|(2), there is a dipath p : I — |X| filling in the
diagram
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(1X1,2)

» _,»'\{
e lu

(T,0) —— (Y1, 1£1(=))

In the special case that all cubes in X are reachable, we can identify z with
the mapping z : 0 — z € |X| and draw the above diagram in a more familiar
fashion as

0——|X]|

I '—q> 1Y
That is, a morphism f from a reachable special HDA X to a special HDA Y

is CPath-open if and only if its realisation has the right-lifting property with
respect to the inclusion 0 «— 1.

Proof. The morphism f is non-contracting, hence it is the image of a precubical
morphism, also denoted f, under the free functor. Assume first f to be CPath-
open, let z € |X| be reachable and ¢ : I — |Y| a dipath with ¢(0) = |f|(z).

Turn carrs g into a computation path (yi,...,yn). Let x1 = carrz, then z; is
reachable, and y; = carr |f|(2) = f(x1).
We can invoke Lemma B to get a computation path (z1,...,z,) in X such

that (y1,...,yn) = f(21,...,%,). Lemma [0 then provides a dipath p : I — |X]|
such that ¢ = |f| o p. The construction in the proof of Lemma [1l implies that
p(0) = 2.

For the other direction, assume |f| to have the dipath lifting property of the
theorem, let 1 € X be reachable, y; = f(z1) € Y, and let (y1,...,y,) be a
computation path in Y.

Let g : I — |Y| be the dipath associated with (y1,...,y») as given by
Lemma [l Then carr¢(0) = f(z1), thus we have z € |X| such that carrz =
and ¢(0) = |f|(z). By Proposition B] the point z is reachable, implying that we
have a dipath p : I — X such that ¢ = |flop and p(0) = z.

Let (21,...,z,) = carrsp, then y; = f(z;) by Lemma [Bl We show that

(1,...,2,) is actually a computation path; this will finish the proof. Assume
Ti <97 Xig1, Le. x; = (5;-)1 ---6?[xi+1 for some sequence of indices. Then y; =
6J0»1 e 6?2 Yit+1, but (y1,...,y,) is a computation path, hence as Y is non-selflinked,

the sequence of indices contains only one element j,, and z; = 6?£;1:i+1. Similar
arguments apply to the other case. a

11 Conclusion and Future Work

We have in this article introduced some synchronisation operations for higher-
dimensional automata, notably tensor product, relabeling, and restriction.
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Whether these operations capture the full flavour of HDA synchronisation re-
mains to be seen; some other primitives might be needed. Recent work by Woryt-
kiewicz [24]lsuggests some directions.

We have also defined a notion of bisimulation for HDA which is closely re-
lated to van Glabbeek’s [10] computation paths. The notion of bisimulation also
defined in [I0] appears to be weaker than ours, and their relation should be
worked out in detail.

The notions of computation paths defined in Cattani-Sassone’s [4] and in
[24] differ considerably from van Glabbeek’s, and as a consequence they arrive
at different concepts of bisimulation and even simulation. These differences need
to be worked out, and also the apparent similarities between [4] and [24].

We have shown that our notion of bisimulation has an interpretation as a
dipath-lifting property of morphisms, making the problem of deciding bisimilar-
ity susceptible to some machinery from algebraic topology. In topological lan-
guage, a dipath-lifting morphism is a weak kind of fibration, hinting that fibra-
tions (well-studied in algebraic topology) could have applications, as well. This
also suggests that a general theory of directed fibrations should be developed.

We believe that our bisimulation notion should be weakened, also taking
equivalence of computation paths [I0] into account. We plan to elaborate on
this in a future paper, and we conjecture that this bisimulation-up-to-equivalence
has a topological interpretation as a property of lifting dipaths up to directed
homotopy. This weaker bisimulation looks to be closely related to van Glabbeek’s,
and there appears to be a strong connection between his unfoldings of HDA and
directed coverings of local po-spaces [7].
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