
Compositional Message Sequence Charts
(CMSCs) Are Better to Implement Than MSCs

Blaise Genest

LIAFA, Université Paris VII, 2 place Jussieu, 75251 Paris, France
& Departement of Computer Science, Warwick, Coventry, CV4 7AL, UK

Abstract. Communicating Finite States Machines (CFMs) and Mes-
sage Sequence Graphs (MSC-graphs for short) are two popular spec-
ification formalisms for communicating systems. MSC-graphs capture
requirements (scenarios), hence they are the starting point of the de-
sign process. Implementing an MSC-graph means obtaining an equiva-
lent deadlock-free CFM, since CFMs correspond to distributed message-
passing algorithms. Several partial answers for the implementation have
been proposed. E.g., local-choice MSC-graphs form a subclass of deadlock-
free CFM: Testing equivalence with some local-choice MSC-graph is thus
a partial answer to the implementation problem. Using Compositional
MSCs, we propose a new algorithm which captures more implementable
models than with MSCs. Furthermore, the size of the implementation is
reduced by one exponential.

1 Introduction

Specifying the behavior of software systems in such a way that formal methods
can be applied and validation tasks can be automated, is a challenging goal.
While research has brought strong results and tools for simple systems, complex
systems still lack powerful techniques. For instance, concurrent systems such as
message passing systems are still hard to cope with.

Concurrent languages such as Harel’s Live Sequence Charts [11], UML se-
quence diagrams, interworkings..., have seen a growing interest this last decade.
Among them, the ITU visual notation of Message Sequence Charts (MSCs, [14])
has received a lot of attention, both in the area of formal methods and in auto-
matic verification [2, 13, 19, 18, 20]. MSCs can be considered as an abstract rep-
resentation of communications between asynchronous processes. They are used
as requirements, documentations, abstract test cases, and so on. MSC-graphs
propose a way of modeling set of behaviors, combining parallel composition
(processes) with sequential composition (transition system). The main advan-
tage of such a visual representation is to have a local, explicit description of
the communication and the causalities appearing in the system. On the other
hand, SDL (ITU norm Z100) brings another formalism, namely Communicating
Finite States Machines (CFM for short) [5]. Being really close to distributed
algorithms, CFMs are the ideal model for modelling parallel programs. The ab-
sence of deadlock is crucial for communication protocols, where any blocking

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 429–444, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



430 B. Genest

execution means a failure in the system. That is, any concurrent system which
has to be implemented must be turned into a deadlock-free CFM. Hence, we will
consider only deadlock-free CFM implementations in this paper.

Our aim is to give a heuristic to implement MSC-graphs. That is, if a model
passes the test, then it is implementable and we can provide an implementation.
However, if it fails the test, it may be the case that it is implementable anyway.
The important point is to understand which implementable systems are cap-
tured with this algorithm, the more the better. Our test captures every model
which is equivalent to some local-choice Compositional MSC-graph (local-choice
CMSC-graphs for short). Every local-choice CMSC-graph is implementable, for
its control is local (as for CFM), in contrast with the usual global control of
MSC-graphs.

Implementation of MSC-graphs is a non trivial task, which has yet no defini-
tive answer. The first implementation test, which was proposed by [1], captures a
subclass of MSC-graphs which are equivalent to some deadlock-free CFM with-
out adding control data to messages. This test covers only a subclass of the very
restricted regular MSC-graphs. It was further extended to capture a subclass
of globally-cooperative MSC-graphs [16], with the same EXPSPACE-complete
complexity. With this same restriction of disallowing additional data, [12] char-
acterizes the subclass of local-choice MSC-graph which is implementable. Since
data parts are usually abstracted away in an MSC-graph specification, this re-
striction prevents many useful models from being implementable. For instance, as
soon as we add data to messages, any local-choice MSC-graph is implementable
[9]. The first paper to consider additional data was [13], giving the exact expres-
sivity of a subclass of (not deadlock-free) CFMs in terms of MSC-graphs. [4]
characterizes the expressivity of deadlock-free CFMs in terms of MSC-graphs,
but no complete algorithm is provided. At last, an internal report [7] gives a
PSPACE algorithm to test implementation into local-choice MSC-graph (thus
into deadlock-free CFM), yielding an implementation of doubly exponential size.

In this paper, we extend the results of [7] in order to improve the complexity of
the test to co-NP, yielding an implementation of single exponential size, instead
of two exponentials. To achieve this goal, we use local-choice Compositional
MSC-graphs. The implementation of this class follows easily from [9]. Using
compositional MSCs instead of MSCs allows to capture more formalisms. CMSC-
graphs were introduced by [10] to get rid of the finite generation restriction
of MSC-graphs. Later, safe CMSC-graphs were shown to be model-checkable
against MSO [18], temporal logic [8], and globally cooperative CMSC-graphs
[6]. The important property used by these algorithms is that the events of any
generated MSC can be scheduled using bounded communication channels, for
a fixed bound (see section 3). Since nodes of a compositional MSC-graph need
not be labeled by complete MSCs (there can be unmatched sends and receives),
the time consuming test of [7] becomes irrelevant: Not only we show that we
can still test whether a CMSC-graph is equivalent to some local-choice CMSC-
graph (with a new algorithm), but the complexity is better than for local-choice



CMSCs Are Better to Implement Than MSCs. 431

MSC-graphs (co-NP-complete vs PSPACE), improving the implementation size
by one exponent, and thus making the test more practical.

