
Distributed Graph Layout for Sensor Networks

Craig Gotsman1 and Yehuda Koren2

1 Department of Computer Science,
Harvard University, Cambridge, MA 02138

gotsman@eecs.harvard.edu
2 AT&T Labs – Research,
Florham Park, NJ 07932

yehuda@research.att.com

Abstract. Sensor network applications frequently require that the sensors know
their physical locations in some global coordinate system. This is usually achieved
by equipping each sensor with a location measurement device, such as GPS.
However, low-end systems or indoor systems, which cannot use GPS, must lo-
cate themselves based only on crude information available locally, such as inter-
sensor distances. We show how a collection of sensors, capable only of measuring
distances to close neighbors, can compute their locations in a purely distributed
manner, i.e. where each sensor communicates only with its neighbors. This can
be viewed as a distributed graph drawing algorithm. We experimentally show
that our algorithm consistently produces good results under a variety of simu-
lated real-world conditions, and is relatively robust to the presence of noise in the
distance measurements.

1 Introduction

Sensor networks are a collection of (usually miniature) devices, each with limited com-
puting and (wireless) communication capabilities, distributed over a physical area. The
network collects data from its environment and should be able to integrate it and answer
queries related to this data. Sensor networks are becoming more and more attractive in
environmental, military and ecological applications (see [12] for a survey of this topic).

The advent of sensor networks has presented a number of research challenges to the
networking and distributed computation communities. Since each sensor can typically
communicate only with a small number of other sensors, information generated at one
sensor can reach another sensor only by routing it thru the network, whose connectivity
is described by a graph. This requires ad-hoc routing algorithms, especially if the sen-
sors are dynamic. Traditional routing algorithms relied only on the connectivity graph
of the network, but with the introduction of so-called location-aware sensors, namely,
those who also know what their physical location is, e.g. by being equipped with a GPS
receiver, this information can be used to perform more efficient geographic routing. See
[10] for a survey of these routing techniques.

Beyond routing applications, location-aware sensors are important for information
dissemination protocols and query processing. Location awareness is achieved primar-
ily by equipping the sensors with GPS receivers. These, however, may be too expensive,
too large, or too power-intense for the desired application. In indoor environments, GPS

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 273–284, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

274 Craig Gotsman and Yehuda Koren

does not work at all (due to the lack of line-of-sight to the satellites), so alternative solu-
tions must be employed. Luckily, sensors are usually capable of other, more primitive,
geometric measurements, which can aid in this process. An example of such a geo-
metric measurement is the distance to neighboring sensors. This is achieved either by
Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA) techniques. An im-
portant question is then whether it is possible to design a distributed protocol by which
each sensor can use this local information to (iteratively) compute its location in some
global coordinate system.

This paper solves the following sensor layout problem: Given a set of sensors dis-
tributed in the plane, and a mechanism by which a sensor can estimate its distance to
a few nearby sensors, determine the coordinates of every sensor via local sensor-to-
sensor communication. These coordinates are called a layout of the sensor network.

As stated, this problem is not well-defined, because it typically will not have a
unique solution. A unique solution would mean that the system is rigid, in the sense
that the location of any individual sensor cannot be changed without changing at least
one of the known distances. When all

(
n
2

)
inter-sensor distances are known, the solu-

tion is indeed unique, and is traditionally solved using the Classical Multidimensional
Scaling (MDS) technique [1]. When only a subset of the distances are known, more
sophisticated techniques must be used.

When multiple solutions exist, the main phenomenon observed in the solutions is
that of foldovers, where entire pieces of the graph fold over on top of others, without
violating any of the distance constraints. The main challenge is to generate a solution
which is fold-free. Obviously the result will have translation, orientation and reflection
degrees of freedom, but either these are not important, or can be resolved by assigning
some known coordinates to three sensors.

In real-world sensor networks, noise is inevitable. This manifests in the inter-sensor
noise measurements being inaccurate. Beyond the obvious complication of the dis-
tances possibly no longer being symmetric, thus violating the very essence of the term
“distance”, there may no longer even exist a solution realizing the measured edge
lengths. The best that can be hoped for, in this case, is a layout whose coordinates
are, up to some acceptable tolerance, close to the true coordinates of the sensors.

