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Abstract. A necessary and sufficient condition is given for a connected
bipartite graph to be the incidence graph of a family of segments and
points. We deduce that any 4-connected 3-colorable plane graph is the
contact graph of a family of segments and that any 4-colored planar
graph without an induced C4 using 4 colors is the intersection graph of
a family of straight line segments.

To Chantal. Her life crossed mine on a too short path.

1 Introduction

Touchings and crossings of arcs in the plane have been the subject of lively
interest, giving rise to astonishingly complex problems, albeit easy to state. As
an example, the Gauss problem on the characterization of crossing sequences of
self-intersecting closed curves [12], which has been fully solved only recently [6,
23]. The algebraic matroidal properties used to solve this problem further led to
a characterization of bipartite circle graphs [3] and then to a characterization of
general circle graphs à la Whitney [4].

Intersection graphs of arcs, the so-called string graphs, have been indepen-
dently introduced by Sinden [27], Ehrlich, Even and Tarjan [11]. Their approach
appeared to be quite complex [15, 17]. The recognition problem has been proven
to be NP-hard [16] and, more recently, NP-complete [21, 24].

The particular cases of intersection graphs of pseudo-segments and intersec-
tion graphs of segments [18] are of special interest, as shown by the following
question by Scheinerman [25]: Is every planar graph the intersection graph of a
set of segments in the plane?

This question is still open even for pseudo-segments, but some partial results
have been obtained:

– the recognition problem of contact graphs of segments is NP-complete, even
when restricted to planar graphs [14],

– bipartite planar graphs are contact graphs of a set of orthogonal segments
[9, 13] (see also [1]),

– triangle-free planar graphs are necessarily contact graphs of a set of segments
in three directions [2],

– 4-connected 3-colorable plane graphs are contact graphs of a set of pseudo-
segments [5],

– 4-colored plane graphs without C4-separator using 4 colors are intersection
graphs of a set of pseudo-segments [5] (see Fig.1 to 2).
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Fig. 1. Using a coloration, a graph G0 gives rise to a bipartite plane graph.

Fig. 2. From the bipartite plane graph shown in Fig 1, we obtain a contact family of
pseudo-segments, which by local deformation gives rise to a representation of the graph
G0 of Fig. 1 as the intersection graph of a family of pseudo-segments.

Using the arc-stretching techniques presented in [7, 8], the last two results
may be strengthened (see Fig. 3):

Theorem 1. 4-connected 3-colorable plane graphs are contact graphs of a set of
segments.
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Fig. 3. Using stretching techniques, from the bipartite graph of Fig. 1, we obtain a
contact family of segments. By local perturbations, this contact system gives rise to a
representation of the graph G0 of Fig 1 as the intersection graph of a family of segments
(here in 4 directions).

Theorem 2. 4-colored plane graphs without C4-separator using 4 colors are in-
tersection graphs of a set of segments.

We shall present a sketch of the proof of these theorems using the following
characterization of incidence graphs of a family of segments, which we shall also
prove:

Theorem 3. A connected bipartite graph G = (V � , V • , E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

– G is planar,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V such that |X ∩ V � | ≥ 2,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | − 3 (1)

Fig. 4. Representation of K4 by a non-stretchable contact family of pseudo-segments.
The corresponding incidence graph (V � is represented with white vertices, V • with
black ones), so that |E| > 2 |V � | + |V • | − 3.
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2 Contact Systems of Pseudo-segments and Points

A finite set of Jordan arcs is called a family of pseudo-segments if every pair
of arcs in the set intersects in at most one point. A one-sided contact family of
pseudo-segments and points is defined by a couple (A, P ), where:

– A is a family of pseudo-segments that may touch (on one side only at each
contact point) but may not cross, and whose union is connected,

– P is a set of points in the union of the pseudo-segments, including all the
extremities of the pseudo-segments.

Such a contact family defines a connectedbipartite plane graph G=(V � ,V • ,E),
its incidence graph, where:

– V � corresponds to the pseudo-segment set,
– V • corresponds to the point set,
– E corresponds to the set of incidences between points and pseudo-segments.

Notice that vertices in V � have minimal degree at least 2.
Moreover, the contact family also defines an orientation of G: if x ∈ V •

corresponds to a point p on a pseudo-segment S corresponding to y ∈ V � , {x, y}
is oriented from x to y if p is an extremity of S and from y to x, otherwise. The
orientation thus obtained is such that the indegree of a vertex in V � is exactly
2 and the indegree of a vertex in V • is at most 1. We call such an orientation a
(2, ≤1)-orientation.