Related Work: A new formalism, Triggered MSCs [22], was designed from the
ground for the implementation purpose. It makes implementation easier than for
MSC-graphs, but model-checking has not been studied yet. Also, Live Sequence
Charts [11] use a different semantics to obtain implementability.

2 Message Sequence Charts (MSCs)

Message Sequence Charts (MSC for short) is a scenario language standardized
by the ITU ([14]). They represent simple diagrams depicting the activity and
communications in a distributed system. The entities participating in the inter-
actions are called instances (or processes) and are represented by vertical lines.
Message exchanges are depicted by arrows from the sender to the receiver. In
addition to messages, atomic actions can also be represented.

Definition 1. [10] A compositional MSC (CMSC) is a tuple M=〈P, E, C, t, m,<〉
where:

– P is a finite set of processes,
– Ep is a finite set of events on process p, with E =

⋃
p∈P Ep

– C is a finite set of names for messages and local actions,
– t : E → T = {p!q(a), p?q(a), p(a) | p �= q ∈ P, a ∈ C} labels an event with its

type: either a send p!q(a) of message a on process p to q, a receive p?q(a)
on p from q, or a local event p(a). We partition E = S ·⋃ R ·⋃ L into sends,
receives and local events.

– m : S → R is a partial and injective function matching a send to its corre-
sponding receive. If m(s) = r, then t(s) = p!q(a) and t(r) = p?q(a) for some
p, q ∈ P, a ∈ C.

– <⊆ E × E is an acyclic relation between events consisting of:
- a total order on Ep, for every process p ∈ P, and
- s < r, whenever m(s) = r.

An MSC is a CMSC where the message function m is a total function that
is one-to-one.

The event labeling t implicitly defines the process P (e) for each event e:
P (e) = p if t(e) ∈ {p!q(a), p?q(a), p(a)} for some q ∈ P, a ∈ C. We denote any
pair (p, q) ∈ P2 of distinct processes as a channel. We assume that channels are
FIFO, i.e., there is no overtaking on messages sent on the same channel.

The relation < is called the visual order of the CMSC, since it corresponds
to its graphical representation. It is comprised of the process ordering and the
message ordering. Since < is required to be acyclic, its reflexive-transitive closure
<∗ is a partial order on the set E of events, which we will denote by ≤. An
extension of ≤ to a total order is called a linearization of M . We consider labeled
linearizations t(e1) · · · t(en), with e1 · · · en a linearization on events. One can



432 B. Genest

1 2 1 2
1 2

M G
1!2

1?2 2?1

2!1

Fig. 1. The left part of the figure depicts an MSC scenario M . The two squares on the
right are CMSCs involving actions 1!2, 2!1, 1?2, 2?1

understand any linearization as some particular execution of the CMSC. Notice
that because of the FIFO condition, one can retrieve an MSC from any of its
linearizations.

Definition 2. [17] We say that a linearization t(e1) · · · t(en) is b-bounded if,
for each channel (p, q), the difference between the number of sends p!q and the
number of receives q?p in any prefix t(e1) · · · t(ei) is at most b, for any i. We
say that an MSC M is existentially (respectively universally) b-bounded if some
(resp. every) linearization of M is b-bounded .

MSCs specify only finite behaviors. For describing sets of behaviors, we
use MSC-graphs, which are the basic fragment of the High-level MSCs of the
norm [14] (the norm allows hierarchy that we do not take into account here)
that are just transition systems with nodes labeled by MSCs. They were ex-
tended to Compositional MSC-graphs (CMSC-graphs), where nodes are labeled
by CMSCs [10].

Definition 3. A CMSC-graph is a labeled transition system G = (V, →, v0, F, λ)
with set of nodes V , transition relation →∈ V × V , initial node v0 and set of
final nodes F . Each node v is labeled by a CMSC λ(v). An accepting path of
G is defined as a sequence of transitions ρ = (v1 → v2 · · · → vk) with v1 = v0

and vk ∈ F .

A composition of two CMSCs is one of the CMSCs defined by gluing together
the processes axis, and extending the messages functions in any way such that
the FIFO condition is preserved.

Definition 4. A composition of CMSCs M1, · · · , Mn, where Mi =
〈P, Ei, Ai, ti, mi, <i〉 is a CMSC M = 〈P, E =

⋃
i Ei,A =

⋃
Ai, t =

⋃
ti, m, <〉

such that:

– The message function m extends each mi and it is required that m preserves
the FIFO restriction on matched events. That is if m(s) = r and m(s′) = r′

are two messages from p to q and s <p s′ then r <q r′.



