Surface Volume Estimation of Digitized
Hyperplanes Using Weighted
Local Configurations

Joakim Lindblad

Centre for Image Analysis, Uppsala University, Uppsala, Sweden
joakim@cb.uu.se

Abstract. We present a method for estimating the surface volume of
four-dimensional objects in discrete binary images. A surface volume
weight is assigned to each 2 x 2 X 2 x 2 configuration of image elements.
The total surface volume of a digital 4D object is given by a summation
of the local volume contributions. Optimal volume weights are derived
in order to provide an unbiased estimate with minimal variance for ran-
domly oriented digitized planar hypersurfaces. Only 14 out of 64 possi-
ble boundary configurations appear on planar hypersurfaces. We use a
marching hypercubes tetrahedrization to assign surface volume weights
to the non-planar cases. The correctness of the method is verified on four-
dimensional balls and cubes digitized in different sizes. The algorithm is
appealingly simple; the use of only a local neighbourhood enables effi-
cient implementations in hardware and/or in parallel architectures.

Keywords: surface volume estimation, marching cubes, digital hyper-
planes, 4D, cell tiling.

1 Introduction

In many applications of digital image analysis, quantitative geometrical mea-
sures, such as length and area of objects, are of foremost interest. When working
with three-dimensional (3D) digital images, an often desired measure is the sur-
face area of a digitized object. With modern imaging techniques and powerful
computers, it has become interesting to look at higher dimensional data volumes.
The four-dimensional (4D) counterpart to surface area is surface volume. In this
paper we present a method to perform accurate surface volume estimations of
4D objects in binary digital images using a technique based on local cell tiling.
In [ITL12] we presented a surface area estimator for 3D images that utilises
only local computations and a small local neighbourhood to obtain an estimate
that is very fast to calculate and still exhibits good performance in terms of
accuracy, precision and robustness. In this paper we extend this methodology to
four dimensions, and derive optimal surface volume weights for the hyxel (hyper
volume picture element) configurations that appear on planar hypersurfaces.
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2 Previous and Related Work

Visualization methods for high dimensional data are relatively well developed.
There exist tools for 4D plane-tracing (a 4D extension of ray-tracing) and many
techniques based on splatting. The popular Marching Cubes algorithm [I3], for
generating a triangulated iso-surface from voxel data, has also been extended to
higher dimensions [I]. Far less is available in the field of image analysis and the
task of extracting quantitative data from high-dimensional images. Concerning
the geometry of digital 4D objects, work on, e.g., distance transforms [2] and
skeletonization [6] in 4D has been presented. To the best of our knowledge, no
surface volume estimation technique for discrete 4D data has previously been
presented in literature. However, many similarities with surface area estimates
of 3D objects and perimeter estimates of 2D objects do exist.

The perimeter of a digitized 2D object can be estimated as the cumulative
distance from pixel centre to pixel centre along the border of the object, where
an isothetic step is given weight 1 and a diagonal one is given weight /2. This
is straightforward to accomplish using the Freeman chain code [5], but results
in rather big over-estimates. Starting from an assumption that the boundary of
an object is locally linear, optimal weights for the local steps have been derived,
leading to an unbiased estimator with a minimal mean squared error (MSE) [10]
T4]. A similar approach can be taken in order to estimate the surface area of
digitized 3D objects. By counting the local configurations of voxels that appear
on the boundary of a digital object a fast and accurate area estimate is achieved.
In [ITL12] optimal surface area weights were derived, providing an unbiased
estimator with minimal MSE. The method described in this paper is a direct
extension of this technique to the 4D case.

In addition to the local type of estimators mentioned above, different multi-
grid convergent perimeter and surface area estimators exist, see, e.g., [4] for an
overview of perimeter estimators, and [7,[0,3] for examples of multigrid conver-
gent surface area estimators. This class of estimators ensure convergence toward
the true value as the grid resolution increases [8]. Many multigrid convergent es-
timators are based on finding straight line/plane segments. However, in order to
do so we can no longer use local algorithms. Coeurjolly et al. [3] have presented
efficient algorithms based on discrete normal vector field integration, where the
problem of perimeter/surface area estimation is transformed into a problem of
normal vector estimation. It seems that this approach may be extended to higher
dimensions. To our knowledge no one has so far attempted to do so.

3 Surface Area Estimation

To introduce the methodology, we present, in this section, a brief derivation of
the 3D version of the method; for measuring the surface area of a digitized 3D
object. For a more detailed description see [12].

