
Algorithms for the Topological Watershed

Michel Couprie, Laurent Najman, and Gilles Bertrand

Laboratoire A2SI, Groupe ESIEE,
BP99, 93162 Noisy-le-Grand Cedex France

IGM, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049
{m.couprie, l.najman, g.bertrand}@esiee.fr

Abstract. The watershed transformation is an efficient tool for seg-
menting grayscale images. An original approach to the watershed [1, 4]
consists in modifying the original image by lowering some points until sta-
bility while preserving some topological properties, namely, the connec-
tivity of each lower cross-section. Such a transformation (and its result)
is called a topological watershed. In this paper, we propose quasi-linear
algorithms for computing topological watersheds. These algorithms are
proved to give correct results with respect to the definitions, and their
time complexity is analyzed.

1 Introduction

The watershed transformation was introduced as a tool for segmenting grayscale
images by S. Beucher and C. Lantuéjoul [2] in the late 70’s, and is now used as a
fundamental step in many powerful segmentation procedures. The most popular
presentation of the watershed is based on a flooding paradigm. Let us consider
a grayscale image as a topographical relief: the gray level of a pixel becomes the
altitude of a point, the basins and valleys of the relief correspond to the dark areas,
whereas the mountains and crest lines correspond to the light areas. Let us imagine
the surface of this relief being immersed in still water, with holes pierced in local
minima. Water fills up basins starting at these local minima, and dams are built
at points where waters coming from different basins would meet. As a result, the
surface is partitioned into regions or basins which are separated by dams, called
watershed lines. Efficient watershed algorithms based on immersion simulation
were proposed by L. Vincent, P. Soille [12] and F. Meyer [6, 3] in the early 90’s.

A different approach to watersheds, originally proposed by G. Bertrand and
M. Couprie [4], is developed in [1]. In this approach, we consider a transformation
called topological watershed, which modifies a map (e.g. a grayscale image)
while preserving some topological properties, namely, the connectivity of each
lower cross-section. It is proved in [1] that, among other properties, topological
watersheds satisfy a “constrast preservation” property which is, in general, not
satisfied by the most popular watershed algorithms [8].

In this paper, we study algorithms to compute topological watersheds. These
algorithms are proved [5] to give correct results with respect to the definition,
and their time complexity is analyzed.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 172–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Algorithms for the Topological Watershed 173

2 Topological Notions for Weighted Graphs

Let E be a finite set, we denote by P(E) the set of all subsets of E. Throughout
this paper, Γ will denote a binary relation on E (thus, Γ ⊆ E × E), which is
reflexive (for all p in E, (p, p) ∈ Γ ) and symmetric (for all p, q in E, (q, p) ∈ Γ
whenever (p, q) ∈ Γ ). We say that the pair (E, Γ ) is a graph, each element of E
is called a vertex or a point . We will also denote by Γ the map from E into P(E)
such that, for any p in E, Γ (p) = {q ∈ E; (p, q) ∈ Γ}. For any point p, the set
Γ (p) is called the neighborhood of p. If q ∈ Γ (p) then we say that p and q are
adjacent or that q is a neighbor of p. If X ⊆ E and q is adjacent to p for some
p ∈ X, we say that q is adjacent to X.

For applications to digital image processing, assume that E is a finite subset
of Z

n (n = 2, 3), where Z denotes the set of integers. A subset X of E represents
the “object”, its complementary X = E \X represents the “background”, and Γ
corresponds to an adjacency relation between points of E. In Z

2, Γ may be one
of the usual adjacency relations, for example the 4-adjacency or the 8-adjacency
in the square grid. In the sequel, the 4-adjacency is assumed.

Let (E, Γ ) be a graph, let X ⊆ E, and let p0, pk ∈ X. A path from p0 to pk

in X is an ordered family (p0, p1, . . . , pk) of points of X such that pi+1 ∈ Γ (pi),
with i = 0 . . . k − 1. Let p, q ∈ X, we say that p and q are linked for X if there
exists a path from p to q in X. We say that X is connected if any p and q in
X are linked for X. We say that a subset Y of E is a (connected) component of
X if Y ⊆ X, Y is connected, and Y is maximal for these two properties. In the
sequel of the article, we will assume that E is connected.

We are interested in transformations that preserve the number of connected
components of the background. For this purpose, we introduce the notion of
W-simple point (where Wstands for watershed) in a graph. Intuitively, a point
of X is W-simple if it may be removed from X while preserving the number of
connected components of X.