CMSCs Are Better to Implement Than MSCs. 433

– The visual order < is the union of <i and the set of (e, f) with m(e) = f or
P (e) = P (f) and e ∈ Ei, f ∈ Ej, j > i.

Notice that a sequence of given CMSCs M1, . . . , Mn can admit several com-
positions. For instance, gluing together a CMSC composed by two send events
from process 1 to 2 and a CMSC composed of two receives on 2 from 1 may
yield the MSC consisting of two messages from 1 to 2. It can also yield a receive
(which matchs a send which will be glued before), a message then a send to be
matched. However, there can be at most one such composition that is an MSC,
since the k-th send from p to q of an MSC is matched by the k-th receive on q
from p. If it exists, we denote by M1 · · ·Mn the MSC which is a composition of
M1, · · · , Mn. For instance, there exists only one MSC which is a composition of
CMSCs seen along the path that loops three times around each node of figure
1. This MSC is depicted in the left part of figure 1. Since we will consider only
the MSCs generated by a CMSC-graph, we are only interested in this unique
composition, if it exists.

Definition 5. The language of a CMSC-graph G is L(G) = {λ(v1) · · ·λ(vk) ∈
MSC | v1 · · · vk is an accepting path of G}, where MSC is the set of all MSCs.

An MSC-graph is a CMSC-graph whose nodes are labeled by MSCs. Let G be
an MSC-graph. The MSC-graph G is finitely-MSC-generated, that is any MSC
generated by G is the composition of MSCs labeling the nodes of G. Hence, any
M ∈ L(G) is existentially b-bounded, where b is the size of the largest MSC in
the set L of MSCs labeling the nodes of G. We call G an ∃-b-bounded MSC-graph.

The right part of figure 1 depicts a CMSC-graph which is not existentially
bounded, since iterating n times both loops gives an MSC which is not universally
n − 1 bounded. In figure 2, we denote s for the send from host to function, and
r for the receive on function from host. Then iterating n times the leftmost
loop in figure 2 yields an MSC having the 1-bounded linearization (sr)n+1, and
having also the linearization sn+1rn+1 which is not n − 1-bounded. That is, this
MSC-graph is existentially 1-bounded, but it is not universally bounded.

The size |M | of a (C)MSC M is its number of events. The size |G| of a
(C)MSC-graph G is the sum of the sizes |M | of the CMSCs labeling its nodes.
The size of P is the number ℘ of processes.

A Communicating finite-state machine (CFM) A = (Ap)p∈P [5] consists of
finite automata Ap associated with processes p ∈ P, that communicate over
unbounded, error-free, FIFO channels. The content of a channel is a word over a
finite alphabet C. With each pair (p, q) ∈ P2 of distinct processes we associate a
channel Cp,q. Each Ap is described by a tuple Ap = (Sp, Ap,→p, Fp) consisting
of a set of local states Sp, a set of actions Ap, a set of local final states Fp and a
transition relation →p⊆ Sp ×Ap ×Sp. The computation begins in an initial state
s0 ∈

∏
p∈P Sp. The actions of Ap are either local actions or sending/receiving a

message. We use the same notations as for MSCs. Sending message p!q(a) means
that a is appended to the channel Cp,q. Receiving message p?q(a) means that a
must be the first message in Cq,p, which will be then removed from Cq,p. A local
action a on process p is denoted by lp(a). A run of a CFM is a linearization x



434 B. Genest

host function

host function host function

Fig. 2. MSC-graph depicting the isochronous transactions of usb 1.1

of some MSC such that the projection of x on process p is a run of Ap, for all
p. In particular, x should not receive more messages than sent. We denote a run
of the CFM as successful, if each process p can finish the run in some final state
of Fp, and all channel are empty. The set of successful runs generated by A is
denoted L(A). It is easy to notice that if x is an accepting run of the MSC M ,
then any linearization of M is also a successful run. We will denote by L(A) the
MSC-language of A, that is the set of MSCs whose linearizations are successful
runs. Moreover, we say that a CFM is deadlock-free if every run can be extended
to a successful run.

3 Existential Bound on Channels

CMSC-graphs are more expressive than CFMs [10], and thus most non trivial
problems for CMSC-graphs are undecidable. The solution applied here to recover
decidability is to consider representative linearizations, as what was done first
for MSC-graphs by [20] and for CMSC-graphs by [18]. More precisely, if G is ∃-
b-bounded, then every MSC M ∈ L(G) has a linearization in the set Linb(G) of
b-bounded linearizations of L(G). We call the set Linb(G) a set of representatives
for L(G), since any MSC of L(G) can be retrieved from a linearization of Linb(G).
To ensure an existential bound on channels, safe CMSC-graphs (called realizable
CMSC-graph by [10], and simply CMSC-graphs by [18]) were defined.

