
Graphael: A System for Generalized
Force-Directed Layouts�

David Forrester, Stephen G. Kobourov, Armand Navabi,
Kevin Wampler, and Gary V. Yee

Department of Computer Science,
University of Arizona

{forrestd,kobourov,navabia,wamplerk,gyee}@cs.arizona.edu

Abstract. The graphael system implements several traditional force-
directed layout methods, as well as several novel layout methods for
non-Euclidean geometries, including hyperbolic and spherical. The sys-
tem can handle large graphs, using multi-scale variations of the force-
directed methods. Moreover, graphael can layout and visualize graphs
that evolve though time, using static views, animation, and morphing.
The implementation includes a powerful interface that allows the user to
put together existing algorithms and visualization techniques, and to eas-
ily add new ones. The system is written in Java and is available as a down-
loadable program or as an applet at http://graphael.cs.arizona.edu.

1 Introduction

As researchers in the graph drawing community develop new algorithms and
visualization techniques it is natural for the creation of new graph drawing tools
to follow. It is often the case, however, that the implementation of an algorithm is
accompanied by time consuming tasks that have little to do with the algorithm
itself. Researchers who would like to test a new layout algorithm should only
have to concern themselves with the details of the algorithm itself rather than
with graphics packages, file parsers, or user interface design.

In this paper we present graphael: yet another graph drawing system de-
signed to provide the necessary structure and flexibility for force-directed graph
drawing research. Our system is built with the following design considerations:
(1) Plug-and-Play: it should be easy to integrate new algorithms and visualiza-
tion methods; (2) User Friendliness: the user interface should be easy to use,
but also powerful and versatile; (3) Portability: the system should run on any
computational platform.

The graphael system attempts to meet these goals by providing a set of core
algorithms and visualization routines, as well as an interface that allows the user
to combine different algorithms and visualization methods, and to easily add new
ones. In addition, the system contains several novel algorithms and visualization
techniques, such as force-directed methods in non-Euclidean geometries, and
techniques for dealing with graphs that evolve through time.
� This work is supported in part by the NSF under grant ACR-0222920 and ITCDI

under grant 003297.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 454–464, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Graphael: A System for Generalized Force-Directed Layouts 455

1.1 Related Work

A number of automated graph drawing systems have been developed over the
last few years; see [9] for a survey. The GraphServer [3] is an online service that
allows users to draw graphs and translate graph descriptions between multiple
formats. Tulip is a framework built to facilitate large graph drawing research [1].
WilmaScope [4] is a Java application designed specifically for 3D visualization.
yFiles [14] is a commercial library of Java classes developed to provide building
blocks for graph drawing applications. Pajek [2] is a Windows program designed
to handle large graphs for social networks analysis. TGRIP [6] is an extension on
the GRIP system [8] and efficiently draws large temporal graphs using intelligent
placement. The GraphAEL [5] system extracts three types of evolving graphs
from a custom-built graph drawing literature database and creates 2D and 3D
animations of the evolutions.

1.2 Our Contributions

In addition to sharing all the letters with GraphAEL [5], the system described
in this paper was inspired by it. We wanted to provide a graph visualization
framework that can easily be coupled with the bibliographic database to pro-
vide visualizations of the co-citation, collaboration, and topic graphs, produced
from the database. This led to the development of the current system, which
is equipped with a core package of force-directed algorithms and visualization
tools. In addition to putting together well-known algorithms and visualization
methods, graphael contains several novel features. Among these features are
support for temporal graphs, interactive graph visualization, multi-scale layout
algorithms for large graphs, and embedding graphs in non-Euclidean spaces,
such as hyperbolic space and spherical space. The current system also includes
an interactive Control Flow (CF) Graph, used to put together different com-
binations of layout algorithms, projections and visualizations, while offering a
visual representation of the process.

2 System Overview

2.1 Force-Directed Layouts

Force-directed layout algorithms are a powerful and practical graph drawing
heuristic. They rely on an objective function that maps a particular graph layout
to an energy value. Typically such algorithms start with a random drawing of
the graph and utilize standard optimization methods to minimize the energy
function. The algorithms define functions in which low energies are associated
with layouts where adjacent vertices are near some preferred distance from each
other, and non-adjacent vertices are well-spaced. The main difference between
force-directed algorithms is the choice of energy function and the methods for
its minimization.