In order to be easily and reliably implemented on a sensor network, the solution
to the layout problem should be fully distributed (decentralized). This means that each
sensor should compute based on information available only at that sensor and its im-
mediate neighbors. The class of neighbors is typically characterized by a probabilistic
variant of the disk graph model: Any sensor within distance R1 is reachable, any sensor
beyond distance R2 is not reachable, and any sensor at a distance between R1 and R2

is reachable with probability p. Of course, information from one sensor may eventually
propagate thru the network to any other sensor, but this should not be done explicitly.

2 Related Work

The problem of reconstructing a geometric graph given its edge-lengths has received
some attention in the discrete geometry and computational geometry communities,
where it is relevant for molecule construction and protein folding applications. De-

Distributed Graph Layout for Sensor Networks 275

ciding whether a given graph equipped with edge lengths is rigid in 2D – i.e. admits a
unique layout realizing the given edge lengths – is possible in polynomial time for the
dense class of graphs known as generic graphs [7]. However, computing such a layout
is in general NP-hard [14]. This does not change even if a layout is known to exist (as
in our case).

The problem of distributed layout of a sensor network has received considerable
attention in the sensor network community. A recent work of Priyantha et al [11] classi-
fies these into anchor-based vs. anchor-free algorithms and incremental vs. concurrent
algorithms. Anchor-based algorithms rely on the fact that a subset of the sensors are
already aware of their locations, and the locations of the others are computed based on
those. In practice a large number of anchor sensors are required for the resulting loca-
tion errors to be acceptable. Incremental algorithms start with a small core of sensors
that are assigned coordinates. Other sensors are repeatedly added to this set by local
trigonometric calculations. These algorithms accumulate errors and cannot escape lo-
cal minima once they are entered. Concurrent algorithms work in parallel on all sensors.
They are better able to avoid local minima and avoid error accumulation. Priyantha et
al [11] review a number of published algorithms and their classifications. All of them,
however, are not fully distributed.

The algorithm we describe in this paper is most similar in spirit to the so-called
Anchor-Free Localization (AFL) algorithm proposed by Priyantha et al [11]. The AFL
algorithm operates in two stages. In the first stage a heuristic is applied to try gener-
ate a well-spread fold-free graph layout which “looks similar” to the desired layout.
The second stage applies a “stress-minimization” optimization procedure to correct and
balance local distance errors, converging to the final result. The heuristic used in the
first stage involves the election of five reference sensors. Four of these sensors are well-
distributed on the periphery of the network, and serve as north, east, south and west
poles. A fifth reference sensor is chosen at the center. Coordinates are then assigned
to all nodes, using these five sensors, reflecting their assumed positions. Unfortunately,
this process does not lend itself easily to distribution. The second stage of the AFL algo-
rithm attempts to minimize the partial stress energy using a gradient descent technique.
At each sensor, the coordinates are updated by moving an infinitesimal distance in the
direction of the spring force operating on the sensor. This is a fully distributed protocol.
It, however, involves a heuristic choice of the infinitesimal step, and can be quite slow.

Our algorithm also involves two stages with similar objectives. The first aims to
generate a fold-free layout. This is done based on a distributed Laplacian eigenvector
computation which typically spreads the sensors well. The second stage uses the result
of the first stage as an initial layout for an iterative stress-minimization algorithm. As
opposed to AFL, it is not based on gradient descent, rather on a more effective ma-
jorization technique.

Once again we emphasize that the main challenge is to design algorithms which
are fully distributed. This is a major concern in sensor network applications, and there
is an increasing interest in designing such solutions. These turn out sometimes to be
quite non-trivial. Probably the simplest example is a distributed algorithm to compute
the sum (or average) of values distributed across the network; see [13].

