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Abstract. Topology is a fundamental property of shapes in pictures.
Since the input for any image analysis algorithm is a digital image, which
does not need to have the same topological characteristics as the im-
aged real world, it is important to know, which shapes can be digitized
without topological changes. Most existing approaches do not take into
account the unavoidable blurring in real image acquisition systems or
use extremely simplified and thus unrealistic models of digitization with
blurring. In case of the mostly used square grids we show which binary
images can be digitized topologically correctly after blurring with an ar-
bitrary non-negative radially symmetric point spread function, which is
an important step forward to real digitization.

1 Introduction

A reliable image analysis algorithm requires a digital image having as many
properties as possible in common with its continuous preimage. One intrinsically
twodimensional property is the topology of shapes. There are several sampling
theorems known, which describe under which circumstances the topology of some
shape does not change during digitization. These theorems mostly differ in the
chosen digitization model and the used sampling grid. E.g. Pavlidis showed that
so-called r-regular shapes can be digitized with square grids without any change
in topology [4]. Serra proved the same for hexagonal grids [6] and recently we
extended these results to arbitrary sampling grids [1]. All of these approaches
used the subset digitization where a sampling point is set if and only if it lies
within the foreground region of the binary image, i.e. no blurring occurs. Unfor-
tunately, real optical systems blur the binary image before the light reaches the
optical sensors. In addition to that each sensor integrates the intensity of light
over some area. Both effects can be described as blurring – a convolution of the
ideal binary image with a suitable point spread function. A binary image can be
recovered by considering a particular level set Ll = {x ∈ IR2|f̂(x) ≥ l} of the
blurred image f̂ , i.e. by thresholding. Of course the resulting shape heavily de-
pends on the choice of the used point spread function. Latecki et al. [2, 3] used a
point spread function which is constant in its square-shaped support and proved
that r-regular images can be topologically correctly reconstructed after blurring
and sampling with a sufficiently dense square grid. In the above mentioned pre-
vious paper [1] we proved that this is also true for point spread functions, which
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Fig. 1. For each boundary point of an r-regular set there exists an outside and an
inside osculating open disc of radius r

are constant in their disc-shaped support. Up to now nothing has been known
about blurring with point spread functions which are not constant within their
support. Now we extent the results to arbitrary non-negative radially symmetric
point spread functions with bounded support. We prove that given such a point
spread function with a support of radius p and a square grid of sampling density
r′ > p, every r-regular image (r > r′ + p) will be digitized whithout any change
in the topology.

2 Regular Sets, Sampling and Reconstruction

At first we define some basic mathematical concepts. The Complement of a set
A will be noted as Ac. The boundary ∂A is the set of all common accumulation
points of A and Ac. A set A is open, if it does not intersect its boundary.
Br(c) := {x ∈ IR2|d(x, c) ≤ r} denotes the closed disc and B0

r(c) := (Br(c))0

denotes the open disc of radius r and center c. If a point x has the coordinates
x1, x2, we write (x1|x2) alternatively for x. We denote the Euclidean distance
between two points x, y as d(x, y) and the Hausdorff distance between two sets
A, B as dH(A, B) = max (maxx∈A miny∈B d(x, y), maxy∈B minx∈A d(x, y)). The
dilation of a set A with a disc Br is defined as A⊕Br := {x ∈ IR2|dH(A, {x}) ≤ r}
and the erosion is A � Br := {x ∈ IR2|dH(Ac, {x}) > r}. Lt(f) shall be the level
set with threshold value t of an image function f : IR2 → IR: Lt(f) := {x ∈
IR2|f(x) ≥ t}.

Most of the existing topological sampling theorems require the binary images
to be r-regular [1, 2, 3, 6, 7]. The concept of r-regular images was introduced
independently by Serra [6] and Pavlidis [4]. These sets are extremely well behaved
– they are smooth, round and do not have any cusps.

Definition 1. A compact set A ⊂ IR2 is called r-regular if for each boundary
point of A it is possible to find two osculating open discs of radius r, one lying
entirely in A and the other lying entirely in Ac (see Fig. 1).