Definition 6. A CMSC-graph G is safe if every sequence of CMSCs labeling an
accepting path of G can be composed as an MSC.

Recall that it may be the case that among the CMSC-compositions of a path
of a (non safe) CMSC-graph, none is an MSC (e.g. because number of sends
and receives from p to q are not equal). Notice that safe CMSC-graphs con-
tain the class of MSC-graphs. For instance, figure 2 depicts a safe CMSC-graph.



CMSCs Are Better to Implement Than MSCs. 435

Being safe implies that each (looping) path v1 · · · vn, n ≥ 1 with vn → v1 of the
CMSC-graph G is labeled by the same number of sends and receives from p to
q, for each pair of processes p, q. This is the key argument for the syntactical
characterization of safe CMSC-graphs that can be checked in polynomial time
[10]. For instance, the CMSC-graph depicted on the right part of figure 1 is not
safe since loops are labeled with a different number of sends and receives.

Let KG be the automaton obtained from G by replacing every node v of G by
a sequence of |λ(v)| transitions of the automaton, labeled by some linearization
of λ(v). The language L(KG) of this automaton is a set of representatives of
L(G). Since each loop of the CMSC-graph G is labeled by the same number of
sends and receives from p to q, for each pair of processes p, q, every x ∈ L(KG)
is b-bounded, with b ≤ |G|. Since this bound is important for G, we denote the
b for which L(KG) is universally b-bounded as bG. Hence, G is existentially bG-
bounded. We will use the class of globally-cooperative CMSC-graphs as a central
class of our implementation algorithm. The reason is that this class ensures the
existence of a regular set of representatives, namely LinbG(G).

Definition 7. The communication graph of a CMSC M is a directed graph
whose vertices are the processes involved in M , and there is an edge between
vertices p, q iff M contains both a send p!q from p to q and a receive q?p on q
from p (these send and receive may not define the same message).

For instance, the communication graph of the MSC made of one message
from process 3 to 2 and one message from process 1 to 2 is weakly connected.
We recall that a loop in a CMSC-graph is a path starting and ending in the
same node (we do not require that the loop is simple, that is, a loop can meet
several times the same node).

Definition 8. A CMSC-graph is loop-connected if every loop is labeled by a
CMSC whose communication graph is weakly connected. A CMSC-graph is globally-
cooperative (gc-CMSC-graph for short) if it is safe and loop-connected.

In particular, if there is a loop labeled by two groups of processes without
communication between the two groups, then G is not loop-connected, hence
not globally-cooperative.

Proposition 1. [6] The set Linb(G) of b-bounded linearizations of every globally-
cooperative CMSC-graph G is regular, for all b ≥ bG.

4 Implementation by CFMs

It is easy to see that not every globally-cooperative CMSC-graph is imple-
mentable by a deadlock-free CFM (actually, they are always implementable by
a CFM with possible deadlocks [6]). Since any specification should be imple-
mentable, we need a test for implementability.

Definition 9. A CMSC-graph G is implementable without additional data iff
there exists some deadlock-free CFM A with L(A) = L(G).



436 B. Genest

There is an EXPSPACE-complete algorithm to test whether a
globally-cooperative MSC-graph is implementable without additional data [1,
16]. Anyway, there are two drawbacks in such an approach. First, the algorithm
is obviously time-consuming. Second, implementing directly an MSC-graph is
too extreme, since some easily implementable MSC-graphs are said not to be,
as the globally-cooperative MSC-graph of figure 2. The reason is that the data
written in the first message is abstracted away, hence both host and function can
choose to send the second message, yielding a scenario that is not possible in the
system, thus a deadlock. The solution already used in [9, 13] is to allow data to
be added to messages. For instance, we would add in the first message a bit to
indicate which process (host or function) must send. A data projection function
simply projects away the additional data from messages.

Definition 10. A CMSC-graph G is implementable (with additional data) iff
there exists some data projection Proj and some deadlock-free CFM A with
Proj(L(A)) = L(G).

The problem is that we have no algorithm to test this implementability.
Moreover, even if such an algorithm would exist, it would probably be too time
consuming. We propose then an alternative approach to the problem, trying
to go through a class which is easily implementable with additional data. The
reason for non-implementability of an MSC-graph is the global control, whereas
the choices in a CFM must be done locally. The idea is then to define local-choice
MSC-graphs, that is, any node is controlled by a single process [3, 12].

Definition 11. A CMSC-graph G is local-choice if

– G is safe
– For each transition v → w, node w has a unique minimal event min(w).

Moreover, the minimal process of w, denoted pmin(w), appears in v.
– There exists a process p0 such that the initial node of G has a unique minimal

event on p0.

A local-choice MSC-graph is a local-choice CMSC-graph which is an MSC-
graph.

Example 1. The MSC-graph in figure 2 is local-choice. The MSC-graph in figure
3 is not local-choice, since the looping node has two minimal events.

The next proposition follows easily from [9].

Proposition 2. Any local-choice CMSC-graph is implementable. Moreover, the
size of the CFM obtained is linear in the size of the local-choice CMSC-graph.