We have implemented two traditional force-directed algorithms in graphael.
The first one is the Fruchterman-Reingold [7] algorithm. It defines an attractive



456 David Forrester et al.

force function for adjacent vertices and a repulsive force function for non-adjacent
vertices. For a vertex v, FFR(v) = Fa,FR + Fr,FR, where the attractive force is

defined as Fa,FR =
∑

u∈Adj(v)
distRn (u,v)2

edgeLength2 (pos[u] − pos[v]) and the repulsive

force is defined as Fr,FR =
∑

u∈Adj(v) s · edgeLength2

distRn (u,v)2
· (pos[u] − pos[v]).

The second force-directed method is the Kamada-Kawai [10] layout algo-
rithm. In this method each pair of vertices connected by a path has forces propor-
tional to the length of the path. The displacement of a vertex v of G is calculated

by: FKK(v) =
∑

u∈Ni(v)

(
distRn(u,v)2

distG(u,v)·edgeLength2 − 1
)

(pos[u] − pos[v]).

In the above equations, distRn(u, v) is the Euclidean distance between pos[u]
and pos[v], distG(u, v) is the graph distance between u and v along a shortest
path, edgeLength is the unit edge length, Adj(v) is the set of vertices adjacent
to v, and s is a small scaling factor.

2.2 Multi-scale Graph Drawing

The effectiveness of force-directed methods rapidly decreases as the input graphs
get larger. This is mainly due to the increased difficulty of getting out of local
minima and to the runtime complexity, typically quadratic, or cubic in the size
of the graph. Multi-scale graph drawing methods address both of these problems
by filtering the graph into different levels, called filtration levels, each containing
a subset of the initial graph. The levels are laid out from least to most complex.
The multi-scale methods rely on good filtrations, good initial placement of the
vertices, and on local refinement on each level.

Filtrations: The effectiveness of the multi-scale method depends on each suc-
cessive filtration level containing a constant fraction of the vertices from the
previous level. Thus, good filtrations have Θ(lg n) depth and can be quickly
computed. In graphael we currently provide three filtration methods: Maximal
Independent Set Filtration, Random Graph Filtration, and Cores Filtration:

1. Maximal Independent Set Filtration: A filtration V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃
∅ of the vertex set V of G is called a maximal independent set filtration if
V1 is a maximal independent set of G, and each Vi is a maximal subset of
Vi−1 so that the graph distance between any pair of its elements is at least
2i−1 + 1. Maximal Independent Set filtrations have depth O(lg n) and can
be computed in near-linear time [8].

2. Random Graph Filtration: Random filtrations are created by repeatedly re-
moving half of the vertices, chosen at random, starting with the original
vertex set V of G. The depth of this filtration is also O(lg n) and the compu-
tation time required is linear in the size of V . Although simple, this method
produces reasonable layouts for large graphs.

3. Cores Graph Filtration: Graph cores are described in [13]. Given a graph
G = (V, E), a subgraph Hk = (W ; E|W ) induced by the set W is a k-core,
or a core of order k if ∀v ∈ W : degH(v) ≥ k, and Hk is the maximum



Graphael: A System for Generalized Force-Directed Layouts 457

subgraph with this property. The core of maximum order is also called the
main core. Graph cores can be computed in linear time [2]. If the number
of cores is a small constant compared to the size of the graph, we augment
the filtration induced by the cores to depth O(lg n) using the peeling process
inherent in the core computation.

Initial Placement and Refinement: The main idea of good initial placement
is to add vertices to the current drawing one at a time at a carefully computed
position, rather than a random one [8]. For simplicity we describe the process
in 2D, but in practice this is done in arbitrary Euclidean, and even some non-
Euclidean, spaces. Assume that the highest filtration level has exactly 3 vertices.
These vertices are placed at the endpoints of a triangle with sides proportional
to the graph distances between the points in the original graph. Vertices in sub-
sequent filtration levels are placed based on their graph distances from already
placed vertices from previous filtration levels. The intuition is that if we place
the vertices close to their optimal positions initially, the refinement phase will
only need a few iterations of a local force-directed calculations to reach a mini-
mal energy state. In graphael’s implementation, we use the “3-closest-vertices”
strategy. Using this method we place the vertex t at the barycenter of u, v, and
w, the three vertices closest to t from the previous filtration level. Once all the
vertices at the current filtration level have been placed, we apply a local force-
directed refinement. The refinement stage is local as for a given vertex v in the
current filtration, only a small neighborhood of vertices Ni(v) is considered in
the force computation.