In order to compare analog with digital images, two things are needed: First a
method to compare binary images and second a formal description of the pro-
cesses of sampling and reconstruction. The method for comparison we choose
is weak r-similarity (see [1, 7]). If two sets are weakly r-similar, they are topo-
logically equivalent (this criterion was chosen by Pavlidis [4]), have the same
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Fig. 2. A square grid with a distance of
√

2r′ between two adjacent sampling points is
an r′-grid

homotopy tree (as used by Serra [6]) and a Hausdorff distance of at most r.
Note that topological equivalence and identity of homotopy trees are different
criteria and neither implies the other (see [1]). The usefullness of a bounded
Hausdorff distance as similarity criterion is extensively discussed in the work of
Ronse and Tajine (see [5] for a summary). The generality of their approach is
remarkable, but it cannot directly be used for our problem, since it doesn’t say
anything about the topology of a digital reconstruction and it cannot be applied
to images which are blurred by some point spread function.

Definition 2. Two bounded sets A, B ⊂ IR2 are called weakly r-similar if there
exists a homeomorphism f : IR2 → IR2 such that x ∈ A ⇔ f(x) ∈ B, and the
Hausdorff distance between the set boundaries dH(∂A, ∂B) ≤ r ∈ IR+ ∪ {∞}.
The used homeomorphism is called IR2-homeomorphism between A and B.

In most practical cases the sampling grid is a square grid, as used in several
previous sampling theorems [2, 3, 4]. In this paper we will restrict ourselves to
this kind of sampling grid, although we used a more general approach in previous
papers [1, 7]. The reason is that the restriction to square grids allows us to prove
a sampling theorem for a much wider class of point spread functions.

Definition 3. A countable set S ⊂ IR2 of sampling points with dH(S, IR2) ≤ r′,
i.e. the Euclidean distance from each point x ∈ IR2 to the next sampling point
is at most r′ ∈ IR, is called an r′-grid if S ∩ A is finite for any bounded set
A ∈ IR2. The pixel PixelS(s) of a sampling point s is its Voronoi region, i.e.
the set of all points lying at least as near to this point as to any other sampling
point. If S = a · R · ZZ2 + b for some constant a ∈ (0,

√
2r′], rotation matrix R

and vector b ∈ IR2, S is called square grid (see Fig. 2). The union of the pixels
with sampling points lying in A is the reconstruction of A w.r.t. S, also called
the S-reconstruction of A: Â :=

⋃
s∈S∩A PixelS(s). Two pixels are adjacent

if they share an edge. Two pixels of Â are connected if there exists a chain of
adjacent pixels in Â between them. Two sampling points are adjacent (connected)
if their pixels are adjacent (connected). A component of Â is a maximal set of
connected pixels.

This most obvious approach for sampling is to restrict the domain of the
image function to the sampling grid. But this ideal digitization does not take
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Fig. 3. The definition of p-PSFs is very broad. Examples are the dirac impulse (a),
which leads to a non-blurred digitization, the disc-PSF (b) as used in [1, 7], conic PSFs
(c), truncated Gaussians (d), and even non-descending PSFs (e) and (f). While (f)
is an artificial example showing what kind of PSF is also allowed, (e) is of practical
interest, since the camera aperture can cause such diffraction patterns

into account any blurring. This can be added by a convolution of the image
with some point spread function before sampling. Digitization of a binary image
has three steps: At first the image gets blurred due to the camera optic. Then
the blurred grayscale preimage gets sampled and reconstructed (To reconstruct a
grayscale image means to fill each pixel with the image value at the corresponding
sampling point). Finally the image gets thresholded in order to get a binary
result. Mathematically the last two steps commute. Thus the definition of a
digitization without blurring completely determines how to digitize with some
blurring. You simply have to blur the original set, apply a threshold function
and digitize the result.

Definition 4. A function k : IR2 −→ IR is called a point spread function (PSF)
if

∫
IR2 k(x)dx = 1. The PSF k is a blurring PSF if it is non-negative. The PSF

kf with kf (x) := f(|x|) for some function f : IR+ −→ IR with
∫ ∞
0 r ·f(r)dr = 1

2π
is called radially symmetric. The function f is called the generator function of
kf . If kf is a radially symmetric blurring PSF with f(r) = 0 for every r greater
than some p, it is called a p-PSF. Now let A ⊂ IR2 be a binary set. Then its
characteristic function χA : IR2 → {0, 1} is 1 for any x ∈ A and 0 for any x 
∈ A.
Given a PSF k, the blurred image of A by using k is defined as fA := k � χA (�
denotes convolution).