The estimation is based on counting local configurations of 2 x 2 x 2 voxels.
In a binary image, the number of possible configurations of the eight voxels is
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Fig. 1. The 14 major 3-cubes of 2 x 2 x 2 voxels. Marked voxel centres are inside the
object. The complementary cases are classified to be the same as the original cases.
Only cases ci1, c2, ¢s, cs, and cg, appear for planar surfaces

22° = 256. Using rotation, mirror, and complement symmetry, the 256 configu-
rations can be grouped into 14 major cases c;, see Fig. [l

A surface area contribution A; is assigned to each case (¢g does not represent
a boundary situation, and therefore has zero area contribution). The number
of occurrences N; of each of the 13 surface configurations is computed for the
digitized object, and the surface area estimate A of the object is calculated as

13
A= Z A;N; . (1)
=1

The area contributions A; are optimally selected so as to provide an unbiased
estimate with a minimal MSE when the method is applied to infinite planes
(the surfaces of half-spaces) digitized over an isotropic distribution of normal
directions. This optimization can be justified by the fact that the surface of an
object with limited curvature becomes locally planar as the sampling density
increases. Only five of the 13 possible surface configurations appear for planar
surfaces. We call these five cases the planar cases. They dominate the boundary
of most objects digitized at a resolution high enough to capture the details of
the surface structure.

When performing the optimization, we can, due to the symmetry of the
sampling grid, without loss of generality, restrict the study to planes that can be
expressed as a function z(w,y) = zix + z;y + k, 0 < 27 < z; < 1. Voxels with a
centre on, or below, the plane are included in the object. We vary the offset term
k and observe the configurations that appear when a plane of a given normal
direction cuts a column of cubes (an infinite stack of cubes in the z-direction).
Depending on if 2 + zg, is less or greater than 1, two different sets are observed.
This is shown in Figs. Pl and Bl We keep track of the intersections between the
surface and all cubes in the column. For example, in Fig. the lower cube is
of type cs and the upper one is of type c;.

For a plane in general position the offset term is uniformly distributed. Given
a specific normal direction n, the expected number of occurrences of each case
E; = E[N;|n] per column of intersected cubes, can be directly calculated from
Figs. Bl and B
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Fig. 2. The different cases appearing for z; + z; <1 as k is varied
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Fig. 3. The different cases appearing for z; + z;, > 1 as k is varied

For 2, + 2, <1,

By =2z, Ey=2(2—2), FEs=22, Eg=1-2 —2,
and for z; + 2y > 1,

E = 22;,, Ey =2(z, — z;), Es=2(1-2.), FEo¢=(z+ z; —1).
The number of intersected columns of cubes, for a planar surface segment of area

A and normal direction n, is Neo(n) = —— L A. The estimated surface
Nl

area is given by

ZA E Col( ) (2)

The MSE of [@)) is minimized over all normal directions, while keeping zero
bias, in order to find optimal values for A;. On a planar surface cases 1, 5, and
9 always appear together, which leads to a non-unique solution. The reason for
this is that the planar surface continues into the neighbouring cubes and divides
them in a way that creates the co-appearing cases. Leaving A; as a variable we
obtain the following solution:

Ay =0.669, As=1.190—A;, As=0.927, Ag=1.694—24;. (3)

These weights provide, independent on how we choose A;, an unbiased area
estimate with a coefficient of variation (CV=p/o) of 1.40% for planar surfaces.

In order to estimate the surface area of general object boundaries, area con-
tributions have to be assigned to all the 13 surface cases. Since the non-planar
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Table 1. Table of elementary areas assigned to the different 3-cube cases. A; is left
undefined

A1 :undeﬁned A2 = 0.6690 A‘; = 2A1 A4 = 2A1
As =1.1897 — A; Ag = A1 + Ao A7 = 34, Ag = 0.9270
Ag =1.6942 — 24, AlO =24, A1 =1.5731 A = A1 + A5 A13 =4A;

cases are, in general, scarcely appearing in real object volumes, the area contri-
bution assigned to these cases will have a limited impact on the overall surface
area estimate. Dividing the cubes into (locally) face-connected components, all
but one of the additional cases can be decomposed into the five planar ones.
This way we introduce a minimal number of new values. The only truly new
configuration is c11, which we here assign an area of 1.5731 (derived from a
Marching Cubes triangulation of that case). The surface area weights of all 13
cases are summarized in Table [I, where A; is left undefined. Note, however,
that this subdivision of cases is not uniquely determined. For example, ¢7 can
either be split into 3¢y or cg + ¢; depending on if we look at the original or the
complementary case.

For curved surfaces, the relation between cases ¢y, ¢5, and c9 no longer holds,
and the specific choice of the free parameter A; will affect the estimation result.
In [I2] the freedom to choose the value of A; is used to minimize the estima-
tion error of the method when applied to a distribution of digitized balls of
increasing radii.