276 Craig Gotsman and Yehuda Koren

3 The Problem

We are given a graph G(V = {1, . . . , n}, E), and for each edge 〈i, j〉∈ E – its Eu-
clidean “length” lij . Denote a 2D layout of the graph by x, y ∈ R

n, where the coordi-
nates of vertex i are (xi, yi). Denote dij=

√
(xi − xj)2 + (yi − yj)2.

In the non-noisy version of the problem, we know that there exists a layout of the
sensors that realizes the given edge lengths (i.e. dij = lij). Our goal is then to reproduce
this layout. This layout is usually not unique. For example consider a 2n × 2n square
grid, where each internal sensor is connected to its four immediate neighbors with an
edge of length one. We can realize all lengths using the degenerate 1D layout where
half of the sensors are placed on 0 and the other half is placed on 1.

Fortunately, there is additional information that we may exploit to eliminate spuri-
ous solutions to the layout problem – we know that the graph is a full description of the
close sensors. Consequently, the distance between each two nonadjacent sensors should
be greater than some constant r, which is larger than the longest edge. This can further
constrain the search space and eliminate most undesired solutions. Formally, we may
pose our problem as follows:

Layout Problem. Given a graph G({1, . . . , n}, E), and for each edge 〈i, j〉 ∈ E – its
length lij , find an optimal layout (p1, . . . , pn) (pi ∈ R

d is the location of sensor i),
which satisfies for all i �= j:

{‖pi − pj‖ = lij if 〈i, j〉 ∈ E
‖pi − pj‖ > R if 〈i, j〉 /∈ E

Where R = max〈i,j〉∈E lij . For the rest of this paper we assume d = 2.
It seems that an optimal layout is unique (up to translation, rotation and reflection)

in many practical situations. For example, it overcomes the problem in the 2n × 2n
grid example described above. An optimal layout is similar to that generated by com-
mon force-directed graph drawing algorithms that place adjacent nodes closely while
separating nonadjacent nodes. Therefore, we may exploit some known graph drawing
techniques. For example, separating nonadjacent sensors can be achieved by solving an
electric-spring system with repulsive forces between these sensors [2, 3]. Another possi-
bility is to somehow estimate the distances lij between nonadjacent sensors (e.g., as the

graph-theoretic distance) and then to minimize the full stress energy:
∑

i<j
(dij−lij)

2

l2ij

using an MDS-type technique; see [8].
However, since we aim at a distributed algorithm which should minimize communi-

cation between the sensors, dealing with repulsive forces or long-range target distances
is not practical, as this will involve excessive inter-sensor interaction, which is very ex-
pensive in this scenario. To avoid this, we propose an algorithm which is based only on
direct information sharing between adjacent sensors, avoiding all communication be-
tween nonadjacent sensors or any centralized supervision. Note that such a restriction
rules out all common algorithms for general graph drawing problem; we are not aware
of any layout algorithm that satisfies it.

In the real-life noisy version of the problem, the measured distances lij are contam-
inated by noise: lij = dij + εij . This means that there might not even exist a solution
to the optimal layout problem. In this case we would like to minimize the difference
between the true location of the sensors and those computed by the algorithm.

Distributed Graph Layout for Sensor Networks 277

4 Smart Initialization and Eigen-projection

A useful energy function which is minimized by the desired layout is the localized stress
energy:

Stress(x, y) =
∑

〈i,j〉∈E

(dij(x,y) − lij)2 (1)

Note that this energy is not normalized, as opposed to the full stress energy. This non-
convex energy function may have many local minima, which an optimizer may get
stuck in. However, since in the non-noisy case, we are guaranteed the existence of a
layout where dij = lij , namely Stress(x, y) achieves the global minimum of zero, it
is reasonable to hope that if we start with the optimization process at a “smart” initial
layout, the process will converge to this global minimum. To construct such an initial
layout, we exploit the fact that nonadjacent sensors should be placed further apart. This
means that we seek a layout that spreads the sensors well. We first deal with the one-
dimensional case. We will design an energy function which is minimized by such a
layout, and can be optimized in a strictly distributed fashion. The function is defined as
follows:

E(x) =

∑
〈i,j〉∈E wij ||xi − xj ||2
∑

i<j ||xi − xj ||2 (2)

Here, wij is some measure for the similarity of the adjacent sensors i and j. It should
be derived from lij , e.g., wij = 1/(lij + α) or wij = exp(−αlij), α � 0; in our
experiments we used wij = exp(−lij). Minimizing E(x) is useful since it tries to
locate adjacent sensors close to each other while separating nonadjacent sensors. It
can also be solved fairly easily. Denote by D the diagonal matrix whose i’th diagonal
entry is the sum of the i’th row of W : Dii =

∑
j:〈i,j〉∈E wij . The global minimum

of E(x) is the eigenvector of the related weighted Laplacian matrix Lw = D − W
associated with the smallest positive eigenvalue; see [6, 9]. In practice, it is better to
work with the closely related eigenvectors of the transition matrix D−1W , which have
some advantages over the eigenvectors of Lw; see [9]. Note that the top eigenvalue of
D−1W is λ1 = 1, associated with the constant eigenvector v1 = 1n = (1, 1, . . . , 1), so
the desired solution is actually the second eigenvector v2.

The vector v2 can be computed in a distributed manner by iteratively averaging the
value at each sensor with the values of its neighbors:

xi ← a

(

xi +

∑
〈i,j〉∈E wijxj
∑

〈i,j〉∈E wij

)

(3)

Readers familiar with numerical linear algebra will recognize this process as power
iteration of the matrix I + D−1W . Power iteration usually converges to the eigenvec-
tor of the iterated matrix corresponding to the eigenvalue with highest absolute value.
However, here we initialize the process by a vector y which is D-orthogonal to v1,
namely yT Dv1 = 0, using a distributed method that will be described shortly. Hence,
the process will converge to v2 – the next highest eigenvector of I + D−1W ; see [9].
D-orthogonality, rather than simple orthogonality, is required because D−1W is not
symmetric. The constant a > 0 controls the growth of ‖x‖; in our implementation we
used a = 0.51.

278 Craig Gotsman and Yehuda Koren

4.1 Two Dimensional Layout

We now turn our attention to the two-dimensional layout problem. E(x) is defined also
in higher dimensions (where x is short for (x, y)), and a “smart” initial 2D layout is
achieved by taking the x coordinate to be v2 – the second eigenvector of D−1W , and
the y coordinate to be v3 – the third eigenvector of D−1W . Unfortunately, the power
iteration (3) will not detect v3, as it is dominated by v2, unless we start the process (3)
with a vector D-orthogonal to x = v2.

Constrained by the distributed computation requirement, it is not easy to initialize
the process with a vector D-orthogonal to v2. We resort to the following lemma:

Lemma 1. Given two vectors x and y and matrices D and A, the vector Ay is D-
orthogonal to x if AT Dx = 0.

Proof. Since AT Dx = 0, then yT AT Dx = 0. Equivalently (Ay)T Dx = 0 and the
lemma follows. ��
Therefore, it suffices to construct a “local matrix” A such that AT Dx = 0. By “local”
we mean that Ai,j �= 0 only if 〈i, j〉 ∈ E. This will enable a distributed computation.
In our case when D is diagonal, a suitable matrix is the following:

Ai,j =






−xj/Dii 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E, i �= j i, j = 1, . . . , n
−∑k Ai,k i = j

It is easy to verify that AT Dx = 0.
To summarize, to obtain y = v3, we pick some random vector u, and initialize y

with Au. Note that the computation of Au involves only local operations, and can be
easily distributed. Then, we run the power iteration (3) on the vector y.

While the initial vector is D-orthogonal to v2, it is not necessarily D-orthogonal
to v1 = 1n. Hence, after many iterations, the result will be y = αv1 + εv3, for some
very small ε. While the process ultimately converges to what seems to be an essentially
useless vector, its values near the limit is what is interesting. Since v1 is the constant
vector – 1n, these values are essentially a scaled version of v3 displaced by some fixed
value (α) and they still retain the crucial information we need.

