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Abstract. A planar graph G is k-spine drawable, k ≥ 0, if there exists a
planar drawing of G in which each vertex of G lies on one of k horizontal
lines, and each edge of G is drawn as a polyline consisting of at most two
line segments. In this paper we: (i) Introduce the notion of hamiltonian-
with-handles graphs and show that a planar graph is 2-spine drawable if
and only if it is hamiltonian-with-handles. (ii) Give examples of planar
graphs that are/are not 2-spine drawable and present linear-time drawing
techniques for those that are 2-spine drawable. (iii) Prove that deciding
whether or not a planar graph is 2-spine drawable is NP-Complete. (iv)
Extend the study to k-spine drawings for k > 2, provide examples of
non-drawable planar graphs, and show that the k-drawability problem
remains NP-Complete for each fixed k > 2.

1 Introduction

Many graph drawing applications require that the vertices of the graph be placed
on some set of horizontal lines. Such drawings have applications in visualization,
DNA mapping, and VLSI layout [10, 8]. A common aesthetic requirement is that
it be easy to locate the end-vertices of each edge. One way to achieve this is by
representing edges as polylines composed of a small number of line segments, and
by placing the vertices so that polylines from different edges cross a minimum
number of times, if at all. Hence, we have the k-spine drawability problem: Given
a planar graph G and an integer k ≥ 0, is there a planar drawing of G such that
the vertices of G lie on k horizontal lines called spines and each edge is drawn
as a polyline consisting of at most two line segments? For k ≥ 0, we say that a
graph is k-spine drawable, or has a k-spine planar drawing, if it is a yes-instance
to the k-spine drawability problem.

The k-spine drawability problem for k = 1 is a classic topic in the graph
drawing and computational geometry literature, where 1-spine drawings are
commonly called 2-page book embeddings or 2-stack layouts. Bernhart and
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Kainen [1] show that a planar graph has a 2-page book embedding if and only if
it is sub-hamiltonian, which implies that the 1-spine drawability testing problem
is in general NP -hard. Meaningful subclasses of planar graphs that admit 2-page
book embeddings (i.e. they are 1-spine drawable) are described in the literature
(see, e.g. [1, 3]).

The k-spine drawability problem for k ≥ 1 has also been widely investigated
in the case that the edges cannot bend, i.e they are straight-line segments. There
are several papers devoted to this problem, both under the assumption that no
two vertices on the same spine can be adjacent (see, e.g. [5, 7]) and under the
assumption that there can be intra-spine edges (see, e.g. [4, 6, 9]). In particular,
Cornelsen, Shank, and Wagner [4] characterize the family of graphs that admit a
straight-line 2-spine drawing with intra-spine edges. They show that the graphs
in this family are a proper subset of outerplanar graphs and describe a linear
time test algorithm.

The present paper studies k-spine drawings for k ≥ 2. It is assumed that
edges can bend at most once and that two edges on the same spine can be
adjacent. We are interested in testing whether or not a graph G admits a k-
spine drawing, and, if so, computing such a drawing. The main results in this
paper are as follows:

– We introduce and study the notion of hamiltonian-with-handles planar
graphs. We show that a planar graph admits a 2-spine drawing if and only
if it is sub-hamiltonian-with-handles.

– We study the relationship between hamiltonian-with-handles graphs and pla-
nar graphs. Namely, we show that there exist planar graphs that are not
sub-hamiltonian-with-handles; consequently, they do not admit a 2-spine
drawing. We also prove that every 2-outerplanar graph G is sub-hamiltonian-
with-handles and that an embedding-preserving 2-spine drawing of G can be
computed from a 2-outerplanar embedding in linear time.

– Motivated by these results, we study the problem of deciding whether or
not a planar graph admits a 2-spine drawing. We show that this problem is
NP-Complete.

– We extend the investigation to k > 2 spines and prove that in this case not
all planar graphs are k-spine drawable. We show that the problem of testing
k-spine drawability remains NP-Complete for any fixed integer k > 2.

For reason of space, some proofs are sketched or omitted.

