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Abstract. In this paper we introduce the class of decomposable discrete
sets and give a polynomial algorithm for reconstructing discrete sets of
this class from four projections. It is also shown that the class of decom-
posable discrete sets is more general than the class S ′

8 of hv-convex 8-
but not 4-connected discrete sets which was studied in [3]. As a conse-
quence we also get that the reconstruction from four projections in S ′

8

can be solved in O(mn) time.

Keywords: discrete tomography, reconstruction from projections, de-
composable discrete set

1 Introduction

One of the most frequently studied problems in the area of discrete tomogra-
phy [14, 15] is the reconstruction of 2-dimensional discrete sets from few (usu-
ally up to four) projections. Several theoretical questions are connected with
reconstruction such as existence and uniqueness (as a summary see [6, 9, 12]).
There are also reconstruction algorithms for different classes of discrete sets
(e.g., [4, 5, 7, 8, 11, 16, 17, 19]). However, the reconstruction problem is usually
underdetermined and the number of solutions can be very large. Moreover, the
reconstruction in certain classes can be NP-hard (see [21]). In order to keep
the reconstruction process tractable and to reduce the number of solutions a
commonly used technique is to suppose having some a priori information of the
set to be reconstructed. The most frequently used properties are connectedness,
directedness and some kind of discrete versions of the convexity. In this paper
we introduce a new property of discrete sets, namely the decomposability, and
study uniqueness and reconstruction problems in the class of discrete sets having
this property.

This article is structured as follows. First, the necessary definitions are intro-
duced in Section 2. In Section 3 we define the class of decomposable discrete sets
and give a polynomial algorithm for reconstructing sets belonging to this class
using four projections. In Section 4 we show that every 8- but not 4-connected
set is decomposable and applying the results of Section 3 we get an O(mn) algo-
rithm for the reconstruction problem in this class using four projections. Finally,
in Section 5 we conclude our results.
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2 Definitions and Notation

Let F̂ = (f̂ij)m×n be a binary matrix where m, n ≥ 1. Let F denote the set of
positions (i, j) where f̂ij = 1, i.e., F = {(i, j)|f̂ij = 1}. F is called a discrete
set, its elements are called points or positions. The k-th diagonal/antidiagonal
(k = 1, . . . , m + n − 1) of F̂ are defined by the set Dk/Ak, respectively, where

Dk = {(i, j) ∈ {1, . . . , m} × {1, . . . , n} | i + (n − j) = k} , (1)

Ak = {(i, j) ∈ {1, . . . , m} × {1, . . . , n} | i + j = k + 1} . (2)

Let F denote the class of discrete sets. For any discrete set F ∈ F we define
the functions H, V, D, and A as follows.
H : F −→ INm

0 , H(F ) = H = (h1, . . . , hm), where

hi =
n∑

j=1

f̂ij , i = 1, . . . , m , (3)

V : F −→ INn
0 , V(F ) = V = (v1, . . . , vn), where

vj =
m∑

i=1

f̂ij , j = 1, . . . , n , (4)

D : F −→ INm+n−1
0 , D(F ) = D = (d1, . . . , dm+n−1), where

dk =
∑

(i,j)∈Dk

f̂ij = |F ∩ Dk|, k = 1, . . . , m + n − 1 , (5)

A : F −→ INm+n−1
0 , A(F ) = A = (a1, . . . , am+n−1), where

ak =
∑

(i,j)∈Ak

f̂ij = |F ∩ Ak|, k = 1, . . . , m + n − 1 . (6)

The vectors H, V , D and A are called the row, column, diagonal and antidiag-
onal projections of F , respectively (see Fig. 1). In the following we suppose that
hi > 0 and vj > 0 for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. The cumulated hori-
zontal/vertical/diagonal/antidiagonal vectors are denoted by H̃ = (h̃1, . . . , h̃m),
Ṽ = (ṽ1, . . . , ṽn), D̃ = (d̃1, . . . , d̃m+n−1), and Ã = (ã1, . . . , ãm+n−1), respec-
tively, and defined by the following formulas (see Fig. 1)

h̃i =
i∑

l=1

hl, i = 1, . . . , m , (7)