However when the numerical precision is low and the ratio α/ε is too high we
might lose the v3 component. Fortunately, we can work around this by translating and
scaling y during the power iteration. Specifically, every βn iterations (we use β = 1/2)
compute mini yi and maxi yi. A distributed computation is straightforward and can be
completed with number of iterations bounded by the diameter of the graph (at most
n− 1). Then, linearly transform y by setting

yi ← yi −mini yi

maxi yi −mini yi
− 1

2
, i = 1, . . . , n (4)

After this, mini yi = −0.5 and maxi yi = 0.5. Since translation is equivalent to addi-
tion of γv1 and scaling cannot change direction, we can still express y as α̂v1 + ε̂v3.

Now assume, without loss of generality, that maxi v3 − mini v3 = 1, and recall
that v1 = (1, 1, . . . , 1). The D-orthogonality of v3 to 1n implies: maxi v3 > 0 and

Distributed Graph Layout for Sensor Networks 279

mini v3 < 0. In turn, mini yi = −0.5 and maxi yi = 0.5 imply that |α̂| < 0.5.
Moreover, since all the variability of y is due to its v3 component, we get ε̂ = 1.
Therefore, (4) guarantees that the magnitude of the v3 component is larger than that of
the v1 component, avoiding potential numerical problems.

4.2 Balancing the Axes

Obviously, the process described in Section 4.1 can yield x and y coordinates at very
different scales. Usually, we require that ||x|| = ||y||, but this is difficult to achieve
in a distributed manner. An easier alternative that is more suitable for a distributed
computation is a balanced aspect ratio, i.e.: maxi xi −mini xi = maxi yi −mini yi .

Since the computation of the y-coordinates already achieved maxi yi−mini yi = 1,
it remains to ensure that the x coordinates have the same property. We achieve this by
performing: xi ← xi/(maxi xi −mini xi) , i = 1, . . . , n .

5 Optimizing the Localized Stress Energy

At this point we have reasonable initial locations for both the x- and y-coordinates,
and are ready to apply a more accurate 2D optimization process for minimizing the
localized stress energy (1). A candidate could be simple gradient descent, which is
easily distributed, as in [11]. Each sensor would update its x-coordinates as follows:

xi(t + 1) = xi(t) + δ
∑

j:〈i,j〉∈E

(xj(t)− xi(t))
dij(t)

(dij(t)− lij) , (5)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2. The y-coordinates are handled
similarly. This involves a scalar quantity δ whose optimal value is difficult to estimate.
Usually a conservative value is used, but this slows down the convergence significantly.

A more severe problem of this gradient descent approach is its sensitivity to the scale
of the initial layout. Obviously the minimum of E(x) is scale-invariant, since E(cx) =
E(x) for c �= 0. However, the minimum of Stress(x) is certainly not scale-invariant as
we are given concrete target edge lengths. Therefore before applying gradient descent
we have to scale the minimum of E(x) appropriately.

Fortunately, we can avoid the scale problem by using a different approach called
majorization. Besides being insensitive to the original scale, it is usually more robust
and avoids having to fix a δ for the step size. For a detailed description of this technique,
we refer the interested reader to multidimensional scaling textbooks, e.g., [1]. Here we
provide just a brief description.

Using the Cauchy-Schwartz inequality we can bound the localized 2D stress of a
layout (x, y) by another expression of (x, y) and (a, b), as follows:

Stress(x, y) � xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c , x, y, a, b ∈ R
n , (6)

with equality when x = a and y = b. The constant c is independent of x, y, a, b. L is
the graph’s n× n Laplacian matrix (also independent of x, y, a, b) defined as:

280 Craig Gotsman and Yehuda Koren

Li,j =






−1 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E i, j = 1, . . . , n
−∑j �=i Li,j i = j

The weighted Laplacian n× n matrix L(a,b) is defined as:

L
(a,b)
i,j =






−lij · inv
(√

(ai − aj)2 + (bi − bj)2
)
〈i, j〉 ∈ E

0 〈i, j〉 /∈ E i, j = 1, . . . , n

−∑j �=i L
(a,b)
i,j i = j

where we define inv(x) = 1/x for x �= 0 and inv(x) = 0 otherwise.
Given a layout a, b, we can find another layout (x, y) which minimizes the r.h.s.

xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c by solving the linear equations:

Lx = L(a,b)a
Ly = L(a,b)b

Using inequality (6) we are guaranteed that the stress of the layout has decreased when
going from (a, b) to (x, y), i.e., Stress(x, y) � Stress(a, b). This induces an iterative
process for minimizing the localized stress. At each iteration, we compute a new layout
(x(t + 1), y(t + 1)) by solving the following linear system:

L · x(t + 1) = L(x(t),y(t)) · x(t)
L · y(t + 1) = L(x(t),y(t)) · y(t)

(7)

Without loss of generality we can fix the location of one of the sensors (utilizing the
translation degree of freedom of the localized stress) and obtain a strictly diagonally
dominant matrix. Therefore, we can safely use Jacobi iteration [4] for solving (7), which
is easily performed in a distributed manner as follows.

Assume we are given a layout (x(t), y(t)) and want to compute a better layout
(x(t + 1), y(t + 1)) by a single iteration of (7). Then we iteratively perform for each
i = 1, . . . , n:

xi ← 1
degi

∑

j:〈i,j〉∈E

(xj + lij(xi(t)− xj(t)) inv(dij(t)))

yi ← 1
degi

∑

j:〈i,j〉∈E

(yj + lij(yi(t)− yj(t)) inv(dij(t)))
(8)

Note that x(t), y(t) and dij(t) are constants in this process which converges to (x(t+1),
y(t+1)). Interestingly, when deriving (x(t + 1), y(t + 1)) only the angles between sen-
sors in (x(t), y(t)) are used. Therefore, this process is independent of the scale of the
current layout.

It is possible to simplify the 2D majorization process somewhat. When the iterative
process (8) converges the layout scale issue is resolved. Hence, instead of continuing
with another application of (7) to obtain a newer layout, it is possible to resort to a faster
local process (which, in contrast, is scale-dependent). In this process each sensor uses a

Distributed Graph Layout for Sensor Networks 281

local version of the energy where all other sensors are fixed. By the same majorization
argument the localized stress decreases when applying the following iterative process:

xi ← 1
degi

∑

j:〈i,j〉∈E

(xj + lij(xi − xj)inv(dij))

yi ← 1
degi

∑

j:〈i,j〉∈E

(yj + lij(yi − yj)inv(dij))
(9)

Here, as usual dij =
√

(xi − xj)2 + (yi − yj)2. This process is similar to (8), except
that xi, xj and dij are no longer constants. We have used this in our implementation,
and it seems to accelerate the convergence. Note that this is quite close to the gradient
descent (5) when using δ = 1/degi, a different stepsize per sensor.

6 Experimental Results

We have implemented our algorithm and the AFL algorithm [11], and compared their
performance on a variety of inputs. In the first experiment, we constructed a family of
random graphs containing 1000 sensors distributed uniformly in a 10×10 square. Each
two sensors are connected if they are in range R, where we used R = 0.5, 0.6, 0.7,
0.8, 0.9, 1. If the graph is disconnected, the largest connected component was taken.
We measure the sensitivity of the algorithms to noise controlled by the fractional range
measurement error parameter σ. The distances fed as input to the algorithms are the true
distances lij , to which uniformly distributed random noise in the range [−σlij , + σlij]
is added; σ = 0, 0.05, 0.1, 0.25, 0.5. Consequently, each graph in this family is charac-
terized by the values of R and σ. For each pair (R, σ) we generated 250 corresponding
random graphs. Some properties of these graphs are given in [5].