Definition 1. Let X ⊆ E, let p ∈ X. We say that:
• p is a border point (for X) if p is adjacent to X;
• p is an inner point (for X) if p is not a border point for X;
• p is separating (for X) if p is adjacent to at least two components of X;
• p is W-simple (for X) if p is adjacent to exactly one component of X.

Notice that a point which is not W-simple is either an inner point or a
separating point. In Fig. 2, the points of the set X are represented by “1”s. The
points which are W-simple are circled. It may be easily seen that one cannot
locally decide whether a point is W-simple or not. Consider the points p and q
in the third row: their neighborhoods are alike, yet p is W-simple (it is adjacent
to exactly one connected component of X), and q is not, since it is adjacent to
two different connected components of X.

Now, we extend this notion to a weighted graph (E, Γ, F ), where F is a map
from E to Z. A weighted graph is a model for a digital grayscale image; for any
point p ∈ E, the value F (p) represents the gray level of p. We denote by F(E)
the set composed of all maps from E to Z.



174 M. Couprie, L. Najman, and G. Bertrand

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

p q

X, X

Fig. 1. A set X (the 1’s) and its complement X (the 0’s). All the W-simple points are
circled

3 3 3 2 2 2 1

3 3 3 2 2 1 1

3 3 2 2 1 1 0

3 2 2 2 1 0 0

2 1 1 2 0 0 0

1 1 1 1 2 1 1

1 1 1 2 1 0 1

x

z

y r

s

F

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 1 0

F1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 0 1 1 1

F2

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

F3

Fig. 2. A grayscale image F and its lower sections F1, F2 and F3 (in white). The points
x, r, s are inner points, y is W-destructible (with lowest value 1), and z is separating

Definition 2. Let F ∈ F(E), let k ∈ Z.
We denote by Fk the set {p ∈ E; F (p) ≥ k}; Fk is called an upper section of F ,
and its complementary Fk is called a lower section of F .
A component c of Fk is called a (regional) minimum for F if c ∩ Fk−1 = ∅.
We denote by Γ−(p, F ) the set of lower neighbors of the point p for the map F ,
that is, Γ−(p, F ) = {q ∈ Γ (p); F (q) < F (p)}. When no confusion may occur, we
write Γ−(p) instead of Γ−(p, F ).

Fig. 2 shows a grayscale image F and three lower sections of F : F2 is made
of two components (in white), and F3 is made of one component. The set F1 is
made of two components which are both minima of F .

Definition 3. Let F ∈ F(E), let p ∈ E, let k = F (p).
We say that p is a border point (for F ) if p is a border point for Fk.
We say that p is an inner point (for F ) if p is an inner point for Fk.
We say that p is separating (for F ) if p is separating for Fk.
The point p is W-destructible (for F ) if p is W-simple for Fk. Let v ∈ Z, v <
F (p), the point p is W-destructible with lowest value v (for F ) if for any h such
that v < h ≤ F (p), p is W-simple for Fh, and if p is not W-simple for Fv.

In other words, the point p is W-destructible for F if and only if p is a border
point for F (i.e., Γ−(p) �= ∅) and all the points in Γ−(p) belong to the same
connected component of Fk, with k = F (p). In Fig. 2, the points x, r, s are inner
points, y is W-destructible (with lowest value 1), and z is separating.



Algorithms for the Topological Watershed 175

Let F ∈ F(E), let p ∈ E, let v ∈ Z such that v < F (p), we denote by [F \p ↓ v]
the element of F(E) such that [F \ p ↓ v](p) = v and [F \ p ↓ v](q) = F (q) for
all q ∈ E \ {p}. Informally, it means that the only difference between the map
F and the map [F \ p ↓ v], is that the point p has been lowered down to the
value v. We also write [F \ p] = [F \ p ↓ v] when v = F (p) − 1.

If we consider F ′ = [F \ p ↓ v], it may be easily seen that for any h in Z,
the number of connected components of F ′

h equals the number of connected
components of Fh. That is to say, the value of a W-destructible point may be
lowered by one or down to its lowest value without changing the number of
connected components of any lower section of F .

Definition 4. Let F ∈ F(E). We say that G ∈ F(E) is a W-thinning of F if
i) G = F, or if
ii) there exists a map H which is a W-thinning of F and there exists a W-
destructible point p for H such that G = [H \ p].
We say that G is a (topological) watershed of F if G is a W-thinning of F and
if there is no W-destructible point for G.