2 Preliminaries

A k-spine planar drawing of G (k ≥ 1) is a planar drawing of G in which the
vertices of G are drawn as points on one of k horizontal straight lines (called
spines), and the edges of G are drawn as polylines consisting of at most two
segments (i.e. each edge is drawn with at most one bend). If G admits a k-spine
planar drawing, then G is said to be k-spine drawable.

Let Γ be a k-spine planar drawing of G. A jumping segment to vertex v is a
straight-line segment pv contained in an edge incident on v in Γ such that p and
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v lie on different spines. We say that p is its first endpoint and v is its second
endpoint. A jumping sequence J from a vertex v to a vertex w is a sequence
f0, f1, . . . , fh of jumping segments in Γ such that:

1. The first endpoint of f0 is on the same spine as v, coinciding with v or to
the right of v;

2. The second endpoint of fh is on the same spine as w coinciding with w or
to the left of w;

3. If fi and fi+1 are consecutive segments in J , and p is the second endpoint
of fi and q is the first endpoint of fi+1, then p and q lie on the same spine
and p is to the left of q.

The landing segments of J are the horizontal line segments between the second
endpoint of each fi and the first endpoint of its successor in J , along with the
horizontal segment between v and the first endpoint of f0 and the horizontal
segment between the second endpoint of fh and w. Thus, the landing sequence
Lv,w(J) from v to w of the jumping sequence J is the sequence of landing
segments of J whose order corresponds to the order of the segments in J . The
jumping vertex sequence Vv,w(J) of jumping sequence J from vertex v to vertex w
is the sequence of vertices that lie on the landing segments of Lv,w(J). The order
of the vertices corresponds to the order that their segments appear in Lv,w(J),
and then to their left-to-right order in Γ . Whenever the jumping vertex sequence
Vv,w(J) is a simple path with prev(w) = ∅ and next(w) = ∅, we call it a cutting
path of G in Γ . Similarly, if Vv,w(J) can be augmented by edge addition while
maintaining planarity to be a simple path with prev(w) = ∅ and next(w) = ∅,
then we call it an augmenting cutting path of G in Γ .

Cutting paths will be essential to our characterization of 2-spine drawable
graphs later. Very roughly, a cutting path splits the graph into two subgraphs
that are each 1-spine drawable. The following lemma can be proved.

Lemma 1. For each 2-spine planar drawing Γ of a planar graph G, there exists
an augmenting cutting path of G in Γ .

3 Hamiltonian-with-Handles Graphs

In this section we characterize the class of 2-spine drawable graphs. First, we
require a few additional definitions.

Let G be an embedded planar graph. A base path of G is a simple path Π of
G such that the first and the last end-vertices of Π are on the external face of G.
Let Π be a base path and let η be a simple path of G such that no vertex of η is
a vertex of Π . Path η is a handle of Π if for each end-vertex of η there exists an
edge e, called a bridge, connecting the end-vertex to Π . The end-vertex of e in Π
is called an anchor vertex of η. Its other end-vertex is called an extreme vertex
of η. The subpath of Π between the anchor vertices of η is called the co-handle
of η and is denoted η̂. The subgraph of G composed of the cycle Cη formed by
η, its bridge edges and η̂, along with any edges and vertices inside Cη is called
the handle graph of η and is denoted Gη.
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Fig. 1. (a) Illustration of handles along a path Π . η1 is a non-dangling left handle and
η2 is a dangling right handle. Edges (s1, v1) and (t1, w1) are the bridges of η1, and edges
(s2, v2) and (t2, w2) are the bridges of η2. Vertices s1 and t1 are the anchor vertices of
η2, and vertex s2 = t2 is the anchor vertex of η2. Vertices v1 and w1 are the extreme
vertices of η1, and vertices v2 and w2 are the extreme vertices of η2. (b) Some examples
of interleaving handles.

If the two anchor vertices of a handle coincide, then the handle is called a
dangling handle. If we walk along path Π from one end to the other, then every
edge of G that is not in Π is either on the left-hand side of Π or on the right-hand
side. Handles on the left-hand side are called left handles, and handles on the
right-hand side are called right handles. Figure 1(a) illustrates these definitions.