It seems that the key to successful results is a good initial layout from which the
stress minimization routine can start. To compare the performance of our algorithm to
that of the AFL algorithm and a more naive method, we ran three different initialization
methods on each input followed by the same stress minimization algorithm: (1) Stress
majorization with random initialization (RND). (2) Stress majorization with AFL ini-
tialization (AFL). (3) Stress majorization with eigen-projection initialization (EIGEN).
For each method the quality of the final solution is measured by its Average Relative
Deviation (ARD), which measures the accuracy of all resulting pairwise distances:

ARD =
2

n(n− 1)

∑

i<j

|dij − lij |
min(lij , dij)

Note that here we sum over all distances between sensors, not just the short range dis-
tances, as reflected by the edges of the graph. The results are summarized in Table 1,
where each cell shows the average ARD of RND/AFL/EIGEN for 250 different graphs
characterized by the same (R, σ) pair. For all graphs, EIGEN and AFL outperformed
RND by a significant margin. Also, consistently, EIGEN outperformed AFL by a small
margin. As expected, the algorithm performance improves as the graphs become denser,
revealing more information about the underlying geometry. The sparser graphs contain

282 Craig Gotsman and Yehuda Koren

nodes of degree smaller than 3, which are inherently non-rigid thereby preventing ac-
curate recovery. We can also see that optimization is quite robust in the presence of
noise and performance deteriorates only moderately as σ grows. In Figure 1 we show
typical results of EIGEN, before and after stress minimization. For comparison, we also
provide the original layout and the AFL initialization for the same graph.

In another experiment, we worked with 350 sensors distributed uniformly on a ring,
with external radius 5 and internal radius 4. Again, the graphs are characterized by the
range and noise parameters (R, σ), and for each such a pair we generated 250 corre-
sponding random graphs. Here we worked with a different range of R, producing aver-
age degrees similar to those of the previous experiment; see [5]. Note that we avoided
working with R � 0.6 as for these values the largest connected component broke the
ring topology with high probability, making recovery impossible. We ran RND, AFL
and EIGEN on these graphs, the results summarized in Table 2. The topology of the ring

Fig. 1. Reconstructing a 1000-sensor proximity graph using EIGEN; here R = 0.8, σ = 0.
Original layout and alternative AFL initialization are also shown.

Distributed Graph Layout for Sensor Networks 283

Table 1. Average relative deviation (ARD) of square-based proximity graphs with varying (R, σ)
generated by RND / AFL / EIGEN. Each result is averaged over 250 graphs.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.5 12.6 0.099 0.079 12.6 0.10 0.079 12.4 0.10 0.092 12.3 0.12 0.091 11.6 0.26 0.22
R = 0.6 11.2 0.026 0.0093 11.0 0.028 0.013 10.8 0.031 0.019 11.0 0.046 0.031 10.4 0.12 0.10
R = 0.7 9.70 0.013 0.0031 9.79 0.015 0.0048 9.77 0.017 0.0076 9.71 0.026 0.018 9.53 0.060 0.050
R = 0.8 8.51 0.0086 0.0016 8.52 0.0097 0.0033 8.42 0.012 0.0059 8.58 0.020 0.014 8.49 0.041 0.034
R = 0.9 7.29 0.0064 0.0011 7.37 0.0082 0.0028 7.28 0.011 0.0051 7.37 0.017 0.013 7.50 0.033 0.028
R = 1.0 6.31 0.0054 0.0008 6.40 0.0068 0.0025 6.51 0.0079 0.0047 6.33 0.016 0.012 6.52 0.030 0.026

Table 2. Average relative deviation (ARD) of disk-based proximity graphs with varying (R, σ)
constructed using RND / AFL / EIGEN. Each result is averaged over 250 graphs.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.7 4.96 0.34 0.14 5.16 0.26 0.13 4.94 0.26 0.13 4.66 0.33 0.15 4.88 0.39 0.21
R = 0.8 7.69 0.19 0.091 7.53 0.23 0.091 7.54 0.020 0.090 7.81 0.19 0.10 7.41 0.29 0.16
R = 0.9 7.52 0.14 0.064 7.35 0.16 0.065 7.56 0.14 0.065 7.27 0.18 0.080 7.14 0.22 0.13
R = 1.0 6.61 0.10 0.041 6.62 0.11 0.045 6.41 0.11 0.046 6.54 0.13 0.055 6.40 0.15 0.091
R = 1.1 5.77 0.10 0.029 5.72 0.098 0.031 5.69 0.10 0.035 5.62 0.12 0.044 5.69 0.14 0.070
R = 1.2 4.97 0.11 0.021 4.98 0.11 0.021 4.88 0.11 0.026 5.08 0.13 0.032 4.97 0.16 0.058