ṽj =
j∑

l=1

vl, j = 1, . . . , n , (8)
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Fig. 1. An hv-convex 8- but not 4-connected discrete set F and the correspond-
ing binary matrix F̂ . The elements of F are marked with grey squares. The
projections of F are the vectors H, V , D = (0, 0, 0, 0, 2, 2, 3, 2, 0, 0), and A =
(0, 1, 2, 1, 1, 1, 0, 1, 1, 1). The cumulated vectors are H̃, Ṽ , D̃ = (0, 0, 0, 0, 2, 4, 7, 9, 9, 9),
and Ã = (0, 1, 3, 4, 5, 6, 6, 7, 8, 9)

d̃k =
k∑

l=1

dl, ãk =
k∑

l=1

al, k = 1, . . . , m + n − 1 . (9)

Given a class G ⊆ F of discrete sets, we say that the discrete set F ∈ G is
unique in the class G (with respect to some projections) if there is no different
discrete set F ′ ∈ G with the same projections.

Two points P = (p1, p2) and Q = (q1, q2) in a discrete set F are said to
be 4-adjacent if |p1 − q1| + |p2 − q2| = 1. The points P and Q are said to be
8-adjacent if they are 4-adjacent or |p1 − q1| = 1 and |p2 − q2| = 1. The sequence
of distinct points P0, . . . , Pk is a 4/8-path from point P0 to point Pk in a discrete
set F if each point of the sequence is in F and Pl is 4/8-adjacent, respectively,
to Pl−1 for each l = 1, . . . , k. Two points are 4/8-connected in the discrete set
F if there is a 4/8-path, respectively, in F between them. A discrete set F is
4/8-connected if any two points in F are 4/8-connected, respectively, in F . The
4-connected set is also called as polyomino. The discrete set F is horizontally
convex/vertically convex (or shortly, h-convex/v-convex) if its rows/columns are
4-connected, respectively. The h- and v-convex sets are called hv-convex (see
Fig. 1). In this paper we are going to study the reconstruction problem from
four projections in several classes. Given a class G ⊆ F the problem can be
formulated as follows

4-Reconstruction(G).
Instance: Four non-negative vectors H ∈ INm, V ∈ INn, D ∈ INm+n−1

0
and A ∈ INm+n−1

0 .
Task: Construct a discrete set F ∈ G with H(F ) = H, V(F ) = V ,

D(F ) = D and A(F ) = A.
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3 Reconstruction of Decomposable Discrete Sets

Let F be a discrete set. A maximal 4-connected subset of F is called a com-
ponent of F (e.g., in Fig. 1 there are two components: {(5, 4), (5, 5), (5, 6)}
and {(1, 2), (2, 2), (3, 1), (3, 2), (4, 2), (4, 3)}). Clearly, the components of F give
a (uniquely determined) partition of F . We will use the concept of smallest con-
taining discrete rectangle of F (SCDR) which corresponds to the notion of strong
convex hull of F (see [20]). Throughout this paper we always study discrete sets
having the following properties

(α) the components are uniquely reconstructible from their horizontal and ver-
tical projections in polynomial time, and

(β) the sets of the row/column indices of the components are disjoint, i.e., if
I × J ⊆ {1, . . . , m} × {1, . . . , n} is the SCDR of a component of the discrete
set F , then Ī × J ∩ F = I × J̄ ∩ F = ∅ (where Ī = {1, . . . , m} \ I and
J̄ = {1, . . . , n} \ J).

In fact, to satisfy property (α) we need to have some a priori information about
the components. For example, NW-directed hv-convex discrete sets can be used
as components since in this class property (α) is fulfilled [10].

The NorthWest-gluing (or shortly, NW-gluing) is an operator defined by

F2 −→ F : C × D → F, where F̂ =
(

Ĉ 0
0 D̂

)
. (10)

If C is a single component then we say that C is the NW-component of F. NE-,
SE-, SW-gluings and -components are defined similarly. We say that a discrete
set F consisting of k (k ≥ 2) components is decomposable if

(i) F satisfies properties (α) and (β), and
(ii) if k > 2 then we get F by gluing a single component to a decomposable

discrete set consisting of k − 1 components using one of the four gluing
operators.