The local-choice restriction appears to be a heuristics for implementation.
That is, if a CMSC-graph is local-choice or equivalent to some local-choice
CMSC-graph, then it is implementable (without deadlock). However, if it is
not equivalent to a local-choice CMSC-graph, then this does not mean that it is
not implementable.



CMSCs Are Better to Implement Than MSCs. 437

1 2 1 2

Fig. 3. A globally-cooperative MSC-graph universally bounded but not local-choice

4.1 A Concrete Protocol: USB

The protocol USB (Universal Serial Bus) describes several communication modes
between two communicating processes, a master (called host), and a slave (called
function) in the standard [21]. Every command is given by host. That is, the
first message of each mode is from host to function, and contains the command
(mode chosen, actions to perform, etc.). Three kinds of interactions can be done,
Isochronous, Bulk and Setup.

The isochronous mode is described by the local-choice MSC-graph in figure 2.
The first message tells function that host has chosen the isochronous mode, and
whether host must send or receive information. Setup mode is a slight variation
of the isochronous mode.

Bulk transfer looks like the alternated bit protocol. Every message received
should be acknowledged with the parity of the message, such that the sender can
be sure that his message was indeed received. In order to bound the channel,
a limit for send events in transit is imposed. We represent a part of the Bulk
protocol in the upper part of figure 4.

ack

host function host function host function

ack

ack

host function host function host function

ack ack
ack

ack

ack ack

Fig. 4. Equivalent CMSC-graphs specifying the Bulk transactions of usb 1.1



438 B. Genest

The CMSC-graph in the upper part of figure 4 is not local-choice (the looping
node has two minimal events). However, we can transform this CMSC-graph into
the equivalent local-choice CMSC-graph depicted in the lower part of figure 4.
We want to give an algorithm to build such an equivalent local-choice CMSC-
graph, whenever it is possible.

5 Implementation Algorithms

A crucial notion related to local-choice are triangles. We call a CMSC T a triangle
iff it has a unique minimal event min(T ) for the visual order. A triangle T
is called an MSC-triangle iff it is an MSC. Let Tn be the set of triangles of
size bounded by n. We define a generic CMSC-graph HT

n : for each triangle
T ∈ Tn, it has a node vT labeled by T . There is a transition vT → vT ′ whenever
P (min(T ′)) ∈ P (T ). We define in the same line the generic local-choice MSC-
graph HM

n on MSC-triangles of size at most n.
The next proposition shows that we must consider only globally-cooperative

CMSC-graphs for our implementability test:

Proposition 3. 1 Let G be a safe CMSC-graph that is not globally-cooperative.
Then G is not equivalent to any local-choice CMSC-graph.

Theorem 1. A globally-cooperative CMSC-graph G is equivalent to some local-
choice CMSC-graph iff there exists some n with L(G) ⊆ L(HT

n ). If it is the
case, then one can obtain some local-choice CMSC-graph equivalent to G, of size
exponential in |G| and n.

Sketch of Proof. If L(G) ⊆ L(H) for some local-choice CMSC-graph H, then
L(G) ⊆ L(HT

n ) with n = |H|.
Conversely, if L(G) ⊆ L(HT

n ), then we compute an automaton A accepting
LinbG+(℘+bG℘2)n(G) using proposition 1. It is at most of single exponential size
in n and |G| [6]. We recall that ℘ ≤ |G| is the number of processes in P. Making
the product between A and HT

n , we obtain a CMSC-graph H of size |A||HT
n |

that is local-choice. To see that it is equivalent to G, we have to show that
for any decomposition of M ∈ L(G) into a sequence of triangles T1 · · ·Tm of
size at most n, there exist linearizations x1, · · · , xm of T1, · · · , Tm such that
x1 · · ·xm is bG + (℘ + bG℘2)n-bounded. By contradiction, assume that for some
channel (p, q), the linearization x1 · · ·xk−1 has bG unmatched sends (we denote
by s0 the first unmatched send), xk · · ·xl has (℘+ bG℘2)n+1 unmatched sends,
and xl+1 contains r0, the receive associated with s0. Hence, there are at least
(℘ + bG℘2) + 1 triangles containing the unmatched sends of xk · · ·xl from p to
q. Since M ∈ L(G), there exists some bG-bounded linearization x equivalent to
x1 · · ·xl+1. In x, the receive r0 must occur before all unmatched sends in xk · · ·xl

from p to q. So the past of r0 (i.e., all events e with e ≤ r0) occurs in x before
the unmatched sends in xk · · ·xl. Notice that the past of r0 contains the minimal