is different than that of the square, and resulted in a lower quality results. However, all
the observations from the square-based experiment still hold here. Note, that in a ring
there is no natural central node. Therefore, the AFL initialization that identifies one
node as the center is less appropriate here. A surprising finding is that the performance
of AFL seems to deteriorate when increasing R from 1.1 to 1.2, instead of improving, as
would be expected. We observed this also with other types of graphs we experimented
with. We believe that this is due to the fact that the first phase of AFL models the net-
work as an unweighted graph. Thus, as the variance of the true edge lengths becomes
larger, this model is less accurate.

7 Conclusion

We have presented an algorithm to generate sensor network layouts in a fold-free man-
ner based on noisy measurements of short-range inter-sensor distances. This algorithm
is fully distributed (decentralized), and relies on no explicit communication other than
that between immediate neighbors. The fully distributed nature of the algorithm is cru-
cial for a practical implementation which avoids excessive communication. To the best
of our knowledge, this is the first fully distributed algorithm for graph drawing. Beyond
this important feature, judging from our experiments, our algorithm seems to be supe-
rior to the state-of-the-art in the sensor network literature. We discuss several extensions
of the basic algorithm in [5].

References

1. I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Applications,
Springer-Verlag, 1997.

2. P. Eades, “A Heuristic for Graph Drawing”, Congressus Numerantium 42 (1984), 149–160.

284 Craig Gotsman and Yehuda Koren

3. T.M.G. Fruchterman and E. Reingold, “Graph Drawing by Force-Directed Placement”,
Software-Practice and Experience 21 (1991), 1129–1164.

4. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.
5. C. Gotsman and Y. Koren, “Distributed Graph Layout for Sensor Networks”, Harvard Uni-

versity Computer Science TR #20-04, 2004.
6. K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management Science 17

(1970), 219–229.
7. B. Hendrickson, “Conditions for Unique Graph Realizations”, SIAM J. Comput., 21 (1992),

6–84.
8. T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Graphs”, Infor-

mation Processing Letters 31 (1989), 7–15.
9. Y. Koren, “On Spectral Graph Drawing”, Proc. 9th Inter. Computing and Combinatorics

Conference (COCOON’03), LNCS 2697, Springer-Verlag, pp. 496–508, 2003.
10. M. Mauve, J. Widmer and H. Hartenstein. “A Survey on Position-Based Routing in Mobile

Ad-Hoc Networks”, IEEE Network, 15(2001), 30–39.
11. N.B. Priyantha, H. Balakrishnan, E. Demaine and S. Teller, “Anchor-Free Distributed Local-

ization in Sensor Networks”, Proc. 1st Inter. Conf. on Embedded Networked Sensor Systems
(SenSys 2003), 2003, pp. 340–341. Also TR #892, MIT LCS, 2003.

12. M. Tubaishat, S. Madria. “Sensor Networks : An Overview”, IEEE Potentials, 22 (2003),
20–23.

13. L. Xiao, S. Boyd. “Fast Linear Iterations for Distributed Averaging”, Systems and Control
Letters, 53 (2004), 65–78.

14. Y. Yemini, “Some Theoretical Aspects of Location-Location Problems”, Proc. 20th Annu.
IEEE Sympos. Found. Comput. Sci., 1979, pp. 1-8.

	1 Introduction
	2 Related Work
	3 The Problem
	4 Smart Initialization and Eigen-projection
	4.1 Two Dimensional Layout
	4.2 Balancing the Axes

	5 Optimizing the Localized Stress Energy
	6 Experimental Results
	7 Conclusion
	References