As a straight consequence of the definition we get that every discrete set consist-
ing of three components and satisfying properties (α) and (β) is decomposable.
Figure 2 shows some decomposable and undecomposable configurations if the set
consists of four components. The class of decomposable discrete sets is denoted
by DEC. The following lemma shows an important property of the decompos-
able discrete sets.

Lemma 1. Let F ∈ DEC having more than two components, C be a component
of F with the SCDR I ×J . Let F ′ be the discrete set that we get by deleting rows
I × {1, . . . , n} and columns {1, . . . , m} × J from F . Then F ′ ∈ DEC.

Proof. See [1].

On the basis of properties (α) and (β) in the reconstruction of a decomposable
discrete set it is sufficient to identify the SCDRs of the components. In order to
do this we first give a necessary condition.
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Fig. 2. Some decomposable (first row) and undecomposable (second row) configura-
tions of the components. The SCDRs of the components are denoted by B1, B2, B3,
and B4

Theorem 1. Let F ∈ DEC. If (i, j) is the bottom right position of the SCDR
of the NW-component of F then i is the smallest integer for which there exists
an integer j such that h̃i = ṽj = ãi+j−1 and ai+j = 0.

Proof. Define a set E as follows

E = ({1, . . . , i} × {j + 1, . . . , n}) ∪ ({i + 1, . . . , m} × {1, . . . , j}) . (11)

If (i, j) is the bottom right position of the SCDR of the NW-component then
F ∩ E = ∅ (see Fig. 3), and so

h̃i =
i∑

t=1
ht = |F ∩ {1, . . . , i} × {1, . . . , n}| = |F ∩ {1, . . . , i} × {1, . . . , j}|

= |F ∩ {1, . . . , m} × {1, . . . , j}| =
j∑

t=1
vt = ṽj . (12)

Furthermore, (F ∩ Ak) ∩ E ⊆ F ∩ E = ∅ for every k = 1, . . . , m + n − 1 (see
again Fig. 3). Then, recalling that ak = |F ∩Ak| for k = 1, . . . , n+m− 1 we get
that

ãi+j−1 =
i+j−1∑
k=1

|F ∩ Ak| = |F ∩ {1, . . . , i} × {1, . . . , j}| = h̃i = ṽj . (13)

Moreover, Ai+j ⊆ E (see Fig. 3). Then, F ∩ Ai+j ⊆ F ∩ E = ∅ and we get that

ai+j = |F ∩ Ai+j | ≤ |F ∩ E| = 0 . (14)

Finally, assume that an integer i′ < i exists for which an integer j′ exists such
that h̃i′ = ṽj′ = ãi′+j′−1 and ai′+j′ = 0. Clearly, in this case j′ < j. Since
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A i+j-1
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E

Fig. 3. The relations between the sets Ai+j−1, Ai+j and E. The position (i, j) is marked
with black square. The antidiagonals Ai+j−1 and Ai+j are marked with bold squares.
The set E is drawn with grey squares.

(i, j) is the bottom right position of the SCDR of the NW-component and every
component is a polyomino we get that the 1st, . . . , (i + j)-th coordinates of the
antidiagonal projection have to be of the form (0, . . . , 0, ak1 , . . . , ak2 , 0, . . . , 0),
where 1 ≤ k1 ≤ k2 < i + j and al 	= 0 for every k1 ≤ l ≤ k2. But then ai′+j′ = 0
only if i′ + j′ < k1 or i′ + j′ > k2. If i′ + j′ < k1 then ãi′+j′−1 = 0. Since
the cumulated horizontal sums of a discrete set having nonzero rows are always
satisfy the relation

0 < h̃1 < h̃2 < . . . < h̃m (15)

we get that ãi′+j′−1 < h̃i′ which is a contradiction. Otherwise, i.e., if i′ + j′ > k2

then h̃i > h̃i′ (since i > i′ and (15) holds) and we get that ãi′+j′−1 = ãi+j−1 =
h̃i > h̃i′ which is, again, a contradiction. 
�

Similar theorems can be given for NE-, SE-, and SW-components. Before
giving a sufficient condition for finding the SCDR of a component of F we
introduce some further concepts. Let F, F ′ ∈ F such that F ′ \ F = {(p1, q1)}
and F \F ′ = {(p2, q2)}. If (p1+k, q1+k) = (p2, q2) for a k ∈ ZZ \{0} then we say
that we get F ′ by applying a slide on F . Similarly, if (p1 +k, q1 −k) = (p2, q2) for
a k ∈ ZZ \{0} then we say that we get F ′ by applying an antislide on F . Clearly,
applying slides/antislides on a discrete set, the diagonal/antidiagonal projection
does not change, respectively. The following lemma shows an important relation
between polyominoes and decomposable discrete sets having the same horizontal,
vertical, and antidiagonal projections.

Lemma 2. Let P be a polyomino and F ∈ DEC such that H(P ) = H(F ),
V(P ) = V(F ), and A(P ) = A(F ). Then, the SCDRs of the components of F are
connected to each other with their bottom left and upper right corners.

Proof. See [1] for the proof based on the results of [13].

An analogue of Lemma 2 replacing the antidiagonal projection with the di-
agonal one can also be proven. In this case the components of the decomposable
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discrete set must be connected to each other with their bottom right and up-
per left corners. With the aid of the following theorem it is possible to test
whether the decomposable discrete set has a NW-component and if so then the
component itself can also be reconstructed.

Theorem 2. Let F ∈ DEC, H(F ) = (h1, . . . , hm), V(F ) = (v1, . . . , vn), and
A(F ) = (a1, . . . , am+n−1). Moreover, let (i, j) be a position satisfying the neces-
sary conditions of Theorem 1. If a polyomino P exists according to the a priori
information which guarantees that property (α) is satisfied such that H(P ) =
(h1, . . . , hi), V(P ) = (v1, . . . , vj), and A(P ) = (a1, . . . , ai+j−1) and there is no
P ′ ∈ DEC with H(P ′) = H(P ), V(P ′) = V(P ), and A(P ′) = A(P ) such that
the SCDRs of P ′ are connected to each other with their bottom left and upper
right corners then P is the NW-component of F . If no such polyomino exists
then F does not have a NW-component.

Proof. Define a set by T =
⋃i+j−1

k=1 Ak and let Q′ = F ∩ T . Since A(P ) =
(a1, . . . , ai+j−1) we get Q′ by applying some (possibly none) antislides on P .
Let Q be an arbitrary discrete set with the projections H(Q) = (hq

1, . . . , h
q
m),

V(Q) = (vq
1, . . . , v

q
n), and A(Q) = (aq

1, . . . , a
q
m+n−1) that we get by applying

some antislides on P . This time we allow that some of the coordinates of H(Q)
and V(Q) are zero. Clearly, aq

l = al for each l = 1, . . . , i + j − 1 and Q ⊆ T .
Moreover, for the horizontal and vertical projections of Q exactly one of the
following cases holds

(i) ∃ i′ ≤ i such that hq
i′ 	= hi′ or ∃ j′ ≤ j such that vq

j′ 	= vj′ ,
(ii) hq

i′ = hi′ for each i′ = 1, . . . , i and vq
j′ = vj′ for each j′ = 1, . . . , j.

Assume that Case (i) is true with hq
i′ 	= hi′ for an i′ ≤ i. Then, there also exists

an i′′ ≤ i such that hq
i′′ > hi′′ or a j′′ ≤ j such that vq

j′′ > vj′′ . Clearly, in
this case there is no discrete set F ′ with the projections H(F ′) = (h1, . . . , hm)
and V(F ′) = (v1, . . . , vn) such that F ′ ∩ T = Q. Assuming that Case (i) is
true with vq