Let F ∈ F(E), let p ∈ E, let v ∈ Z. It may be easily seen that, if p is W-
destructible with lowest value v, then [F \ p ↓ v] is a W-thinning of F and p is
not W-destructible for [F \ p ↓ v] ; and that the converse is also true.

In other words, one can obtain a W-thinning of a map F by iteratively se-
lecting a W-destructible point and lowering it by one, or directly down to its
lowest value. If this process is repeated until stability, one obtains a topological
watershed of F . Notice that the choice of the W-destructible point is not neces-
sarily unique at each step, thus, in general, there may exist several topological
watersheds for the same map.

In Fig. 3, we present an image 3a and a topological watershed 3b of 3a.
Note that in 3b, the minima of 3a have been spread and are now separated
from each other by a “thin line”; nevertheless, their number and values have
been preserved. Fig. 3c shows a W-thinning of 3a which is not a topological
watershed of 3a (there are still some W-destructible points).

Let us consider a point p ∈ E which is not W-destructible for F ∈ F(E).
Three cases may be distinguished. From Def. 3, such a point is either an inner
point or a separating point for F . Furthermore, if p is an inner point, then
either p belongs to a minimum of F or not.

On the other hand, if p is W-destructible for F , then p is not W-destructible
for [F \p ↓ v] where v is the lowest value of p. Again, we can distinguish the same
three possibilities for the status of p with respect to [F \ p ↓ v]. The following
definition formalizes these observations (S stands for separating, M for minimum
and P for plateau).

Definition 5. Let F ∈ F(E), let p ∈ E, p not W-destructible for F .
We say that p is an S-point (for F ) if p is separating for F .
We say that p is an M-point (for F ) if p belongs to a minimum of F .
We say that p is an P-point (for F ) if p is an inner point for F which does not
belong to a minimum of F .



176 M. Couprie, L. Najman, and G. Bertrand

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 11 11 4 4 3 0 5 11 11 3 2 0

0 3 12 7 5 11 6 6 7 11 5 7 12 4 0

0 15 7 2 3 5 11 11 11 5 3 7 7 15 0

0 3 14 3 5 11 8 7 8 11 5 7 14 5 0

0 1 2 11 11 3 2 2 2 4 11 13 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 11 2 2 11 0 0 0 11 1 1 11 0 0

0 11 2 2 2 2 11 0 11 1 1 1 1 11 0

0 0 11 2 2 11 0 0 0 11 1 1 11 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 12 2 2 11 0 0 0 11 1 1 12 0 0

0 15 2 2 2 2 11 0 11 1 1 1 1 15 0

0 0 14 2 2 11 0 0 0 11 1 1 14 0 0

0 0 0 11 11 0 0 0 0 0 11 13 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d

Fig. 3. a: original image; b: a topological watershed of a; c: a W-thinning of a which
is also an M-watershed of a (see Sec. 3); d: a W-crest of a (see Sec. 3). In a, we have
circled six points which have different types (see Def. 5). From left to right: S̃-point (12),
S-point (11), M̃-point (4), P̃-point (6), M-point (0), P-point (7).

Let q be a point which is W-destructible for F , let v be its lowest value.
We say that q is an S̃-point (for F ) if q is an S-point for [F \ q ↓ v].



Algorithms for the Topological Watershed 177

We say that q is an M̃-point (for F ) if q is an M-point for [F \ q ↓ v].
We say that q is a P̃-point (for F ) if q is a P-point for [F \ q ↓ v].

In Fig. 3a, we have circled six points which are representative of all the
possible types.

The components of the lower sections of a map may be organized, thanks
to the inclusion relation, in a tree structure that we call component tree (see
the bibliography of [7] for a list of references). In [5], we propose and prove
a characterization of the W-destructible points, which may be checked locally
and efficiently implemented thanks the component tree. In [7], we introduce a
new algorithm, using Tarjan’s union-find procedure [10], to build the component
tree of any weighted graph in quasi-linear time, that is, in O(n × α(n)) where
n is the size of the graph (number of vertices + number of arcs) and α(n) is
a function which grows extremely slowly with n (we have α(1080) ≈ 4). For a
precise definition of α, see [10].

Furthermore, for applications to digital image processing, where each point
has a fixed (and small) number of neighbors, we can consider that testing whether
a point is W-destructible and computing its lowest value can be done in constant
time thanks to the component tree.