With these definitions we have everything we need to prove a sampling the-
orem for blurred binary images.
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Fig. 4. After topologically correct digitization with a square grid none of the shown
configurations can occur. Thus the resulting image is well-composed

3 Sampling-Theorem for Blurred Binary Images

In a previous paper we already proved a sampling theorem for non-blurred binary
images and a theorem for binary images after blurring with a constant disc-
shaped PSF [1]:

Theorem 1. Let r ∈ IR+ and A an r-regular set. Then A is weakly r′-similar
to any S-reconstruction with some r′-grid S, 0 < r′ < r.

In case of square grids this implies that the S-reconstruction of an r-regular set
is well-composed, as defined by Latecki (see [3]). This means, the digital image
does not contain any of the pixel configurations shown in Fig. 4

Theorem 2. Let r, r′, p ∈ IR+ be positive numbers with r′ + p < r and let A be
an r-regular set, kp a p-PSF, and fA = kp � χA the blurred image of A. Further
let Ll be the level set of fA with some level l and let S be an arbitrary r′-. Then
the S-reconstruction L̂l of Ll is weakly (r′ + p)-similar to A.

In order to generalize these results to other types of point spread functions we
restricted ourselves to square grids. By doing this we are able to show that any
p-PSF with p < r′ can be used for digitization with an r′-grid, such that any
r-regular set (r > r′ + p) is topologically equivalent to its digital reconstruction:

Theorem 3. Let r, r′, p ∈ IR+ be positive numbers with p < r′ and r′ + p < r
and let A be an r-regular set, kp an arbitrary p-PSF, and fA = kp � χA the
blurred image of A. Further let Ll be the level set of fA with some level l and
let S be a square grid, which is an r′-grid. Then the S-reconstruction L̂l of Ll is
weakly (r′ + p)-similar to A.

Proof. With r′ > p follows 2r′ > r′ + p. Now let s ∈ IR+ be any number in the
interval (r′ + p, 2r′]. Then A is s-regular. If we can prove the theorem for such
an s instead of r, it is also true for r > s. We make use of the inequality s ≤ 2r′

below.
Due to the support of the PSF, fA(x) = 1 for any x ∈ A�Bp and analogously

fA(x) = 0 for any x 
∈ A ⊕ Bp. Due to s-regularity of A, the sets B := A � Bp

and C := A ⊕ Bp are both (s − p)-regular and weakly p-similar to A. Due
to Theorem 1 their S-reconstructions Â, B̂ are weakly (r′ + p)-similar to A.
Obviously B̂ ⊆ L̂l ⊆ Ĉ, which implies that the Hausdorff-distance between
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Fig. 5. At least one of the sampling points being adjacent to x lies in the shaded sector

∂A and ∂L̂l is bounded by r′ + p. Thus we only have to show that Ll is IR2-
homeomorphic to A. This is the case if any sampling point x ∈ L̂l is (directly)
connected in L̂l with some sampling point y ∈ B̂ and if any sampling point
x 
∈ L̂l is connected in L̂c

l with some sampling point y 
∈ Ĉ, because then no
additional component or hole can occur. We show this by proving that for any
x ∈ S with fA(x) ∈ (0, 1) there exists an adjacent sampling point x≥ with
fA(x≥) ≥ fA(x) and an adjacent sampling point x≤ with fA(x≤) ≤ fA(x). This
implies that the configurations shown in Fig. 4 cannot occur.

Let x ∈ S be a sampling point with fA(x) ∈ (0, 1) and let y ∈ ∂A be the
boundary point of A being nearest to x. Due to s-regularity there exists a unique
nearest boundary point. Without loss of generality let x = (d|0), y = (0|0), s = 1
(any other case can be derived by choosing an appropriate scale and coordinate
system) and let B0

1((1|0)) be the inside and B0
1((−1|0)) be the outside osculating

s-disc of A in y (see Fig. 5). Then the four sampling points being adjacent to x lie
on the circle with radius

√
2r′ and center x. At least one of them, which will be

noted as x′, lies on the rightmost quarter circle which is bounded by the points
(d+r′|r′) and (d+r′|−r′) (see Fig. 5). Now let D1 = 1+d be the distance between
(−1|0) and x, let D2 =

√
(1 − r′ − d)2 + r′2 be the distance between (1|0)and

(d + r′|r′) and let D3 be the distance between (1|0) and x′ (see Fig. 6). Then
D3 ≤ D2 since the center (d|0) of the circle containing x′ is to the left of (1|0).