2.3 Graphs That Evolve Through Time

We have also implemented algorithms for visualization of graphs that evolve
through time based on techniques described in [5, 6]. The algorithms are mod-
ifications of the standard force-directed algorithms that allow us to deal with
vertex-weighted and edge-weighted graphs. Graphs that evolve through time are
converted to vertex-weighted and edge-weighted graphs, by treating each in-
stance of the graphs as a timeslice, and connecting neighboring timeslices. The
edges connecting different timeslices are called inter-timeslice edges. By changing
the weights of these edges, we are able to balance the individual graph readability
with the overall mental map preservation between consecutive graphs. Making
the inter-timeslice edges heavy, results in fixing the vertex positions in each graph
instance. Alternatively, making the inter-timeslice edges light, results in nearly
independent layouts of each graph instance.

Weighted Graphs: We modify the force-directed equations for calculating the
force vectors to include edge weights and vertex weights so as to place heavy
vertices well away from each other and to place vertices connected by heavy
edges closer to each other. The unit edge length is modified to

√
wu · wv/we for

an edge of weight we, connecting vertices u, v of weight wu, wv, respectively.
The Kamada-Kawai method relies on the notion of graph distance between

pairs of vertices. It is easy to generalize this notion to weighted graphs, but



458 David Forrester et al.

because of the computational and space overhead associated with calculating the
shortest path between all pairs of vertices in the graph, we use an approximation.
Let p1, p2, . . . , pn be the sequence of vertices in the shortest unweighted path in
G connecting two vertices, u and v. The modified Kamada-Kawai force vector
is given by FKK(v) =

∑

u∈Ni(v)

(
2 · distRn(u, v)2

optDistG(u, v)2 · edgeLength2 + distRn(u, v)2
− 1

)

(pos[u] − pos[v]),

where optDistG(u,v) =
n∑

i=2

√
wpi · wpi−1

wepipi−1

. Similarly, we modify the Fruchterman-

Reingold forces as follows: Fa,FR =
∑

u∈Adj(v)
we·distRn (u,v)2

edgeLength2 (pos[u] − pos[v])

and Fr,FR =
∑

u∈Adj(v) s ·
(

edgeLength2·√wu·wv

distRn(u,v)2

)

(pos[u] − pos[v]).

Timeslice Attribute: To visualize a series of graphs embodying the evolution
of a set of relationships over time, we associate a timeslice attribute with each
vertex. The timeslice of a vertex is just a label identifying which graph instance
the vertex belongs to. We use the timeslice attribute to partition the vertices
of a graph into groups by time. Additional modifications to the force-directed
algorithms are needed to accommodate timeslice information.

For the Kamada-Kawai layout method, the function optDistG(u, v) is modi-
fied so that for two vertices u, v with timeslice indices of tu and tv, respectively,

is given by: optDistG(u, v) =
n∑

i=2

δtutv ·
√

wpi · wpi−1

we
, where p1, p2, . . . , pn is the

shortest unweighted path in G connecting two vertices, u and v and δtutv is 1 if
tu = tv and 0 otherwise.

The modifications needed for the Fruchterman-Reingold calculations are sim-
ilar. Repulsive forces are simply eliminated between vertices in different times-
lices, Fr,w,t,FR = δ · Fr,w,FR while the attractive forces remain unchanged,
Fa,w,t,FR = Fa,w,FR.

2.4 Visualizing Evolving Graphs

The timeslice information alone is not enough to nicely layout evolving graphs;
we must also arrange edges between timeslices so that the layouts can be used
for animation. The most straightforward method to animate is simply to use a
series of “snapshots” of a graph taken at some interval over a period of time.
When visualizing an evolving graph, we would ideally like the graphs of each
timeslice to have high readability (i.e. have a pleasing layout) and for consecutive
timeslices to be similar, that is, the mental map should be preserved. To meet
these constraints the timeslices are combined into a single graph by connecting
vertices with the same labels from adjacent timeslices.