j′ 	= vj′ for a j′ ≤ j we get the same in a similar way. Therefore
F can have the given projections if and only if for Q′ Case (ii) is true which
is possible only if Q′ ⊆ {1, . . . , i} × {1, . . . , j}. Since H(Q′) = (h1, . . . , hi) and
V(Q′) = (v1, . . . , vn) it follows that F can have the prescribed projections if and
only if F ∩E = ∅ where E is defined by (11). Then, {1, . . . , i}×{1, . . . , j} is the
SCDR of a set G ⊆ F consisting of one or more components of F . However, if G
consists of several components of F then G ∈ DEC based on Lemma 1 and the
SDCRs of the components of G are connected to each other with their bottom
left and upper right corners on the basis of Lemma 2 which is a contradiction.
Consequently, G is a simple polyomino. Since P satisfies the conditions which
guarantees that property (α) holds G = P and so the first part of the theorem is
proven. The second part of the theorem follows from the fact that the position
that satisfies the necessary conditions of Theorem 1 is uniquely determined. 
�

Similar theorems can be given for testing the existence of NE-, SE-, and
SW-components. We now can outline an algorithm for reconstructing decom-
posable discrete sets with given horizontal, vertical, diagonal, and antidiagonal
projections.
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Algorithm 4-DEC

Input: the vectors H ∈ INm, V ∈ INn, D ∈ INm+n−1
0 , and A ∈ INm+n−1

0 .
Output: the uniquely determined decomposable discrete set with projections
H, V , D, and A or FAIL (if no such set exists).
1: repeat

try to reconstruct a NW-component by identifying its SCDR and using
the corresponding elements of the vectors H, V , and A;
if not succeed then try to reconstruct a NE-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and D;
if not succeed then try to reconstruct a SE-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and A;
if not succeed then try to reconstruct a SW-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and D;
if not succeed then break;
modify H, V , D, and A according to the reconstructed component and in
the following omit the reconstructed part of the discrete set;

until all the components are reconstructed;
2: if the diagonal/antidiagonal projection is not equal to the given vector D/A,

respectively then
{ let P1, . . . , Pl denote the polyominoes reconstructed in Step 1;

i = 0;
repeat

assuming that P1, . . . , Pi are components try to decompose further
components in order SW, SE, NE, NW similarly as in Step 1;
i = i + 1;

until all the components are reconstructed or i = l; }
3: if the diagonal/antidiagonal projection is not equal to the given vector D/A,

respectively then FAIL (no solution);

Turning to the analysis of the algorithm we can say the following

Theorem 3. Algorithm 4-DEC solves the problem 4-Reconstruction(DEC).
Assume that the reconstructed set consists of components F1, . . . , Fk and let Ci

denote the time complexity of reconstructing the component Fi (i = 1, . . . , k).
Then, the worst case time complexity of the algorithm is of k · max1≤i≤k Ci

which is polynomial. The solution is uniquely determined.

Proof. As a straight consequence of the algorithm we get that the reconstructed
set is decomposable and has the given projections. Assuming that the l-th
(l = 1, . . . , k) component to be reconstructed is a NW-component it takes
O(m + n) time to find the (uniquely determined) position which satisfies the
necessary conditions of Theorem 1. We do it simply by scanning the vectors
H̃ and Ṽ . In order to test whether this position is the bottom right position of
the SCDR of the NW-component we try to reconstruct this component based on
Theorem 2 which takes Cl time. The same is true if the l-th component is a NE-,
SE- or SW-component. In the worst case the component is a SW-component,
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i.e., we try to reconstruct the l-th component at most four times and so the
reconstruction complexity of Step 1 is max1≤i≤k Ci which is polynomial because
of property (α). Theorem 2 guarantees the existence of a NW-component only
when there is no decomposable discrete set with the same horizontal, vertical,
and antidiagonal projections such that the components are connected to each
other with their bottom left and upper right corners. Therefore it can occur
that we accept the reconstructed polyomino as a NW-component although the
decomposable discrete set to be reconstrcuted has no NW-component at all. The
same is true for NE-, SE-, and SW-components, too. These situations result that
the algorithm cannot reconstruct the decomposable discrete set with the given
projections in Step 1. However, it reconstructs some polyominoes P1, . . . , Pl such
that there exists an l′ ≤ l for which P1, . . . , Pl′−1 are components and Pl′ is not a
component of the decomposable discrete set. Then, the components F1, . . . , Fl′−1
are already reconstructed and the remaining components of the discrete set can
be reconstructed in reversed order in Step 2. If l′ is known then all the remaining
components can be reconstructed in Step 1. Since l′ is not known in Step 2 we
have to call Step 1 at most k times and so the reconstruction complexity of Step
2 is of k · max1≤i≤k Ci in the worst case. The uniqueness of the solution follows
from property (α). 
�

4 Reconstruction of hv-Convex 8- but Not 4-Connected
Discrete Sets from Four Projections

The class of hv-convex 8- but not 4-connected discrete sets (denoted by S ′
8) was

introduced in [2]. In the same paper the authors gave a reconstruction algorithm
in this class using the horizontal and vertical projections. This algorithm has
worst case time complexity of O(mn · min{m, n}) and the solution is not always
uniquely determined. Then, in [3] it is shown that using also the diagonal and
antidiagonal projections the algorithm can be speeded up having complexity of
O(mn) and in this case uniqueness also holds. In the following we show that this
is a consequence of

Theorem 4. S ′
8 ⊆ DEC.

Proof. Let F ∈ S ′
8. Then, clearly, the number of components of F is at least

2. Since F is hv-convex the sets of the row/column indices of the components
consist of consecutive integers and they are disjoint. Then, property (β) is sat-
isfied. Moreover, on the basis of Theorem 5 in [3] and Theorem 3 in [18] the
components can be reconstructed uniquely from the horizontal and vertical pro-
jections in O(mn) time, i.e., property (α) also holds. Finally, the configuration
of the components can follow only two cases (see Theorem 2 in [3]). Namely, the
SCDRs of the components are connected to each other with their bottom right
and upper left or with their bottom left and upper right positions (see Fig. 4a
and 4b, respectively). Clearly, both configurations are decomposable. 
�
Then, applying Theorem 3 we get the following
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Fig. 4. The two possible configurations of the components in the class S ′
8

Corollary 1. Algorithm 4-DEC solves the problem 4-Reconstruction(S ′
8) in

O(mn) time. The reconstructed set is uniquely determined.

5 Conclusions and Further Work

In this paper we have introduced a new class of discrete sets, the class of de-
composable discrete sets and we have given a reconstruction algorithm in this
class using four projections. It is shown that the algorithm has polynomial
time complexity. Then, it is proven that the class of hv-convex 8- but not 4-
connected sets is a subclass of DEC. As a consequence we got that the problem 4-
Reconstruction(S ′

8) can be solved in O(mn) time. Since the complexity of our
algorithm strongly depends on the fact that the components are uniquely deter-
mined by the horizontal and vertical projections it seems to be important to find
classes of discrete sets where the reconstruction problem can be solved uniquely.

It is shown that in some cases the discrete set can be decomposed along the
diagonal and antidiagonal projections to facilitate the reconstruction. However,
in some cases the decomposition into components is impossible. For example,
the configuration in Fig. 2e can be decomposed into two parts (one containing
B1 and B2, and the other containing B3 and B4) by the antidiagonal projection
but then, the two parts cannot be further decomposed into components since the
diagonal projections of the two parts are not independent. In some unfortunate
cases the components cannot be separated at all (see, e.g., Fig. 2g and 2h). If
the set is not decomposable then our algorithm simply FAILs without giving a
solution. It is an interesting question whether it could be decided in advance
if a discrete set is decomposable. Further investigation of the undecomposable
configurations is also needed.

Throughout the paper it was assumed that every coordinate of the horizontal
and vertical projections is nonzero, i.e., hi > 0 and vj > 0 for all i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}. However, the results can be generalized easily to handle
decomposable discrete sets where some of the coordinates of the horizontal or
vertical projections are zero. In our work we concentrated on discrete sets con-
sisting of components which satisfy some special properties (namely, properties
(α) and (β)). More work has to be done on the field whether assuming weaker
properties about the components the reconstruction process remains tractable.
Further work in this field can lead us towards designing efficient reconstruction
algorithms for important classes like the one of hv-convex sets.
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