Now let B := Bc
1 be a binary image, which is the complement of the unit

disc. By using B we construct a helper function h : [1 − p, 1 + p] −→ [0, 1] with
h(z) := fB((z|0)) (see Fig. 7). Obviously h is monotonically increasing since the
non-zero area Bp((z1|0))∩B of the image B covered by the PSF at postion (z1|0)
is a translated superset of the same area Bp((z2|0)) ∩ B at position (z2|0) for
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Fig. 6. The distance D3 between the center of the inside osculating disc and the adja-
cent sampling point x′ is at most equal to the distance D2

any z1, z2 ∈ [1 − p, 1 + p] with z1 > z2. The two circles ∂B1 and ∂Bp((z|0)) have
at most two points in common. There exists exactly one other circle of radius 1
sharing these points. This circle is centered in (1−p2

z + z|0). As Fig. 7 illustrates,
1 − h(z) ≥ h( 1−p2

z ).
Since the outside osculating disc B1((−1|0)) is a subset of Ac (see Fig.

5), fA(x) is at most equal to h(D1). Analogously since the inside osculating
disc B1((1|0)) is a subset of A, fA(x′) is at least equal to 1 − h(D3). With
D3 ≤ D2 it follows that 1−h(D2) ≤ 1−h(D3). Thus we only have to show that
h(D1) ≤ 1 − h(D2) in order to prove fA(x) ≤ fA(x′).

We know that −p ≤ d ≤ p and 0 ≤ 1 − r′ ≤ 1
2 (because 1 = s ≤ 2r′). Now

suppose to the contrary, h(D1) > 1 − h(D2). Then h(D1) > h( 1−p2

D2
) and due to

montony of h follows D1 > 1−p2

D2
> 1−(1−r′)2

D2
. By substitution of D1 and D2 we

get 1 + d > 1−(1−r′)2√
(1−r′−d)2+r′2 . Since both sides of the inequation are positive, we

can square it, and further simplification leads to

(1 − r′) − d

(1 + d)2
(2 + 2d + 2d2 + d3 − (2 + d)2(1 − r′) + d(1 − r′)2 + (1 − r′)3) < 0.

Since the fraction is always non-negative for the allowed d, r′, we only have to
look at the rest of the inequation. This inequation is equivalent to both of the
following inequations:
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Fig. 7. The helper function h describes the result of blurring the complement of the
unit disc image with the PSF at some position with distance z to the origin

2(1 + d)(1 − 2(1 − r′)) + (1 − r′)((1 − r′) + d)2+
2d2(1 − (1 − r′)) + (−d)((1 − r′)2 − d2) < 0

2(1 + d)(1 − 2(1 − r′)) + d(1 − r′)((1 − r′) − d)+
d3 + (1 − r′)3 + 2d2 < 0

In case of d < 0 each addend of the first inequation consists completely of non-
negative factors and in case of d ≥ 0 each addend of the second inequation
consists completely of nonnegative factors for |d| ≤ p < 1− r′ ≤ 1

2 . Thus for any
d one of the inequations is obviously false which implies that the assumption
h(D1) > 1 − h(D2) is not true. It follows that for any x ∈ S with fA(x) ∈ (0, 1)
there exists an adjacent sampling point x≥ with fA(x≥) ≥ fA(x) and analo-
gously there exists an adjacent sampling point x≤ with fA(x≤) ≤ fA(x). ��

Since the class of possible point spread functions is very general, this sam-
pling theorem can be applied to much more practical applications than previous
ones. Unfortunately the restriction p < r′ is very strict. We conjecture that the
theorem is true for any p with p + r′ < r, but we were up to now not able to
prove this formally.

4 Conclusions

We proved a sampling theorem which can be summarized in an extremely simple
statement: By using a p-PSF and a square grid, which is an r′-grid (with r′ > p),
we can digitize any r-regular binary image without any topological changes if
only r > r′ + p. This is true for any threshold value used for binarization.

Realistic cameras have very complicated point spread functions and often one
does not know the exact PSF. Due to our result one does not have to know this, if
only one can assume that it is nonnegative, radially symmetric and has a bounded
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support of known (or estimated) radius. Thus our result can be applied to real
camera acquisition systems much better than the findings of Latecki et al. [2, 3]
and some of our previous papers [1, 7], where only point spread functions were
allowed which are constant in their whole support. Unfortunately our proof has a
restriction to the maximal size of the PSF relatively to the sampling density. We
think that this is not necessary and conjecture that our results can be generalized
to any p-PSF with r > p + r′. Additionally we think that equivalent theorems
can be shown for other sampling grids like hexagonal or even irregular grids, but
we cannot prove this yet.
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