Because of the modified optimal distance function, corresponding vertices in
different timeslices have no repulsive force on each other, but they still have



Graphael: A System for Generalized Force-Directed Layouts 459

Fig. 1. graphael in cooperation with GraphAEL. The graphs shown are the column
view and flat 2D view of a citation graph from 2000 to 2003 by 1 year increments.

attractive forces due to the inter-timeslice edges. In graphael the balance be-
tween readability and mental map preservation can be controlled by changing
the weights of the inter-timeslice edges.

Once the layout of the evolving graph has been computed, graphael offers
different methods for visualizing the graphs. Each timeslice can be drawn in a
restricted 2D view, or the graphs can be drawn in 3D with individual graphs ar-
ranged on top of each other (column-view). The column view lays out each times-
lice on a separate plane, allowing the user to view the changes in the graph over
time; see Fig. 1. The inter-timeslice edges can be hidden or displayed. Smoothly
stepping through the evolving graphs using linear interpolation of vertex posi-
tions, colors, and weights yields visually pleasing animations.

2.5 Graph Drawing in Non-Euclidean Spaces

A novel feature in graphael is the option to layout graphs in non-Euclidean
spaces, in particular, in hyperbolic space and in spherical space [11]. Existing
force-directed algorithms are restricted to calculating a graph layout in Euclidean
geometry. Euclidean space has a very convenient structure for force-directed
methods. It is easy to define distances and angles, and the relationship between
the vector representing the net force on an object and the appropriate motion of



460 David Forrester et al.

that object are quite straightforward. Certain non-Euclidean geometries, specif-
ically hyperbolic geometry, have properties which are particularly well suited to
the layout and visualization of large classes of graphs [12].

With this in mind we have implemented a generalization of force-directed
methods to non-Euclidean geometries that relies on mappings between non-
Euclidean geometries and corresponding tangent spaces. While a non-Euclidean
geometry does not afford all of the conveniences of Euclidean geometry, there is a
straightforward way to define distances and angles, provided we restrict ourselves
to geometries which are smooth. Such geometries are known as Riemannian ge-
ometries, and while they have less convenient structure than Euclidean geom-
etry, they retain many of the characteristics which are useful for force-directed
graph layouts. A Riemannian manifold M has the property that for every point
x ∈ M , the tangent space TxM is an inner product space. This means that for
every point on the manifold, we can define local notions of length and angle.

Using a local notion of length we can define the length of a continuous curve
γ : [a, b] → M by length(γ) =

∫ b

a ‖γ′‖dt. This leads to a natural generalization of
the concept of a straight line to that of a geodesic, where the geodesic between
two points, u, v ∈ M is defined as a continuously differentiable curve of minimal
length between them. In Euclidean geometry the geodesics are straight lines, and
in spherical geometry they are arcs of great circles. Hence, the distance between
two points, d(x, y) is defined as the length of the geodesic between them.

Hyperbolic Geometry: Hyperbolic geometry is particularly well suited to
graph layout because it has “more space” than Euclidean geometry – in the
same sense that spherical geometry has “less space”. Unlike in Euclidean geom-
etry, where the relationship between the radius and circumference of a circle in
two-dimensional geometry is linear with a factor of 2π, and constant in a spher-
ical geometry, in hyperbolic geometry the circumference of a circle increases
exponentially with its radius. The applicability of this geometric property to
graph layout is well-illustrated with the example of a tree. In hyperbolic space,
it is possible to layout a tree structure with a uniform distribution of the vertices
and with uniform edge lengths despite the fact that the number of vertices at a
certain depth in the tree increases exponentially with the depth.

In order to visualize a layout in hyperbolic geometry it is necessary to map
the layout into the (2D) Euclidean geometry of a computer monitor. The method
used in graphael is the Poincare projection, that maps hyperbolic space onto
the open unit disk. The projection compresses the space near the boundary of
the unit disk, giving the impression of a fish-eye view. This naturally provides a
useful focus+context technique for visualizing the layouts of graphs. This model
preserves angles, but distorts lines. A line in hyperbolic space is mapped to a
circular arc which intersects the unit circle at right angles. The Poincare disk
progressively distorts the graph view as we move away from the center of projec-
tion. In Fig. 2(a) we show a drawing of a graph obtained in hyperbolic geometry
and displayed in 2D Euclidean space.