4  Surface Volume Estimation

For 4D surface volume estimation we use configurations of 2 x 2 x 2 x 2 hyxels,
which in a binary image gives 22" = 65536 different configurations. Using rota-
tion, mirror, and complement symmetry, they can be grouped into 222 major
cases. 14 of these, shown in Fig. [, appear on the surfaces of planar volumes. Just
as in the 3D case, we restrict the study to hyperplanes that can be expressed as
a function w(w,y,z) = wiz + wyy + wyy +k, 0 < w, < wy < wy < 1. We vary
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Fig.4. The 14 planar 4-cubes, appearing on the surface of planar volumes. Marked
hyxel centres are inside the object
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Fig. 5. The different cases appearing for wy +wy +w, < 1,wy < wy +w, as k is varied

the offset term k and study the configurations that appear when a hyperplane
of a given normal direction cuts a column (in the w-direction) of 4-cubes.
Depending on the slope of the hyperplane, one out of 14 different sets of
configurations appear. The set, w} + wy + w, < 1w} < wj + wy, is shown in
Fig. Bl Just as in the 3D case, it is straightforward, albeit a bit tedious, to cal-
culate the expected number of cells of each type that appear when a column
of 4-cubes is intersected by a hyperplane of a given normal direction. The con-
figurations are listed in the Appendix. The number of intersected columns of
4-cubes, for a planar surface segment of volume V' and normal direction n, is

Ne(n) = ——L V. The estimated surface volume is given b
cl(M) = s given by

V(n) =Y ViEi(n)Nea(n). (4)

We minimize the MSE of (@) over all normal directions, while keeping zero
bias, in order to find optimal values for V;. Just as in the 3D case, we do not
get enough information from using only planar objects to find a unique solution.
Leaving V1, V5, V3, V5 as variables the optimization leads to the weights presented
in Table Pl These weights provide an unbiased volume estimate with a CV of

Table 2. Table of elementary volumes assigned to the planar 4-cubes

V1 =undefined V5 =undefined V3 = undefined Vi = 0.668
Vs =undefined Vg =0.609—V3+Vs Ve=1194—-Vo Vg=1.707—-V1—-V;s
Vo = 0.920 Vio=0.972 -1 Vi1 =158 — V1 — V3

Vie=2113-V; — Vo — V5 Vi3 =2.630 —2V; —2V5  Vi4 = 1.680 — 2V%
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Fig. 6. The 50 non-planar 4D sub-cases

0.77% for planar hypersurfaces, independent on how we choose Vi, Vs, V3, Vs.
The maximum absolute error, AD=7.97% is reached for hyperplanes aligned
with the digitization grid.

4.1 Curved Volumes

In order to estimate the surface volume of curved 4D objects, we need to assign
volume contributions to all 221 surface cases. Similar as for the 3D case, we
can reduce this number by dividing the 4-cubes into (locally) volume connected
components. This way the 222 major cases can be reduced to 65 sub-cases. Note
that this is less than the number given by Roberts [I5]. The reason for this
is that we consider it valid to look at the complement also when splitting the
cells into components (since complement is used anyway to reach the 222 major
cases). This is similar to the optional splitting of ¢7 into cg 4 ¢; in the 3D case.
It is an open question how to assign an optimal surface volume weight to the 50
non-planar sub-cases (shown in Fig. [G).

5 Simulations

To verify and evaluate the performance of the estimator, we test the method on
synthetic objects of known surface volumes. The used test objects are 4-balls of
radii 1-80 hyxels and 4-cubes of side lengths 2-160 hyxels. We generate 30000
instances of each object in the continuous space and digitize them using Gauss
digitization, with a random orientation and position in the digitization grid.
We have assigned surface volume weights derived from a marching hypercubes
tetrahedrization [I] to the non-planar cases that appear on the edges of the
4-cubes, and to the unassigned planar cases, ci, c2, c3, and cs.
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Fig. 7. Relative error (a) and absolute deviation (b) of the surface volume estimates
for digitized objects of increasing size. The error bars indicate minimum and maximum
values of the estimate

Average relative error and maximum absolute deviation for the surface vol-
ume estimation method are shown in Fig.[7l The surface of a large 4-ball is a good
sampling of hyperplanes of all normal directions and the described surface vol-
ume estimator is therefore expected to exhibit very low variance on such objects.
This is verified by the simulations, where superlinear convergence O(r~%) , a=2,
is observed. Improved low resolution performance can be achieved by adjusting
the weights V7, V5, V3, and Vi. This is beyond the scope of this paper.

