
Drawing Pfaffian Graphs

Serguei Norine

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract. We prove that a graph is Pfaffian if and only if it can be
drawn in the plane (possibly with crossings) so that every perfect match-
ing intersects itself an even number of times.

1 Introduction

In this paper we prove a theorem that connects Pfaffian orientations with the
parity of the numbers of crossings in planar drawings. The proof is elementary,
but it has other consequences and raises interesting questions. Before we can
state the theorem we need some definitions.

All graphs considered in this paper are finite and have no loops or multiple
edges. For a graph G we denote its edge set by E(G). A labeled graph is a graph
with vertex-set {1, 2, . . . , n} for some n. If u and v are vertices in a graph G, then
uv denotes the edge joining u and v and directed from u to v if G is directed.
A perfect matching is a set of edges in a graph that covers all vertices exactly
once.

Let G be a directed labeled graph and let M = {u1v1, u2v2, . . . , ukvk} be a
perfect matching of G. Define the sign of M to be the sign of the permutation

(
1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)
.

Note that the sign of a perfect matching is well-defined as it does not depend
on the order in which the edges are written. We say that a labeled graph G is
Pfaffian if there exists an orientation D of G such that the signs of all perfect
matchings in D are positive, in which case we say that D is a Pfaffian orientation
of G. An unlabeled graph G is Pfaffian if it is isomorphic to a labeled Pfaffian
graph. It is well-known and also follows from Theorem 1 below that in that
case every labeling of G is Pfaffian. The importance of Pfaffian graphs will be
discussed in the next section.

By a drawing Γ of a graph G we mean an immersion of G in the plane
such that edges are represented by homeomorphic images of [0, 1] not containing
vertices in their interiors. Edges are permitted to intersect, but there are only
finitely many intersections and each intersection is a crossing. For edges e, f of
a drawing Γ let cr(e, f) denote the number of times the edges e and f cross. For
a perfect matching M let crΓ (M), or cr(M) if the drawing is understood from
context, denote

∑
cr(e, f), where the sum is taken over all unordered pairs of

distinct edges e, f ∈ M .
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The following theorem is the main result of this paper. The proof will be
presented in Section 3.

Theorem 1. A graph G is Pfaffian if and only if there exists a drawing of G in
the plane such that cr(M) is even for every perfect matching M of G.

The “if” part of this theorem as well as the “if” part of its generalization
(Theorem 3) was known to Kasteleyn [4] and was proved by Tesler [14]; however
our proof of this part is different. The “only if” part is new.

2 Pfaffian Graphs

Pfaffian orientations have been introduced by Kasteleyn [2–4], who demonstrated
that one can enumerate perfect matchings in a Pfaffian graph in polynomial time.

We say that an n × n matrix A(D) = (aij) is a skew adjacency matrix of a
directed labeled graph D with n vertices if

aij =




1 if ij ∈ E(D),
−1 if ji ∈ E(D),
0 otherwise.

Let A be a skew-symmetric 2n× 2n matrix. For each partition

P = {{i1, j1}, {i2, j2}, . . . , {in, jn}}

of the set {1, 2, . . . , 2n} into pairs, define

aP = sgn

(
1 2 . . . 2n − 1 2n
i1 j1 . . . in jn

)
ai1j1 . . . ainjn .

Note that aP is well defined as it does not depend on the order of the pairs in
the partitions nor on the order in which the pairs are listed. The Pfaffian of the
matrix A is defined by

Pf(A) =
∑
P

aP ,

where the sum is taken over all partitions P of the set {1, 2, . . . , 2n} into pairs.
Note that if D is a Pfaffian orientation of a labeled graph G then Pf(A(D)) is
equal to the number of perfect matchings in G. One can evaluate the Pfaffian
efficiently using the following identity from linear algebra: for a skew-symmetric
matrix A

det(A) = (Pf(A))2.

Thus the number of perfect matchings, and more generally the generating func-
tion of perfect matchings of a Pfaffian graph, can be computed in polynomial
time.

The problem of recognizing Pfaffian bipartite graphs is equivalent to many
problems of interest outside graph theory, eg. the Pólya permanent problem [11],
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the even circuit problem for directed graphs [15], or the problem of determin-
ing which real square matrices are sign non-singular [5], where the latter has
applications in economics [13].

