BISIMULATOR: A Modular Tool for
On-the-Fly Equivalence Checking

Damien Bergamini, Nicolas Descoubes,
Christophe Joubert, and Radu Mateescu

INRIA Rhéne-Alpes/VAsy, 655, av. de 'Europe, 38330 Montbonnot St Martin, France
{Da.mien .Bergamini, Nicolas.Descoubes,
Christophe.Joubert, Radu.Mateescu}@inria.fr

1 Introduction

The equivalence checking problem consists in verifying that a system (e.g., a
protocol) matches its abstract specification (e.g., a service) by comparing their
Labeled Transition Systems (Lrss) modulo a given equivalence relation. Two
approaches are traditionally used to perform equivalence checking: global verifi-
cation requires to construct the two LTss before comparison, whereas local (or
on-the-fly) verification allows to explore them incrementally during comparison.
The latter approach is able to detect errors even in prohibitively large systems,
and therefore reveals more effective in combating state explosion.

Existing on-the-fly equivalence checking algorithms (see [2] for a survey) ex-
plore the synchronous product of the two LTSs in a forward manner, until either
a wrong execution pattern (counterexample) is encountered, or the product is
entirely explored (the LTss are equivalent). Despite their usefulness, only a few
implementations of these algorithms are available, most of them being targeted
to specific input languages and/or equivalence relations. This is the case for
ALDEBARAN [4], whose efficient on-the-fly algorithms [3] only handle networks
of communicating automata, being difficult to adapt to other description lan-
guages, such as process algebras. In this context, a more generic technology
is desirable in order to reduce the development effort, handle new equivalence
relations easily, and achieve a maximal reuse of existing algorithms.

In this paper, we present BISIMULATOR, an efficient on-the-fly equivalence
checker with a highly modular architecture, developed within the CADP veri-
fication toolbox [6]. The front-end of the tool encodes five widely-used equiv-
alence relations in terms of Boolean Equation Systems (BESs) by using the
OPEN/C#&SAR [0] and Bca environments of CADP, which provide powerful LTs
exploration primitives. This makes BISIMULATOR language-independent, the tool
being directly available for any description language equipped with a compiler
able to produce Lirss compliant with the OPEN/C&SAR interface. The back-end
of the tool carries out the verification by means of the generic CASAR_SOLVE [9]
library of CADP, dedicated to (both sequential and distributed) on-the-fly Bs
resolution and diagnostic generation. This architecture clearly separates the im-
plementation of equivalence relations and the verification engine, which can
therefore be extended and optimized independently.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 581-{585] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

582 D. Bergamini et al.

2 Tool Architecture

BISIMULATOR (see below) takes as inputs two LTSs (Q;, A;, T}, qo;) (i € {1,2}),
where @Q; are the sets of states, A; the sets of actions, T; C Q; X A; X Q; the
transition relations, and go; € @; the initial states. The first LTS is represented
implicitly (by its successor function) as an OPEN/CESAR program obtained by
translating a system description, and the second one is represented explicitly
(by its list of transitions) as a Bca fild]. BisimuLaTor (12,000 lines of C code)
consists of several modules, each one containing the BES translation and the di-
agnostic generation for a particular equivalence relation (strong, branching, ob-
servational, T7*.a, safety). BEss are derived directly from the definitions of equiv-
alence relations; for instance, strong equivalence is translated into the greatest
fixed point BEs {X, , = /\pip/ tiq/ Xpr g N /\qiq/ \/pi)p/ X, ¢}, where each
variable X, ; is true iff the states p € @1 and g € Q)2 are strongly equivalent.