3 M-Thinning and Binary Watershed Algorithm

The outline of a topological watershed algorithm is the following:

Repeat Until Stability
Select a W-destructible point p, using a certain criterion
Lower the value of p

It can be seen that, even if a W-destructible point is lowered down to its lowest
value, it may again become W-destructible in further steps of the W-thinning
process, due to the lowering of some of its neighbors. For example, the point at
level 6 circled in white in Fig. 3a is W-destructible with lowest value 4. If we
lower this point down to 4, we will have to lower it again, after the lowering of
its neighbor at level 4 down to 3 or 0.

In order to ensure a linear complexity, we must avoid multiple selections of
the same point during the execution of the algorithm. The following properties
provide selection criteria which guarantee that a point lowered once will never
be W-destructible again during the W-thinning process.

The first criterion concerns points which may be lowered down to the value
of a neighbor which belongs to a minimum (i.e., M̃-points). If an M̃-point is
lowered down to its lowest value, then we say that the point is M-lowered . The
aim of theorem 1 is to show that, if M̃-points are sequentially selected and M-
lowered, and if we continue this process until stability, giving a result G, then it
is not possible that a W-thinning of G contains any M̃-point. Since, obviously, a
point which has been M-lowered will never be considered again in a W-thinning
algorithm, we obtain an “M-thinning algorithm” which considers each point at



178 M. Couprie, L. Najman, and G. Bertrand

most once, and produces a result in which the minima cannot be extended by
further W-thinning.

Definition 6. Let F, G ∈ F(E), we say that G is an M-thinning of F if G = F
or if G can be obtained from F by sequentially M-lowering some M̃-points. We
say that G is an M-watershed of F if G is a M-thinning of F and has no M̃-point.

Theorem 1. Let F ∈ F(E), let G be an M-watershed of F . Any W-thinning of
G has exactly the same minima as G.

See [5] for a proof. Let F be a map and let G be a topological watershed of F ,
the set of points which do not belong to any regional minimum of G is called a
W-crest of F (see Fig. 3d). A W-crest of F corresponds to a “binary watershed”
of F . A corollary of this theorem is that the set of points which do not belong to
any minimum of an M-watershed of F is always a W-crest of F . Thus, we can
compute a W-crest (or binary watershed) by only lowering M̃-points. In Fig. 3c,
we see an M-watershed of 3a.

In the following algorithm, we introduce a priority function µ which is used
to select the next M̃-point. The priority function µ associates to each point p a
positive integer µ(p), called the priority of p. This function is used for the man-
agement of a priority queue, a data structure which allows one to perform, on a
set of points, an arbitrary sequence of the two following operations (L denotes
a priority queue and p a point):
AddPrioQueue(L, p, µ(p)): store p with the priority µ(p) into the queue L;
ExtractPrioQueue(L): remove and return a point which has the minimal pri-
ority value among those stored in L (if several points fulfill this condition, an
arbitrary choice is made).

The choice and the interest of the priority function will be discussed after-
wards, but notice that whatever the chosen priority function (for example a
constant function), the output of the procedure will always be an M-watershed
of the input.

Given a map F and a point p, the procedure call M-destructible(F , p) (resp.
W-destructible(F , p)) returns in constant time (see end of Sec. 2) the lowest
value for p if p is an M̃-point (resp. a W-destructible point), or ∞ otherwise.

Procedure M-watershed (Input F , µ ; Output F )
01. L ← EmptyPrioQueue
02. For All p ∈ E such that M-destructible(F , p) �=∞ Do
03. AddPrioQueue(L, p, µ(p)) ; mark p
04. While L �= EmptyPrioQueue Do
05. p ← ExtractPrioQueue(L) ; unmark p
06. If M-destructible(F , p) �=∞ Then
07. F (p) ← M-destructible(F , p)
08. For All q ∈ Γ (p), q �= p, q not marked Do
09. If M-destructible(F , q) �=∞ Then
10. AddPrioQueue(L, q, µ(q)) ; mark q



Algorithms for the Topological Watershed 179

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 4 4 4 4 4 4 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

a b
1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 4 4 4 4 4 4 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

c d

Fig. 4. a, b: two images with a possible W-crest (circled) computed thanks to procedure
M-watershed with a constant priority function. c, d: the same two images with the
W-crest (circled) computed thanks to procedure M-watershed with the lexicographic
priority function

The following property is a consequence of results proved in [5] and of the
fact that, obviously, each point is selected at most once by this algorithm.