The complete bipartite graph K3,3 is not Pfaffian. Each edge of K3,3 belongs
to exactly two perfect matchings and therefore changing an orientation of any
edge does not change the parity of the number of perfect matchings with negative
sign. One can easily verify that for some (and therefore for every) orientation of
K3,3 this number is odd.

In fact, Little [6] proved that a bipartite graph is Pfaffian if and only if it
does not contain an “even subdivision” H of K3,3 such that G \ V (H) has a
perfect matching.

A structural characterization of Pfaffianbipartite graphs was givenby Robert-
son, Seymour and Thomas [12] and independently by McCuaig [7]. They proved
that a bipartite graph is Pfaffian if and only if it can be obtained from planar
graphs and one specific non-planar graph (the Heawood graph) by repeated ap-
plication of certain composition operations. This structural theorem implies a
polynomial time algoritheorem for recognition of Pfaffian bipartite graphs.

No satisfactory characterization is known for general Pfaffian graphs. The
result of this paper was obtained while attempting to find such a description.

3 Main Theorem

Let Γ be a drawing of a graph G in the plane. We say that S ⊆ E(G) is a marking
of Γ if cr(M) and |M ∩ S| have the same parity for every perfect matching M
of G.

Theorem 1 follows from the following more general result.

Theorem 2. For a graph G the following are equivalent:
(a) G is Pfaffian;
(b) some drawing of G in the plane has a marking;
(c) every drawing of G in the plane has a marking;
(d) there exists a drawing of G in the plane such that cr(M) is even for every
perfect matching M of G.

We say that Γ is a standard drawing of a labeled graph G if the vertices of
Γ are arranged on a circle in order and every edge of Γ is drawn as a straight
line.

The equivalence of conditions (a), (b) and (c) of Theorem 2 immediately
follows from the next two lemmas.

Lemma 1. Let Γ be a standard drawing of a labeled graph G. Then G is Pfaffian
if and only if Γ has a marking.

Proof. Let D be an orientation of G. Let M = {u1v1, u2v2, . . . , ukvk} be a perfect
matching of D. The sign of M is the sign of the permutation

P =
(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)
.
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Let i(P ) denote the number of inversions in P , then

sgn(M) = sgn(P ) = (−1)i(P ) =
∏

1≤i<j≤2k

sgn(P (j) − P (i)) =

=
∏

1≤i<j≤k

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) ×

×
∏

1≤i≤k

sgn(vi − ui). (1)

In Γ edges uivi and ujvj cross if and only if each of the two arcs of the circle
containing the vertices of Γ with the ends ui and vi contains one of the vertices
uj and vj , in other words if and only if

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) = −1.

Define SD = {uv ∈ E(D)|u > v}. Note that for every S ⊆ E(G) there exists
(unique) orientation D such that S = SD. From (1) we deduce that

sgn(M) = (−1)cr(M) × (−1)|M∩S|.

Therefore M has a positive sign if and only if cr(M) and |M ∩S| have the same
parity. It follows that D is a Pfaffian orientation of G if and only if SD is a
marking of the standard drawing of G. ��

Notice that we have in fact shown that there exists a one-to-one correspon-
dence between Pfaffian orientations of a labeled graph and markings of its stan-
dard drawing.

Lemma 2. Let Γ1 and Γ2 be two drawings of a labeled graph G in the plane.
Then Γ1 has a marking if and only if Γ2 has one.

Proof. For any n and any two sequences (a1, a2, .., an) and (b1, b2, .., bn) of pair-
wise distinct points in the plane, there clearly exists a homeomorphic transfor-
mation of the plane that takes ai to bi for all 1 ≤ i ≤ n. Therefore without
loss of generality we assume that the vertices of G are represented by the same
points in the plane in both Γ1 and Γ2.

It suffices to prove the statement of the lemma for drawings Γ1 and Γ2 that
differ only in the position of a single edge e = uv. Let e1 and e2 denote the
images of e in Γ1 and Γ2 correspondingly. Define C = e1 ∪ e2. The closed curve
C separates its complement into two sets P1 and P2 with the property that every
simple curve with the ends a ∈ Pi and b ∈ Pj crosses C even number of times if
and only if i = j.