1 This result is a slight variation over [7] which considered only MSC-graphs as input.



CMSCs Are Better to Implement Than MSCs. 439

event of each triangle in Tk, . . . , Tl that has at least one unmatched send. It is
now easy to check that the past of r0 restricted to any of these triangles either
eliminates some process from the past restricted to later triangles, or it contains
an unmatched send. Since there are at most ℘ triangles of the first kind, there
must be at least bG℘2 + 1 triangles of the second kind, hence at least bG℘2 + 1
unmatched sends in x before the unmatched sends of xk · · ·xl. So there is at least
one channel with bG+1 unmatched sends, which contradicts the bG-boundedness
of x. �

We can state theorem 1 similarly for local-choice MSC-graphs, by replacing
HT

n by HM
n . Theorem 1 will give an algorithm for testing whether G is equivalent

to some local-choice CMSC-graph as soon as we limit the value of n for which
we must test L(G) ⊆ L(HT

n ).
We show now some structural properties that must be satisfied by the CMSC-

graphs we are interested in. We call two MSCs R, S MSCs in parallel for G if
P (R) ∩ P (S) = ∅ and there exist CMSCs L, N with LRSN ∈ L(G).

Proposition 4. 1 Let G be a local-choice CMSC-graph. Let R, S be MSCs in
parallel in G. Then either |R| ≤ 2℘|G|, or |S| ≤ 2℘|G|.

We give another property that concerns only local-choice MSC-graphs, and
not CMSC-graphs. Let M be an MSC and e be an event of M . We call e a
peak of M if its future Future(e) = {f ∈ M | e ≤ f} for the visual order of M
is an MSC (that is, if it contains some send or receive, it should also contain
the associated event). In a local-choice MSC-graph, every event that starts a
node is a peak, which is not always the case in a local-choice CMSC-graph. Let
G be a CMSC-graph. We say that M is an MSC-triangle without G-peak if it
exists an MSC-triangle L and an MSC N with LMN ∈ L(G) and LMN has a
unique peak within M (which is minM ). It is worth noting that LMN can have
peaks other than minM , as soon as these peaks are not within M . Moreover,
LM can have several peaks within M , but they will not be peaks anymore for
LMN .

Proposition 5. 1 Let G be a local-choice MSC-graph. Let M be an MSC-triangle
without G-peak. Then |M | ≤ 2℘|G|.

Using these notions, we can characterize the class of safe CMSC-graphs which
are equivalent to any local-choice MSC-graph:

Theorem 2. 1 Let G be a safe CMSC-graph. Then G is equivalent to some
local-choice MSC-graph iff there exists some integer n such that:

1. G is globally cooperative.
2. Each M ∈ L(G) is a triangle.
3. Each MSCs M,N in parallel for G satisfies |M | ≤ n, or |N | ≤ n.
4. Each MSC-triangle M without G-peaks satisfies |M | ≤ n.



440 B. Genest

5.1 A Tractable Test Algorithm

The first test of theorem 2 is co-NP-complete [19]. The second test is
NLOGSPACE [7]. The third test is co-NP [7]. The fourth test is PSPACE [7].
If the third and fourth tests are satisfied, then we have a value for n, such that
L(G) ⊆ L(HM

℘n), and then we can compute an equivalent local-choice MSC-
graph using theorem 1. The problem is that the fourth test gives an exponential
value to n (while the third gives a polynomial value to n), making the implemen-
tation potentially doubly exponential. However, the fourth test makes no sense
for local-choice CMSC-graph, for which we can do better.

Example 2. The globally-cooperative MSC-graph in figure 3 is not equivalent to
any local-choice MSC-graph, but it is not hard to show the equivalence with a
local-choice CMSC-graph.

We turn now to the test whether a given safe CMSC-graph is equivalent to
some local-choice CMSC-graph. We characterize triangles that cannot belong
to L(HT

n ), that is which cannot be decomposed in a sequence of triangles of
size at most n. Let T = T1T2 be a decomposition of such a triangle into two
triangles. We call the minimal events min(T ) = min(T1) = e and min(T2) = f .
In a CMSC, there are at most two immediate successors g, h of e (the event g
on the same process as e, and the receive h of e if e is a send). Obviously, either
f ≥ g or f ≥ h. That is, if we want to minimize the size of T1, an optimal
choice is to take either f = g, or f = h2. The triangle T2 is defined as the set
of events Future(f) in the future of f , and T1 is the set of events that are not
in Future(f), that is F (f) = Future(e) \ Future(f) = T1. That is, if |F (g)| > n
and |F (h)| > n, then T is not decomposable into a sequence of triangles of size
at most n. Furthermore, if T labels a path of a safe CMSC-graph G, and if F (g)
and F (h) are large enough, then we can find a loop of G in F (f) and one in
F (g) that we can iterate such that both F (g) and F (h) become as large as we
want. That is, L(G) �⊆ L(HT

n ) for any n.
Iterating one of these loops should not delete any event in F (h) or in F (g)

because of a new dependency. To do so, we need to define the Ω-type, which is
related to the existential bound bG associated with G. The Ω-type of an event e
is its type t ∈ {p!q, p?q}, plus the number modulo bG of events of the same type
that have happened before e, that is, Ω = T × {0, · · · , bG − 1}. We denote by
type(X) the set of Ω-types of events in X.