Property 2. Whatever the chosen priority function, the output of Procedure
M-watershed is an M-watershed of the input.
Let n and m denote respectively the number of vertices and the number of arcs in
the graph (E, Γ ). The time complexity of Procedure M-watershed is in O(n +
m) + k, where k is the overall complexity for the management of the priority
queue.

We introduced the priority function and the priority queue in order to take
into account some geometrical criteria. For example, with a constant prior-
ity function, plateaux or even domes located between basins may be thinned
in different ways, depending on the arbitrary choices that are allowed by the
calls to ExtractPrioQueue with this particular priority function (line 05). See
Fig. 4 a, b for a possible result of procedure M-watershed with a constant
priority function.

In order to “guide” the watershed set towards the highest locations of the
domes and the “center” of the plateaux, we choose a lexicographic priority func-
tion µ described below.

Let F ∈ F(E), let d be a distance on E (e.g., the Euclidean distance), let
p ∈ E. We denote by D(p) be the minimal distance between p and any point q
strictly lower than p, that is, D(p) = min{d(p, q); F (q) < F (p)}.

It is easy to build a function µ such that, for any p, q in E:

– if F (p) < F (q) then µ(p) > µ(q);
– if F (p) = F (q) and D(p) ≤ D(q) then µ(p) ≥ µ(q).

See Fig. 4 c, d for the result of M-watershed with such a priority function.



180 M. Couprie, L. Najman, and G. Bertrand

0 0 9 2 2

0 0 9 2 2

4 4 6 9 2

1 1 9 2 2

1 1 9 2 2

0 0 0 30 4 4

40 0 30 3 30 4

1 40 31 30 4 4

1 40 32 31 35 35

1 1 40 35 2 2

1 1 40 2 2 2

Fig. 5. Examples of W-destructible points in an MS-watershed which are neither M̃-
points nor S̃-points: the point at 6 in the image on the left, the points at 31 and 32 in
the image on the right

The values of such a priority function may be pre-computed by a linear-time
algorithm, see for example algorithm 4.5 of [9] which is called lower completion
algorithm. The efficient management of priority queues is a well studied prob-
lem, and efficient solutions exist (see e.g. [11]). Furthermore, in most current
situations of image analysis, where the number of possible values for the priority
function is limited and the number of neighbors of a point is a small constant,
specific linear algorithms can be used, avoiding the use of a priority queue. An
example of such a linear algorithm is given in the next section, with algorithm
TopologicalWatershed.

4 Watershed Algorithm

After iteratively lowering M̃-points until stability, we have to process the other
W-destructible points in order to get a topological watershed. Let F ∈ F(E),
let us call an MS-watershed of F a map obtained from F by iteratively lowering
M̃-points and S̃-points until stability. We could think that all P̃-points will be
eventually changed to M̃-points and then M-lowered in such a process, as it is
the case for images like Fig. 3a. But the examples of Fig. 5 show that it is not
always the case, in other words, an MS-watershed of F is not always a topological
watershed of F . Furthermore, there may exist thick regions made of P̃-points in
an MS-watershed, and although M̃-points and S̃-points may be lowered directly
down to their lowest possible value, we have no such guarantee for the P̃-points
(see theorem 5 of [5]).

Thus, we must propose a criterion for the selection of the remaining W-
destructible points, in order to avoid multiple selections of the same point. The
idea is to give the greatest priority to a W-destructible point which may be
lowered down to the lowest possible value. We prove that an algorithm which
uses this strategy never selects the same point twice. A priority queue could be
used, as in the previous section, to select W-destructible points in the appropriate
order. Here, we propose a specific linear watershed algorithm which may be used
when the grayscale range is small. Let F ∈ F(E), let kmin = min{F (p); p ∈ E}
and kmax = max{F (p); p ∈ E}.



Algorithms for the Topological Watershed 181

Procedure TopologicalWatershed (Input F ; Output F )
01. For k From kmin To kmax Do Lk ← ∅
02. For All p ∈ E Do
03. i ←W-Destructible(F , p)
04. If i �=∞ Then
05. Li ← Li ∪ {p} ; K(p) ← i
06. For k = kmin To kmax Do
07. While ∃p ∈ Lk Do
08. Lk = Lk \ {p}
09. If K(p) = k Then
10. F (p) ← k
11. For All q ∈ Γ (p), k < F (q) Do
12. i ←W-Destructible(F , q)
13. If i =∞ Then K(q) ← ∞
14. Else If K(q) �= i Then
15. Li ← Li ∪ {q} ; K(q) ← i

We have the following guarantees:

Property 3. In algorithm TopologicalWatershed,
i) at the end of the execution, F is a topological watershed of the input map;
ii) let n and m denote respectively the number of vertices and the number of arcs
in the graph (E, Γ ). If kmax − kmin ≤ n, then the time complexity of the algorithm
is in O(n + m).