Let η1 and η2 be two handles, and let s1 and t1 be the anchor vertices of η1

such that s1 is encountered before t1 when walking along Π . Similarly, let s2

and t2 be the anchor vertices of η2 such that s2 is encountered before t2 when
walking along Π . Handles η1 and η2 are said to be interleaving if one of the
following two cases holds:
– Gη1 and Gη2 share more than one vertex or share a vertex that is not an

anchor for η1 or η2 (see, for example, handles η1 and η2 or handles η5 and
η6 in Figure 1(b)); or

– η1 is a left dangling handle, η2 is a right dangling handle, and s1 = s2 =
t1 = t2 (see, for example, handles η3 and η4 in Figure 1(b)).

A planar graph G is hamiltonian-with-handles if either G has at most two
vertices or, for some planar embedding of G, the vertices of G can be covered
by a cycle C and a set of paths η1, η2, . . . ηp such that: (i) C is a simple cycle,
(ii) C is the union of a base path Π and an edge, and (iii) η1, η2, . . . ηp are
non-interleaving handles of Π . G is sub-hamiltonian-with-handles if it can be
augmented by adding edges in such a way that the resulting augmented graph
is still planar and hamiltonian-with-handles.

4 Characterizing 2-Spine Drawable Graphs

In this section we prove the following characterization:

Theorem 1. A planar graph G is 2-spine drawable if and only if it is sub-
hamiltonian-with-handles.



266 Emilio Di Giacomo et al.

4.1 Proof of Necessity

We first prove that if a planar graph G is 2-spine drawable, then G is sub-
hamiltonian-with-handles. Let Γ be a 2-spine planar drawing of a planar graph
G. By Lemma 1, there exists an augmenting cutting path Π = Vv,w(J) of G in
Γ . We will use Π as our base path. It remains then to prove that the vertices of
G outside Π can be covered with a set of non-interleaving handles.

Let J = f0, f1, . . . , fh, and use λi to denote the landing segment before
each jumping segment fi in the landing sequence Lv,w(J). In addition, let λh+1

denote the landing segment after fh. We call the first and last vertices, denoted
vi and wi, of each λi its corner vertices. We use πi (i = 0, . . . , h + 1) to denote
the subpath of Π consisting of:

– the vertex immediately preceding vi, if it exists;
– all the vertices in λi; and,
– the vertex immediately following wi, if it exists.

We call each πi a pocket. Each pocket has an associated portion of a spine called
its pocket lead :

– Pocket lead π̂0 is the portion of spine that is before λ1;
– Pocket lead π̂i (i = 1, . . . , h) is the portion of spine that is between λi−1 and

λi+1; and,
– Pocket lead π̂h+1 is the portion of spine that is after λh.

A maximal sequence of consecutive vertices in a pocket lead is called candidate
handle.

Lemma 2. Let Γ be a 2-spine planar drawing of a planar graph G, and let Π
be a cutting path of G in Γ . Let πi be a pocket of Π and let π̂i be the pocket
lead of πi (0 ≤ i ≤ h + 1). Let η be a candidate handle in π̂i, and let vη and
wη be the first vertex and the last vertex of η, respectively. Then, there exist two
vertices sη, tη ∈ πi such that either there exist edges (vη, sη) and (wη, tη) in Γ or
these edges can be added to Γ while maintaining the planarity of Γ . Furthermore,
vertex sη is on the spine that does not contain the vertices of η.

Lemma 2 shows that G can be augmented by edge addition so that the
resulting augmented graph can be covered by the cutting path Π plus a set of
handles of Π . In order to prove that G is sub-hamiltonian-with-handles we need
to prove that these handles are pairwise non-interleaving.

Lemma 3. Let Γ be a 2-spine planar drawing of a planar graph G, let Π be
the cutting path of G in Γ , and let η1, η2, . . . , ηp be a set of candidate handles
of G in Γ . Then, Γ can be augmented so that η1, η2, . . . , ηp are pairwise non-
interleaving handles.