6 Summary

We have presented a method for estimating the surface volume of binary 4D
objects using local computations. The surface volume is computed as a sum of
local volume contributions. Optimal volume weights for the 2 x 2 x 2 x 2 con-
figurations of hyxels that appear on digital planar hypersurfaces are derived.
The method gives an unbiased estimate with minimum variance for randomly
oriented planar hypersurfaces. Theoretic worst case CV for the suggested sur-
face volume estimator is 0.77%, and the maximum absolute error is 7.97%. The
maximum error is reached for planar hypersurfaces aligned with the digitization
grid. The solution for planar volumes is not unique and freedom in the choice
of parameters may be used to improve the performance at lower resolutions in
a manner similar to what was done for the 3D case in [12]. For curved volumes
additional cases appear. It is an open question how to assign optimal volume
weights to these cases.
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Appendix

The expected number of occurrences of the 14 planar 4D-configurations when
a column of 4-cubes is intersected by hyperplanes of different slopes. Cases
which are not mentioned for a specific slope do not appear. Cases ¢; and co
appear with the same frequency for all slopes; E1 = 2w,, Ey = 2(w§, — wy).
la: wi +wy +wy, <1, wy < wy + wy.
B3 = 2(wy — wy), Es = 2wy +w, —wy), Es=2(wyx —wy),
E7 = 2(wy — wy,), Es = 2w, Ey =1—wy —wj, — wy,.

Ib: wi +wy +wy, <1, wi > wy +w,.
E3 = 2w, Ey =2(wy —wy —wy,), FEs= 2w,
E7r = 2wy, —w},), Eg = 2w, Eo=1—wy —wy, —wy,.
/
-
B3 = 2(wy — wy), Es = 2(wy +w, —wy), Es=2(wyx —wy),
E7 = 2(wy — wy,), Es =2(1 — wy, — w}), Eis = wy + wy +wj, — 1.

. !/ / / / / / /
2at wy +wy +wy, > 1, wi+wy, <1, wi <w;, +w

2b: wy +wy +wy > 1, wp +wy <1, wl > wy +wy,.

(wy —wy —wy), FEg= 2wy,

E3:2w;, E4:
E (1—wi —wy), Fi3 = w} + wy +w, — 1.

Er = 2(wy —wy),
3a: wy +wy > 1, wi+w, <1, w, <wp +w, w,+w, —1<w,

Es = 2wy, — wy), Es = 2(wy +w; —wy), Es=2(w; —wy),
Er =2(1 —wy —w}), FEi2=2(wi+w;,—1), Eiz3=1+w,—w,—wy.

3brwl +wy > 1, wp+w, <1, wy >w, +wy,, wp+w, —1<w,.

Es = 2w, Ey =2(wy, —wy —wy,), FEs=2w,,
Er =2(1—wi —w,), Fi=2wi+wy,—1), Eiz=1+w,—w,—wy.

ciwy +wy > 1, wi+wy <1, w <wy +wy,  w +wy — 1> wy.

Es = 2(w}, — wy), Es = 2(wy + w, —wy), Es=2(w, —w}),
E; =2(1 —w} —wy), Ei2= 2wy, By =wi +wy, — 1 —w,.

3d: wi +wy, > 1, wi tw, <1, wi >w, +w, wp+w, —1>w,.
B3 = 2w, By = 2wy —wy —wy), Es=2uw,,
E; =2(1 —w} —wy), FEi2 = 2wy, By = wi +wy, — 1 — w,,.

. !/ !/ / !/ / /! / / !/ /
dat wy +wy > 1, wy+w, <1, w <wy, +w,, wi+tw, —1<w,.

Es = 2(wy, — w}), Es =2(wy +w, —wy), FEs=2(1—-wy —wy),
E11 :2(w;+w;—1), E12 :2(10;,—10;), E13=1+’LU;—IU)/(—’LU§,.

db: wi +wy > 1, wy+w, <1, wy >wy +wy,  wy +wy — 1< wy.
E3 = 2wy, Ey =2(wy, —wj, —w,), Es=2(1—w),
By =2(wi +w, — 1), E2 =2(wy; —wy,), Eis =14 w, — wy — wy.
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det wi +wy > 1, wp+wy <1, wy Swy twy, wy +wy — 1> wy,
Es :Q(w;—w;), Es :2(w;+w;—w;), FEg :2(1—w§,—w;),

B =2(wl +wl, — 1), Eia=2(1—w),

wy > wy +wy,

Euy=wi+wy, —1—w,

/ / /
wy +wy, — 1> w;.

dd: wy +wy, > 1, wy +w, <1,
E5 = 2wy, 4—2(w;—wy—wz
E11:2(w;+w;71), E12: ( w)/c)a
Sa:wy +w, > 1, wi+wy, —1<w

),

E6:2(1_'LU,/(),
B =wi +wy — 1 —w,

Es = 2(w, — wy), Es =2(1 — wy),

E1 = 2(wy — wy),

Sctwy +wy > 1, wi +wy — 1> wj.

Ei2 = 2(wy — wy),

E10 = Q(w)’, er; — 1),
Ei3 =1+ w, — wy — wy.

E5 — (1 - wx),
B2 =2(1 — wy),

E3 = 2(wy, — w}),
Ey = 2(10; - wé,),

E10 :2(11];-"-11};—1),
By =wi +wy — 1 —w,
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