As discussed in the previous section, this algorithm provides topological guar-
antees but does not care about geometrical criteria. If we want to take such crite-
ria into account, we can use first the procedure M-watershed with the priority
function described at the end of section 3, and then the procedure Topologi-
calWatershed.

5 Watershed from Markers

In many applications, instead of finding a separation between the minima of
the input function, we need to separate the components of a given set of points
called the marker . Let us illustrate how to reach this goal using the topological
watershed, following a classical approach based on reconstruction.

Fig. 6 illustrates the outline of the whole procedure. Fig. 6a shows the input
data, function F and marker M . Fig. 6b: a function G is generated, such that
G(x) = kmin for all x ∈ M , and G(x) = kmax for all x /∈ M . The function
F ′ = min(F, G) is computed. Fig. 6c: we compute the morphological geodesic
reconstruction G′ of G over F ′. See [13] for a description of this operator, which
can be efficiently implemented thanks to the component tree. Notice that, by
construction, each minimum of G′ contains a component of M . Fig. 6d: finally,
an M-watershed W of G′ is extracted, hence, a W-crest C.



182 M. Couprie, L. Najman, and G. Bertrand

M

F

G

F’

M
a b

G’

M

F’

C
W

c d

Fig. 6. Outline of a topological watershed-from-markers procedure

References

1. G. Bertrand, “On topological watersheds”, Journal of Mathematical Imaging and
Vision, Vol. 22, pp. 217-230, 2005.

2. S. Beucher, Ch. Lantuéjoul, “Use of watersheds in contour detection”, Proc.
Int. Workshop on Image Processing, Real-Time Edge and Motion Detec-
tion/Estimation, Rennes, France, 1979.

3. S. Beucher, F. Meyer, “The morphological approach to segmentation: the water-
shed transformation”, Mathematical Morphology in Image Processing, Chap. 12,
pp. 433-481, Dougherty Ed., Marcel Dekker, 1993.

4. M. Couprie, G. Bertrand, “Topological grayscale watershed transformation”, Proc.
SPIE Vision Geometry VI , Vol. 3168, pp. 136-146, 1997.

5. M. Couprie, L. Najman, G. Bertrand, “Quasi-linear algorithms for the topological
watershed”, Journal of Mathematical Imaging and Vision, Vol. 22, pp. 231-249,
2005.

6. F. Meyer, “Un algorithme optimal de ligne de partage des eaux”, Proc. 8th
Conf. Reconnaissance des Formes et Intelligence Artificielle, Vol. 2, pp. 847-859,
AFCET Ed., Lyon, 1991.

7. L. Najman, M. Couprie, “Quasi-linear algorithm for the component tree”, Proc.
SPIE Vision Geometry XII, Vol. 5300, pp. 98-107, 2004.

8. L. Najman, M. Couprie, G. Bertrand, “Watersheds, extension maps, and the emer-
gence paradigm”, report IGM2004-04 of the Institut Gaspard Monge (University
of Marne-la-Vallée), to appear in Discrete Applied Mathematics, 2004.

9. J. Roerdink, A. Meijster, “The watershed transform: definitions, algorithms and
parallelization strategies”, Fundamenta Informaticae, Vol. 41, pp. 187-228, 2000.

10. R.E. Tarjan, “Disjoint sets” Data Structures and Network Algorithms, Chap. 2,
pp. 23-31, SIAM, 1978.

11. M. Thorup, “On RAM priority queues”, 7th ACM-SIAM Symposium on Discrete
Algorithms, pp. 59-67, 1996.

12. L. Vincent, P. Soille, “Watersheds in digital spaces: an efficient algorithm based on
immersion simulations”, IEEE Trans. on PAMI, Vol. 13, No. 6, pp. 583-598, 1991.

13. L. Vincent, “Morphological Grayscale Reconstruction in Image Analysis: Applica-
tion and Efficient Algorithms”, IEEE Trans. on PAMI, Vol. 2, No. 2, pp. 176-201,
1993.


	Introduction
	Topological Notions for Weighted Graphs
	M-Thinning and Binary Watershed Algorithm
	Watershed Algorithm
	Watershed from Markers