Proof. By Lemma 2, Γ can be augmented so that each ηj is a handle, and, if ηj is
in pocket lead π̂i, then its anchors sj and tj belong to πi. We now prove that each
pair of handles is non-interleaving. Without loss of generality, we consider the
pair η1 and η2. By way of contradiction, assume that η1 and η2 are interleaving.
According to the definition there are two cases.
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– Gη1 and Gη2 share more than one vertex or share a vertex that is not an
anchor for η1 or η2.
By definition, η1 and η2 are disjoint so, by Lemma 2, the vertices that Gη1

and Gη2 share are also shared by the pockets corresponding to η1 and η2.
We first consider the case where η1 and η2 belong to different pockets. Two
pockets share vertices only if they are consecutive so we assume, without
loss of generality, that η1 belongs to pocket πi and η2 belongs to the next
pocket πi+1. In that case, the pockets share two vertices, wi and vi+1, which
are consecutive on path Π . Thus, η1 belongs to the same spine as vi+1 and
is left of vi+1. On the opposite spine, η2 is to the right of wi. By Lemma 2,
s2 does not belong to the spine of η2 so s2 appears after vi+1 in path Π ,
or coincides with vi+1. Vertex t2 appears after s2 in Π or coincide with s2.
Hence Gη1 and Gη2 can share at most an anchor vertex. Therefore, η1 and
η2 must belong to the same pocket.
Since η1 and η2 belong to the same pocket, we assume, without loss of
generality, that η1 is to the left of η2 on some spine. Let wη1 be the last vertex
of η1 and let vη2 be the first vertex of η2. The two handles are interleaving
only if the subpaths s1 to t1 of Π and s2 to t2 of Π share an edge. This
implies that t1 is to the right of s2. By definition, next(wη1) is a crossing c1

and prev(vη2) is also a crossing c2 to the right of c1. In addition, an edge
incident on t1 contains the segment c1t1 and another edge incident on s2

contains the segment c2s2. Since c1 is left of c2 and s2 is left of t1, we have
an edge crossing so η1 and η2 do not interleave.

– η1 is a left dangling handle, η2 is a right dangling handle, and s1 = s2 =
t1 = t2. Since η1 is a left dangling handle and η2 is a right dangling handle
then they are on different spines. By Lemma 2 also s1 and s2 are on different
spines, but this is impossible since they coincide. ��
Together, Lemmas 2 and 3 prove the necessary condition of our characteri-

zation:

Lemma 4 (Necessary Condition). If a graph G is 2-spine drawable, then G
is sub-hamiltonian-with-handles.

4.2 Proof of Sufficiency

To prove the sufficiency of the characterization of Theorem 1, we describe an
algorithm that constructs a 2-spine planar drawing of any graph that is sub-
hamiltonian-with-handles. For reasons of space only an outline of the algorithm
is given.

Suppose that G is sub-hamiltonian-with-handles for some planar embedding
and base path Π . Thus, Π divides G into two subgraphs, one to the left of Π
and the other to the right of Π . Very roughly, the algorithm first draws the base
path on the two spines so that it is possible to draw the subgraph that is to
the left of Π , above the drawing of Π , and the subgraph that is to the right
of Π , below the drawing of Π (see also Figure 2). The algorithm performs the
following steps:
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Fig. 2. Illustration of the drawing algorithm. (a) The graph G′, obtained after the
removal of the dangling handles, can be decomposed into two graphs Gleft and Gright

plus one handle graph for each handle. (b) The drawing technique assigns vertices to
each spine so that the left handles can be drawn on spine T1 and the right handles
can be drawn on spine T0. Gleft is drawn completely above Π , and Gright is drawn
completely below Π . The drawings of Gleft and Gright share only vertices of Π .

Drawing the Vertices of Π: The algorithm starts by drawing the vertices of
Π in G on the two spines. Each vertex is assigned to one of the two spines
so that each co-handle of a left handle is on the lower spine and each co-
handle of a right handle is on the higher spine. A position on the spine, i.e.
an x-coordinate, is also assigned to each vertex of Π .