Boa environment

S—
specification| . . . network of LTS.2 Boa
automata (service) library

(-bcg)
\ (lotos) ' (-exp) exploration
l« — — — — — — — _ _ |
CESAR Exp.OPEN g
| [_ ~N s &
/ RY=REEN N
s N 0] €|k | R
\ o0) o g s
Lrs: equivalence 5 = =
protocol 1 ™ encoding 25|z
(-¢) ! i
loration | <2
oo gxpomtion ! S
S—
caesar . .
= 3
|
E—— d i
caesar_solve [~ resolution _ 1agnostic |/
library [~--------71 Lw-| Interpretation |/
\ =
OPEN/CZSAR environment BISIMULATOR
] v

= :input/output Y/N Jeounter:
— — — - : provides example
(-bcg)

BESs are handled internally by the CESAR_SOLVE library as boolean
graphs [1], which give an intuitive view of the dependencies between variables
and facilitate the development of resolution algorithms. Boolean graphs are
represented implicitly by their successor function, in the same way as LTSs

! This asymmetry, due to the current architecture of OPEN/CmESAR, which does not
allow to explore several Lirss on-the-fly, is likely to disappear in a future version.

BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking 583

in OPEN/CESAR. The library offers several on-the-fly resolution algorithms,
based on different search strategies of boolean graphs: breadth-first, which pro-
duces small-depth diagnostics, and depth-first, with memory-efficient variants
for acyclic or disjunctive/conjunctive boolean graphs (these kinds of graphs are
obtained, e.g., by encoding comparison modulo strong equivalence when one LTS
is acyclic or deterministic, respectively) [9]. Diagnostics are provided by the li-
brary as boolean subgraphs, which are subsequently converted by BISIMULATOR
into counterexamples (directed acyclic graphs containing transition sequences
that can be executed simultaneously in the two LTss and lead to non equivalent
states) represented as Bca files.

Recently, CESAR_SOLVE has been extended with a distributed on-the-fly res-
olution algorithm [§] running on several machines connected by a network. This
allowed to immediately obtain a distributed version of BISIMULATOR, which
scales up smoothly to larger systems.

3 Performance Measures

We give below some experimental data obtained using various LTSs taken from
the CADP demo examples and from the VLTS benchmark suite [10].

T T
CPU usage ===

8
6
4
2
0

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Graph number

The first picture shows a comparison between BISIMULATOR and ALDEBARAN
(on-the-fly algorithms) for strong equivalence, based on experiments performed
using 64 Lrss ranging from 3 Kstates and 6 Ktransitions to 3.8 Mstates and
11 Mtransitions, on a Pc with 2.2 GHz and 1 Gbyte of memory. Each experi-
ment consisted in checking that an LTS is equivalent with its minimized version
modulo strong equivalence, which is a worst-case situation for on-the-fly algo-
rithms, since both LTSs must be explored entirely. Each vertical line on the
picture denotes a mark (between 0 and 20) comparing the speed of the tools

584 D. Bergamini et al.

on a given experiment. The mark is computed as follows: 20 if BISIMULATOR
succeeds and ALDEBARAN fails; 19 if BISIMULATOR is more than 5 times faster;
10..19 if BISIMULATOR is from 1 to 5 times faster; 10 if both tools are equally fast
or they fail; 0..10 in a strictly symmetric way when BISIMULATOR is slower or
fails. On 31 experiments out of 64, ALDEBARAN fails because of memory short-
age or too long computation, whereas BISIMULATOR only fails (together with
ALDEBARAN) on 4 experiments. On the remaining 33 experiments, the aver-
age time/memory are 11.8 sec./32.5 Mbytes for BISIMULATOR, and 20.5 sec./99
Mbytes for ALDEBARAN.

20

dle10 ——

vasy_65_2621 ——x-—

18 F vasy_66_1302 ---%---

dle03 &
16 b57 ----e---
vasy_574_13561 ----&-- A
vasy_720_390 -4~
14 | fwe —=— : .
BRPm3n25 ---v--- e
BRPm3n30 - .