Spherical Geometry: Using the same ideas, we can generalize force-directed
methods to spherical space. Spherical geometry, like hyperbolic geometry, has



Graphael: A System for Generalized Force-Directed Layouts 461

Fig. 2. Layouts of a title-word graph, obtained in Hyperbolic space and in Spherical
space. The graph has 27 vertices and 50 edges and the vertices correspond to title-words
from papers in the 1999 Graph Drawing conference. The size of a vertex is determined
by its frequency and edges are placed between two vertices if they co-occur in at least
one paper.

a constant curvature and the equations for mapping to and from the tangent
space can be calculated analytically. Each point on a sphere is given a longitude
and latitude. The sphere can then be embedded in 3D Euclidean space by a
simple parameterization. In Fig. 2(b) we show a drawing of a graph obtained in
spherical geometry and displayed in three-dimensional Euclidean space.

Multi-scale Graph Drawing in Non-Euclidean Space: Since we are able
to utilize tangent space mapping to use existing force-directed methods for graph
layouts, we can also generalize the multi-scale method for drawing large graphs
to non-Euclidean spaces. Of the tree stages in the multi-scale method (filtration,
initial placement, and refinement) the only stage that requires further consider-
ation is the initial placement stage.

In the initial placement stage we place each vertex one at a time in the
barycenter of its neighbors. In Euclidean space we simply take the average of
each dimension and place the vertex at that point. For non-Euclidean points
we use the mapping to and from a tangent space. Specifically, we map the non-
Euclidean points that correspond to the location of the neighbors to a tangent
space. From there we are able to calculate the barycenter. We map that back
into the non-Euclidean manifold and place the vertex at that location.

2.6 Graph Editor

There are several ways to experiment with the graphael system. Loading one
of the sample graph files, loading a new file, or creating a new graph. When a
user wants to create a graph manually, they have the option of using a basic



462 David Forrester et al.

Graph Embellishers

Callback EdgeGraph Fabricator

Remove Edge

Rescale

Move Node

Remove Node

Remove Callback Edge

Add Callback Edge

Modify

Add Node

Add Edge

Navigate

Graph Processor

Fig. 3. A screenshot of the graphael CF-graph.

graph editor that can be accessed from within graphael. The editor is simple,
but useful for users that do not have data to generate a graph from. The graph
editor is especially helpful in the testing of new components, since simple cases
can be modeled easily in the editor. With a point/click/drag user interface,
vertices and edges can be added, deleted, or moved.

3 Control Flow Graph

Here we describe another novel features of graphael, the Control Flow (CF)
graph1. The CF-graph allows the user to put together different combinations
of layout algorithms, projections and visualizations, while offering a visual rep-
resentation of the derived graph’s production process; see Fig. 3. CF-graphs
contain CF-nodes (such as layout algorithms) that act to generate and refine a
derived graph, and CF-edges that represent the channels of input and output,
internally passed between the CF-nodes.

CF-graphs are created by adding new CF-nodes and connecting them with
edges. Once a complete chain of appropriate CF-nodes has been completed, the
“run” button activates all the graph fabricators (described below). Modifying
how an existing CF-graph produces derived graphs can be done by manipulating
the composition of the current CF-graph or by changing the internal properties
of the production units of CF-nodes.

3.1 CF-Nodes

There are three different types of production units: fabricators, embellishers, and
processors. Each of them is briefly described below.

1. Graph Fabricators are graph production units that take no input from other
CF-graph entities. They act as the starting point for the generation of derived

1 Note: For clarity we shall call a Control Flow graph a CF-graph and a graph produced
by a CF-graph a “derived” or “production” graph.



Graphael: A System for Generalized Force-Directed Layouts 463

graphs since are not dependent on a derived graph as input. Many of the
current graph fabricators available in graphael create the most raw form of
a derived graph (i.e., vertex and edge declarations) by reading input files.

2. Graph Embellishers are methods that require a single, derived graph element
as input from within the CF-graph and output a newly augmented, derived
graph. In many cases, graph embellishers are used to add or modify proper-
ties of the derived graph they receive as input. For example, an embellisher
could take a weighted graph as input and produce a weighted graph in which
the color property of the heaviest vertices makes them stand out.

3. Graph Processors are methods in the final stage in any CF-graph, since
they do not pass derived graphs to other production units. These methods
typically output the final derived graph in the form of a picture, or a file.