Removing the Dangling Handles: In order to simplify the algorithm, the
dangling handles are removed and replaced with a set of new edges. The
resulting graph G′ then has only non-dangling handles but may have multiple
edges. The removed handles are re-inserted back into the graph in the last
step of the algorithm.

Drawing the Vertices of the Non-dangling Handles: The vertices of G′

that are not in Π (i.e. the vertices of the non-dangling handles of G) are
assigned an x-coordinate and a spine.

Drawing the Edges of Gleft and of Gright: Recall that Π divides G′ into
two subgraphs, one to the left and the other to the right. We roughly define
Gleft to be the subgraph induced by the edges to the left of Π minus any
handle graph edges. We similarly roughly define Gright to the be the sub-
graph induced by the edges to the right of Π minus any handle graph edges.
Thus, the algorithm draws the edges of Gleft and Gright separately, using
the same technique for each, and then merges the two drawings together.

Drawing the Edges of the Handle Graph: After the edges of Gleft and
Gright are drawn, the edges of each handle graph are added to the drawing.

Re-inserting the Dangling Handles: Finally, the dangling handles are re-
inserted into the drawing after removing the edges that were inserted earlier
to replace the handle.

Lemma 5 (Sufficient Condition). If a planar graph G is sub-hamiltonian-
with-handles, then G is 2-spine drawable.

Together, Lemmas 4 and 5 prove Theorem 1.
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Fig. 3. (a) Maximal planar graph N ; (b) The graph N2 for the proofs of Theorem 2.

5 2-Spine Drawability Testing

The characterization result of Theorem 1 naturally raises two related questions:
(i) Is every planar graph 2-spine drawable? (ii) How hard is it to decide whether
or not a planar graph is 2-spine drawable? In this section we address both ques-
tions.

Theorem 2. There exists a planar graph that is not 2-spine drawable.

Sketch of Proof: Let N1 be the maximal planar graph of Figure 3(a). Graph
N1 is non-hamiltonian [2] and therefore not 1-spine drawable [1]. Let H5 be the
subgraph of N1 obtained by removing the vertices of degree three (the black
vertices) from N1. Given the embedding of H5 in Figure 3(a), let N2 be the
maximal planar graph obtained by inserting a copy of N1 into each face of H5

and then triangulating the result (see Figure 3(b)).
We prove that graph N2 is not 2-spine drawable. To this aim we consider

a weaker version of the necessary condition in Theorem 1: if maximal planar
graph G is 2-spine drawable, then G contains a simple cycle C such that G \ C
is 1-spine drawable. If G is 2-spine drawable, then, by Lemma 1, there exists
an augmenting cutting path Π for a 2-spine planar drawing Γ of G. The end-
vertices of Π are on the external face of G, so, since G is maximal, they are
adjacent. Therefore, Π plus the edge connecting its end-vertices form a simple
cycle C. Since no edge of G crosses Π in Γ , if we remove C from the drawing of
G, we are left with a set of subgraphs of G that are drawn on one spine and are
therefore 1-spine drawable.

We now prove that N2 is not 2-spine drawable. Suppose, by way of contra-
diction, that N2 is 2-spine drawable. By the above necessary condition, there
exists a simple cycle in N2 such that N2 \C is 1-spine drawable. Since N1 is not
1-spine drawable, then C must contain at least one vertex from each copy of N1.
In the embedding of N2 in Figure 3(b), each copy of N1 is inside a different face
of H5. Thus, given any two vertices v1 and v2 from different copies of N1, there
must be a vertex of H5 between v1 and v2 in C. Since there are six copies of N1

and five vertices in H5, then all the vertices of H5 are in C. Thus, C contains at
least one vertex from each copy of N1 and all the vertices of H5; however, this
implies that there exists a hamiltonian circuit in N1, a contradiction. �
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While Theorem 2 gives a negative result, the following theorem describes a
meaningful class of 2-spine drawable graphs.

Theorem 3. Every embedded 2-outerplanar graph is 2-spine drawable and a
2-spine planar drawing of G can be computed in linear time.