12 - |deal speedup —— i '
[% ® 3 o £l
=] X -
8 10 3 ° '
o T
(%]

8

6

4

2

0

0 2 4 6 8 10 12 14 16 18 20

Number of workers

The second picture shows the speedup of the distributed version of
BISIMULATOR w.r.t. the sequential one (breadth-first search algorithm) for
strong equivalence, based on experiments performed using 12 LTSs ranging from
65 Kstates and 2.6 Mtransitions to 8 Mstates and 42.9 Mtransitions, on a Pc
cluster composed of 20 nodes with 2.4 GHz and 1.5 Gbytes of memory. Each
experiment consisted in comparing an LTS with its minimized version. Speedup
ranges uniformly from low — still better than sequential — to almost optimal,
and increases with LTs size (e.g., the experiment vasy_157_297, involving an
Lrs with 157 Kstates and 297 Ktransitions, is handled 16 times faster than
the sequential version by the distributed version using 20 machines). Similar
behaviours are observed for weak equivalences; additional experimental data
showing low memory overhead and good scalability of distributed BISIMULATOR
is available in [g].

4 Conclusion and Future Work

The development of an on-the-fly equivalence checker “from scratch” is a com-
plex and costly task. The modular architecture adopted for BISIMULATOR aims

BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking 585

at making this process easier, by using the well-established verification frame-
work of BEss, together with the generic libraries for LTS exploration and BES
resolution provided by CADP. This tool architecture reduces the effort of imple-
menting a new equivalence relation to its strict minimum: encoding the mathe-
matical definition of the equivalence as a BES, and interpreting the counterex-
amples. Another advantage of our approach over previous dedicated on-the-fly
equivalence checking algorithms [3] is that particular cases suitable for optimiza-
tion can be handled more elegantly and precisely using the BES representation.
For instance, in BISIMULATOR the encodings of equivalence relations exploit the
determinism w.r.t. a given action and the absence of 7-transitions locally (i.e.,
on each state encountered during verification) to reduce the size of boolean equa-
tions, whereas in [3] the condition for applying the optimized algorithm handling
the “deterministic case” is global (i.e., it involves all states of one LTS).

We plan to continue our work by extending BISIMULATOR with other equiv-
alence relations (e.g., trace equivalence and its weak variant, Markovian bisim-
ulation [7], etc.) and by studying new strategies for (sequential and distributed)
on-the-fly BES resolution.

References

1. H. R. Andersen. Model Checking and Boolean Graphs. Theoretical Computer
Science, 126(1):3-30, April 1994.

2. R. Cleaveland and O. Sokolsky. Fquivalence and Preorder Checking for Finite-
State Systems. In J. A. Bergstra, A. Ponse, and S. A. Smolka (eds.), Handbook of
Process Algebra, chapter 6, pages 391-424. North-Holland, 2001.

3. J-C. Fernandez and L. Mounier. Verifying Bisimulations “On the Fly”. In J.
Quemada, J. Manas, and E. Vazquez (eds.), Proc. of FORTE’90 (Madrid, Spain).
North-Holland, November 1990.

4. J-C. Fernandez and L. Mounier. A Tool Set for Deciding Behavioral Equivalences.
In Proc. of CONCUR’91 (Amsterdam, The Netherlands), August 1991.

5. H. Garavel. OPEN/CASAR: An Open Software Architecture for Verification,
Simulation, and Testing. In B. Steffen (ed.), Proc. of TACAS’98 (Lisbon, Portugal),
LNCS vol. 1384, pp. 68-84. Springer Verlag, March 1998. Full version available as
INRIA Research Report RR-3352.

6. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Neuwsletter 4:13-24, August 2002. Also available as INRIA Report RT-0254.

7. H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process Alge-
bras and their BDD-based Implementation. In J-P. Katoen (ed.), Proc. of ARTS’99
(Bamberg, Germany), LNCS vol. 1601, pp. 244-265. Springer Verlag, May 1999.

8. C. Joubert and R. Mateescu. Distributed On-the-Fly Equivalence Checking. In
L. Brim and M. Leucker (eds.), Proc. of PDMC’04 (London, United Kingdom),
ENTCS, September 2004. To appear.

9. R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. In H. Garavel and J. Hatcliff (eds.), Proc. of TACAS’2003 (Warsaw,
Poland), LNCS vol. 2619, pp. 81-96. Springer Verlag, April 2003. Full version
available as INRIA Research Report RR-4711.

10. http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

	Introduction
	Tool Architecture
	Performance Measures
	Conclusion and Future Work