Lemma 1. Let MBN be an MSC that has two minimal events g, h, and assume
that type(Future(g) ∩ M) = type(Future(g) ∩ MB) and type(Future(h) ∩ M) =
type(Future(h) ∩ MB). We denote by Future′, F ′ and m′ the functions cor-
responding to Future, F and m with respect to MBBN . Assume that M is
existentially-bG-bounded.

Then F (g) ⊆ F ′(g) and F (h) ⊆ F ′(h).

2 Actually, we take the only immediate successors of h instead of h since we want that
the minimal process of a node belongs to any predecessor node.



CMSCs Are Better to Implement Than MSCs. 441

Proof. Let f ∈ {g, h}. Assume by contradiction that Future′(f)∩F (f) �= ∅. We
denote d1 ≺ d2 ≺ · · · ≺ dm a causality chain in MBBN with d1 = f, dm ∈ F (f),
and where di ≺ di+1 if m′(di) = di+1 or if di <p di+1 for some process p.

We will show that dm ∈ Future(f), a contradiction with dm ∈ F (f). Assume
that there is an i with di in the first B and di+1 in the second B. We will delete
the first B of MBBN to obtain MBN . In MBN , we still have di+1 < dm. Since
B conserves the Ω-types of Future(f), we have a d′

i ∈ Future(f) ∩ M , of same
Ω-type as di. If di <p di+1, then within MBN , we also have d′

i <p di+1. Hence
dm ∈ Future(f). Else, we have m(di) = di+1 in MBBN . Let d be the first event
of B of same T -type as di (that is, the second component of its Ω-type can
differs from di). We have d′

i <p d ≤p di for some p. Hence d ∈ Future(f) ∩ MB
and there exists some d′ ∈ Future(f) ∩ M , of same Ω-type as d. Hence, we have
at least bG sends of same T -type as di in [d′, d[, that is in Future(f) ∩ M .

Since M is existentially bG-bounded, it has at most bG unmatched sends:
if we delete the first B, there exists some d′′ ∈ [d′, d[⊆ Future(f) ∩ M with
m(d′′) = di+1. Hence dm ∈ Future(f).

It remains to consider the case where there is one of the two occurrences of
B that contains no (di)i≤m. We will then delete this occurrence of B to obtain
MBN . We consider the new ordering relation in MBN . If di <p di+1 in MBBN ,
then this is also true in MBN . If m′(di) = di+1, assume that m(di) �= di+1. Else,
dm ∈ Future(f). We have some di before the deleted B, and di+1 after the deleted
B. In the deleted B, there exists a send d of same T -type as di. We can apply
the same arguments than above to prove that dm ∈ Future(f). �

Let us recall that HT
n is a CMSC-graph whose nodes are triangles of size at

most n.

Proposition 6. A globally-cooperative CMSC-graph G is equivalent to a local-
choice CMSC-graph if and only if L(G) ⊆ L(HT

b0
), with b0 = 4bG℘2|G|+1. This

test can be done in co-NP.

Proof. Assume that L(G) �⊆ L(HT
b0

). It means that there exists an MSC M ∈
L(G) and a send e ∈ M such that for all immediate <-successors f ∈ {g, h}
of e, we have |F (f)| > b0. Else, we could decompose inductively any triangle
M ∈ L(G) into triangles of size at most b0. This test can be performed in co-NP.

We show now how to increase the size of F (g) without decreasing the size
of F (h). By symmetry, we will do the same for augmenting F (h). The MSC M
labels a path of G. Since there are b0 events in F (g), there are at least 4bG℘2 +1
occurrences of the same event eg ∈ F (g). Hence we can decompose M into a
sequence M = BB1 · · ·BnB′ with Bi labeling a loop of G. Moreover, Bi begins
and ends by eg, and n = 4bG℘2 + 1.

Among the loops B1 · · ·Bn, at most 2bG℘2 can change the Ω-types of Future(g).
More formally, let Typei(g) be the set of Ω-types of events in (BB1 · · ·Bi) ∩
Future(g). There are at most 2bG℘2 loops Bi with Typei−1(f) �= Typei(f), since
Typei(f) is an increasing sequence of sets of size at most 2bG℘2. In the same
line, there are at most 2bG℘2 loops that can change the Ω-types of Future(h).
That is, there is at least one loop, say Bk, that changes neither the Ω-type



442 B. Genest

host

host

function

function

host function

host function

host functionhost function

n times

a

a

b

b

Fig. 5. globally-cooperative CMSC-graph hard to turn into a local-choice CMSC-graph

of Future(g), nor those of Future(h). We can then iterate the loop Bk without
deleting any event from F (g) or F (h), applying the lemma 1.

Since Bk contains eg ∈ F (g) and does not change the Ω-types of Future(g),
iterating the loop Bk makes F (g) strictly grow.