Sketch of Proof: By Theorem 1 it is sufficient to prove that G is sub-hamilton-
ian-with-handles. We assume that G is biconnected. If it is not biconnected,
then we can easily make it biconnected by edge addition, while maintaining a
2-outerplanar embedding. Since G is biconnected, the external face of G is a
simple cycle C. Let G0 be the subgraph of G induced by the vertices of C. We
choose our base path Π to be C minus an edge. Each internal vertex, that is,
each vertex that is not on the external face, is either adjacent to a vertex of the
external face or can be made adjacent to a vertex of the external face by adding
an edge. Each internal vertex v is a handle of length one and the edge connecting
v to a vertex of the external face is its bridge. As for the time complexity, we
remark that finding C and the handles takes linear time, and that the drawing
procedure described in Section 4.2 requires linear time if C and the handles are
given. �

Based on the above theorem, one can ask whether embedded 2-outerplanar
graphs can be drawn on less than two spines. We observe that the graph of
Figure 3(b) is 2-outerplanar and that, as observed in the proof of Theorem 2, it
is not 1-spine drawable.

Motivated by the results in Theorems 2 and 3, we investigate the complexity
of deciding whether a planar graph is 2-spine drawable. The next theorem states
that this problem is NP-complete. In fact, we prove that the problem is NP-
complete when restricted to embedded maximal planar graphs and embedding-
preserving 2-spine planar drawings. The original problem and this restricted
version are polynomially equivalent because maximal planar graphs have a linear
number of planar embeddings that can be efficiently computed.

The reduction is from HC-EMP: given an embedded maximal planar graph
G, determine whether or not G is external hamiltonian, i.e. G has a hamilto-
nian circuit with an edge on the external face. Wigderson [11] has proved that
HC-MP (the hamiltonian circuit problem for maximal planar graphs) is NP-
Complete. These two problems are polynomially equivalent, once again because
each maximal planar graph has a linear number of embeddings. The proof of the
next theorem is omitted for reasons of space.

Theorem 4. The problem of determining whether or not a planar graph is 2-
spine drawable is NP-complete.

6 k-Spine Drawability Testing

We extend the study of the 2-spine drawability to the case of the k-spine drawa-
bility. The following results can be proved by inductively generalizing the the
proofs for the 2-spine drawing results.
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Theorem 5. For each fixed integer k > 2, there exists a planar graph that is
not k-spine drawable.

Sketch of Proof: The proof of this theorem is an extension of the proof of
Theorem 2 and is based on a necessary condition for a planar graph to be k-
spine drawable: if planar graph G is k-spine drawable, then G contains a simple
cycle C such that G \ C is (k − 1)-spine drawable. We inductively describe a
sequence of maximal planar graphs Nk that are not k-spine drawable for k ≥ 1:
(i) N1 is the graph of Figure 3(a); (ii) Nk, for k ≥ 2, is obtained from H5 by
inserting a copy of Nk−1 into each face of H5 (assuming the embedding of H5 in
Figure 3(a)) and then triangulating. We prove that Nk is not k-spine drawable
by induction on k. N1 is not 1-spine drawable since it is not hamiltonian. Assume
that Nk−1 is not (k − 1)-spine drawable and, suppose, by way of contradiction,
that Nk is k-spine drawable. By the necessary condition above, there exists a
simple cycle C of Nk such that Nk \C is (k − 1)-spine drawable. Since Nk−1 is
not (k − 1)-spine drawable, then C must contain at least one vertex from each
copy of Nk−1. In the planar embedding of Nk, each copy of Nk−1 is inside a
different face of H5. Thus, given any two vertices v1 and v2 from different copies
of Nk−1, there must be a vertex of H5 between v1 and v2 in C. Since there
are six copies of Nk−1 and five vertices in H5, then all the vertices of H5 are
in C. Thus, C contains at least one vertex from each copy of Nk−1 and all the
vertices of H5. This implies that there exists a hamiltonian circuit in N1 which
is impossible. �

The proof of NP-Completeness for 2-spine drawability testing can be ex-
tended to k-spine drawability for k > 2.

Theorem 6. For each fixed integer k > 2, the problem of determining whether
or not a planar graph is k-spine drawable is NP-Complete.
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