Clearly if e �∈ M we have

crΓ1(M) = crΓ2(M). (2)

Let c = 0 if both P1 and P2 contain an even number of vertices of G and let c = 1
otherwise. For two curves C1 and C2, let cr(C1, C2) denote the total number of
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times C1 crosses C2. For any perfect matching M of G, such that e ∈ M , the
following identity holds modulo 2:

crΓ1(M) + crΓ2(M) = 2
∑

{f,g}⊆M\{e}
cr(f, g) +

∑
f∈M\{e}

(cr(f, e1) + cr(f, e1))

=
∑

f∈M\{e}
cr(f, C) = c.(3)

Suppose S is a marking of Γ1. Identities (2) and (3) imply that S is a marking
of Γ2 if c = 0, and that S	{e} is a marking of Γ2 if c = 1. ��

Since clearly (d) implies (b), to finish the proof of Theorem 2 it remains to
show that (b) implies (d). Suppose G satisfies (b) and consider a drawing of G
in the plane with a marking S. Suppose there exists e ∈ S. We change the way
e is drawn, so that the closed curve C which is composed from the old and the
new drawing of e separates one vertex of G from the rest. From the proof of
Lemma 2 it follows that S \ {e} is a marking in the new drawing. By repeating
the procedure we produce a drawing of G such that the empty set is a marking,
therefore demonstrating that G satisfies condition (d) of Theorem 2.

4 Concluding Remarks

1. The following generalization of Theorem 1 follows from the proof in previous
section.

Theorem 3. Let G be a graph and let M be the set of all perfect matchings of
G. Let s : M → {−1, 1}. Then the following are equivalent:
(1) there exists an orientation D of G such that for every M ∈ M its sign in
the corresponding directed graph is equal to s(M);
(2) there exists a drawing of G in the plane such that for every M ∈ M

s(M) = (−1)cr(M).

In [8] I was also able to generalize the methods used in the proof of Theorem 1
to prove a result on the numbers of crossings in “T -joins” in different drawings
of a fixed graph.

2. For a labeled graph G, an orientation D of G and a perfect matching M of
G, denote the sign of M in the directed graph corresponding to D by D(M).
We say that a graph G is k-Pfaffian if there exist a labeling of G, orientations
D1, D2, . . . , Dk of G and real numbers α1, α2, . . . , αk, such that for every perfect
matching M of G

k∑
i=1

αiDi(M) = 1.

For surfaces of higher genus the following result was mentioned by Kaste-
leyn [3] and proved by Galluccio and Loebl [1] and independently by Tesler [14].
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Theorem 4. Every graph that can be embedded on a surface of genus g is 4g-
Pfaffian.

I was able to prove the following analogue of Theorem 1 for the torus [9].

Theorem 5. Every 3-Pfaffian graph is Pfaffian. A graph G is 4-Pfaffian if and
only if there exists a drawing of G on the torus such that cr(M) is even for every
perfect matching M of G.

Theorems 4 and 5 suggest several questions. For which k ≥ 5 do there exist
graphs that are k-Pfaffian, but not (k − 1)-Pfaffian? Is it true that a graph G
is 4g-Pfaffian if and only if there exists a drawing of G on a surface of genus g
such that cr(M) is even for every perfect matching M of G?
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11. G. Pólya, Augfabe 424, Arch. Math. Phys. Ser. 20 (1913), 271.
12. N. Robertson, P. D. Seymour and R. Thomas, Permanents, Pfaffian orientations,

and even directed circuits, Ann. of Math. (2) 150(1999), 929-975.
13. P. Samuelson, Foundations of Economic Analysis, Atheneum, New York, 1971.
14. G. Tesler, Matching in graphs on non-orientable surfaces, J. Comb. Theory B 78

(2000), 198-231.
15. V. V. Vazirani and M. Yannakakis, Pfaffian orientations, 0 − 1 permanents, and

even cycles in directed graphs, Discrete Appl. Math. 25 (1989), 179-190.


	1 Introduction
	2 Pfaffian Graphs
	3 Main Theorem
	4 Concluding Remarks
	References