In the same line, we can decompose M with respect to F (h). Hence, we can
iterate a loop that makes F (h) strictly grow without shrinking F (g). Since G is
safe, we obtain an MSC of L(G) by iterating these two loops. Hence, we obtain
for all k an MSC Mk ∈ L(G) \ L(HT

k ). That is, G cannot be equivalent to any
local-choice CMSC-graph.

�

Using theorem 1 and the previous proposition, we obtain:

Theorem 3. Let G be a safe CMSC-graph. Then one can decide in co-NP
whether G is equivalent to some local-choice CMSC-graph. If the answer is posi-
tive, then an equivalent local-choice CMSC-graph can be built of size exponential
in |G|.

Here is an example for which we need an exponential-blowup for coming from
a globally-cooperative CMSC-graph to a local-choice CMSC-graph. Since there
is a loop on host, we need to put the n local events on the same node. Since
we have 2 choices for each local events, it yields 2n nodes in any equivalent
local-choice CMSC-graphs.

6 Conclusion

We presented an algorithm testing implementability of a scenario-based specifi-
cation, CMSC-graphs, into local-choice CMSC-graphs, which is a strict subclass



CMSCs Are Better to Implement Than MSCs. 443

of deadlock-free CFMs. This test seems practical since it is co-NP and gives an
implementation of size exponentially larger than the specification in the worst
case.

This test is an improvement in both expressivity and complexity of the in-
ternal report [7], even when the model is given as an MSC-graph. That is, com-
positionality appears only as a technical step in our construction, and needs not
to be known by the user.

There are two restrictions of local-choice MSC-graphs for turning them into
CFMs. The first one is the need of numerous peaks, and the second one is a
restriction on the number of events that are pairwise concurrent. We succeeded
in getting rid of the first restriction using compositional MSC-graphs. A further
work will consist in finding specification formalisms that allow more parallelism
than local-choice CMSC-graphs.

Acknowledgments. I would like to thank Anca Muscholl for fruitful discus-
sions, and anonymous referees for useful comments.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In ICALP’01, LNCS 2076, pp.797-808, 2001.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR’99, LNCS 1664, pp.114-129, 1999.

3. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in MSCs. In TACAS’97, LNCS 1217, pp.259-274, 1997.

4. Nicolas Baudru and Rémi Morin. Safe implementability of regular message se-
quence chart specifications. In (SNPD’03), pp 210–217. ACIS, 2003.

5. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):pp.323-342, 1983.

6. Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem for a class
of communicating automata with effective algorithms, to appear in DLT, LNCS,
2004.

7. B. Genest and A. Muscholl. The structure of local choice in HMSC Internal report
LIAFA, 2003 Available at http://www.crans.org/~genest/GM03.ps.

8. B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying and verifying partial
order properties using template MSCs. In FoSSaCS’04, LNCS 2987, pp.195-210,
2004.

9. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state High-level MSCs:
Model-checking and realizability. In ICALP’02, LNCS 2380, pp.657-668, 2002.

10. E. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts. In
International Journal on Software Tools for Technology Transfer (STTT), Volume
5, Springer, 2003.

11. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer 2003.

12. Löıc Hélouët and Claude Jard. Conditions for synthesis of communicating au-
tomata from HMSCs. In 5th FMICS’00, 2000.

13. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P. Thiagara-
jan. A Theory of Regular MSC Languages To appear In IC, 2004, available at
http://www.comp.nus.edu.sg/~thiagu/icregmsc.pdf.

http://www.crans.org/~genest/GM03.ps
http://www.comp.nus.edu.sg/~thiagu/icregmsc.pdf


444 B. Genest

14. ITU-TS recommendation Z.120, Message Sequence Charts, Geneva, 1999.
15. D. Kuske. Regular sets of infinite message sequence charts. In Information and

Computation 187, Academic Press, pp.80-109, 2003.
16. M. Lohrey. Safe realizability of High-level Message Sequence Charts. In CON-

CUR’02, LNCS 2421, pp.177-192, 2002.
17. M. Lohrey and A. Muscholl. Bounded MSC communication In Information and

Computation 189, Academic Press, pp.135-263, 2004.
18. P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs In

FSTTCS’01, LNCS 2245, pp.256-267, 2001.
19. A. Muscholl and D. Peled. Message Sequence Graphs and decision problems on

Mazurkiewicz traces. In MFCS’99, LNCS 1672, pp.81-91, 1999.
20. D. Peled. Specification and verification of Message Sequence Charts. In

FORTE/PSTV’00, pp.139-154, 2000.
21. USB 1.1 specification, available at http://www.usb.org/developers/docs/usbspec.zip
22. Bikram Sengupta and Rance Cleaveland. Triggered Message Sequence Charts. In

SIGSOFT 2002/FSE-10. ACM Press, 2002.

h

	Introduction
	Message Sequence Charts (MSCs)
	Existential Bound on Channels
	Implementation by CFMs
	A Concrete Protocol: USB

	Implementation Algorithms
	A Tractable Test Algorithm

	Conclusion