3.2 Callback Edges

In a CF-graph with normal edges, once a production unit is finished with its
input, the graph is passed to the next unit until it reaches the end of the CF-
graph. However, there are cases when this is not desirable. If we wish, for exam-
ple, to show a graph layout in a series of iterations (as opposed to just the final
product), we would require the use of graphael’s callback edges. These edges
allow the source CF-node to suspend its execution and pass the graph to the
remainder of the CF-graph, starting at the target of the callback edge. Once this
finishes, execution resumes where the source CF-node left off. Using callbacks,
we implemented features such as animation. Specifically, a layout that needs to
iterate over the graph multiple times can suspend itself to let the resulting graph
from each iteration reach the processor and be displayed on the screen. After
the processor finishes, the layout runs the next iteration. Callback edges can be
identified as thick, dotted lines.

3.3 CF-Node Property Management

Whereas the panel in Fig. 3 offers different ways to manipulate the CF-graph,
the individual CF-nodes can be manipulated as well. Recall that one of the two
ways to modify how a derived graph is produced is to change CF-node properties.
While we do allow for customized property managers, we have implemented an
automatic GUI generator to minimize the amount of work required to make ad-
ditions to the graphael library. The GUI generator is implemented using Java’s
reflection capabilities. This allows graphael to dynamically examine methods
and data members of Java classes that have been added to its library. The sys-
tem detects which properties can be modified by looking for a pair of getter and
setter methods that meet certain conditions.

4 Conclusion

The graphael system has been implemented in Java, and is can be used to
draw static graphs and evolving graphs online or offline. It can also be used as



464 David Forrester et al.

visualization platform for tools that generate graphs as output. For example, a
database that produces graphs, such as the one described in [5] can be coupled
with graphael to provide visual interaction with the graphs. Our system cur-
rently supports the (graph markup language) file format. Simple modifications
to the standard format accommodate vertex-weights and edge-weights, as well
as timeslice information.

References

1. D. Auber. Tulip - a huge graph visualization framework. In M. Jünger and
P. Mutzel, editors, Graph Drawing Software, pages 105–126. Springer-Verlag, 2003.

2. V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large networks. In
M. Jünger and P. Mutzel, editors, Graph Drawing Software, pages 77–103. Springer-
Verlag, 2003.

3. S. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation
service on the www. International Journal on Computational Geometry and Ap-
plication, 9(4–5):419–446, 1999.

4. T. Dwyer and P. Eckersley. Wilmascope - a 3d graph visualization system. In
M. Jünger and P. Mutzel, editors, Graph Drawing Software, pages 55–75. Springer-
Verlag, 2003.

5. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee. GraphAEL:
Graph animations with evolving layouts. In 11th Symposium on Graph Drawing,
pages 98–110, 2003.

6. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee. Exploring
the computing literature using temporal graph visualization. In Visualization and
Data Analysis, pages 45–56, 2004.

7. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-
ment. Softw. Pract. Exper., 21(11):1129–1164, 1991.

8. P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent placement.
Journal of Graph Algorithms and Applications, 6(3):203–224, 2002.

9. M. Jünger and P. Mutzel, editors. Graph Drawing Software. Springer-Verlag, 2003.
10. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Inf. Process. Lett., 31(1):7–15, 1989.
11. S. G. Kobourov and K. Wampler. Non-Euclidean spring embedders. In 10th Annual

IEEE Symposium on Information Visualization (InfoVis). To appear in 2004.
12. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic

geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 401–408, 1995.

13. S. B. Seidman. Network structure and minimum degree. Social Networks, 5:269–
287, 1983.

14. R. Wiese, M. Eiglsperger, and M. Kauffmann. yfiles - visualization and automatic
layout of graphs. In M. Jünger and P. Mutzel, editors, Graph Drawing Software,
pages 173–192. Springer-Verlag, 2003.


	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 System Overview
	2.1 Force-Directed Layouts
	2.2 Multi-scale Graph Drawing
	2.3 Graphs That Evolve Through Time
	2.4 Visualizing Evolving Graphs
	2.5 Graph Drawing in Non-Euclidean Spaces
	2.6 Graph Editor

	3 Control Flow Graph
	3.1 CF-Nodes
	3.2 Callback Edges
	3.3 CF-Node Property Management

	4 Conclusion
	References