The following theorem is quite simple to prove (see [5]):

Theorem 4. A bipartite graph G = (V � , V • , E) is the incidence graph of a
(one-sided) contact family of pseudo-segments and points if and only if

– G is planar,
– G has girth at least 6,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V ,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | (2)

In general, representations by contacts of straight line segments raise impor-
tant difficulties that may be collected into what we call the stretching problem:

Problem 1. When is a contact system of pseudo-segments stretchable, that is:
when is it homeomorphic to a contact system of straight line segments?

This problem has been addressed in [8, 7], with the following characterization
theorem:

Theorem 5. Let A be a contact system of pseudo-segments. Then, the following
conditions are equivalent:

1. A is stretchable,
2. each subsystem of A has at least 3 extremal points, unless it has cardinality

at most one ,
3. A is extendible.
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where

– An extremal point of a contact system of arcs is a point of the union of the
arcs which is interior to no arc.

– A contact system of pseudo-segments is extendible if there exists an arrange-
ment of pseudo-lines such that each pseudo-segment of the contact system is
included in a corresponding pseudo-line of the family.

Notice that the equivalence of extendibility and stretchability for contact
systems of pseudo-segments is in strong contrast with the difficulty of the decid-
ability problem concerning the stretching of arrangements of pseudo-lines (this
problem is NP-hard, as proved by Mnëv [19, 20]; see also Shor [26] and Richter-
Gebert [22]).

3 Deficiency and (2, ≤1)-Orientation

In order to make use of Theorem 5 to characterize those bipartite graphs that
are representable by a contact family of segments, we first need to prove an
orientation theorem. For that, we need few definitions and lemmas.

In the following, we consider a connected bipartite graph G = (V � , V • , E).
Let V = V � ∪V • . Given a subset A ⊆ V , we introduce the notation A � = A∩V �
and A • = A∩V • . By extension, if f(x) is a subset of V , we employ the notation
f � (x) = f(x) ∩ V � and f • (x) = f(x) ∩ V • . We denote by N the neighborhood
function defined by N (X) = X ∪ {y ∈ V, ∃x ∈ X : {x, y} ∈ E}. Observe that
X ⊆ N (X).

3.1 Deficiency

Definition 1.

the deficiency ρ of a subset X ⊆ V is ρ(X) = 2 |X � | + |X • | − |E(GX)|
the minimal deficiency ρmin of X is ρmin(X) = min

X⊆Y
ρ(Y )

the deficiency closure Clos of X is Clos(X) =
⋃

X⊆Y
ρ(Y )=ρmin(X)

Y

Lemma 1. The function ρ is semimodular, that is, ∀X1, X2 ⊆ V :

ρ(X1 ∪ X2) + ρ(X1 ∩ X2) ≤ ρ(X1) + ρ(X2) (3)

Proof. This is a direct consequence of the inequality

|E(GX1∪X2)| ≥ |E(GX1 )| + |E(GX2 )| 	

Lemma 2. Let X ⊆ V . Then ρ(Clos(X)) = ρmin(X).
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Proof. Assume X1, X2 are subsets of V containing X such that ρ(X1) = ρ(X2) =
ρmin(X). Then, as X ⊆ X1 ∩ X2, we get ρ(X1 ∩ X2) ≥ ρmin(X) and, according
to (3), ρ(X1 ∪ X2) ≤ ρmin(X). Thus ρ(X1 ∪ X2) = ρmin(X). By induction we
deduce that ρ(Clos(X)) = ρmin(X). 	

Lemma 3. For any A ⊆ V � ,

N (A) ⊆ N (Clos � (A)) = Clos(A)

Proof. For any X ∈ V , we have ρ(N (X � )) ≤ ρ(X), as the addition to X of a
vertex in V • having at least one neighbor in X doesn’t increase ρ(X) and as the
deletion of a vertex in V • having no neighbor in X decreases ρ(X) by 1. Hence
ρ(N (X � )) ≤ ρ(X) and equality may only occur if X ⊆ N (X � ).

According to this property, as ρ(N (Y � )) ≤ ρ(Y ) and as equality implies
Y ⊆ N (Y � ), we have:

Clos(A) =
⋃

A⊆Y
ρ(Y )=ρmin(A)

Y =
⋃

A⊆Y
ρ(Y )=ρmin(A)

N (Y � ) = N ( ⋃

A⊆Y
ρ(Y )=ρmin(A)

Y �
)

= N (Clos � (A))

Moreover, as A ⊆ Clos � (A),N (A) ⊆ N (Clos � (A)). 	


3.2 (2, ≤1)-Orientation

Definition 2. A (2, ≤1)-orientation O of a bipartite graph G is an orientation
such that each vertex in V � has indegree exactly 2 and every vertex in V • has
indegree at most 1. A source of the (2, ≤1)-orientation is a vertex with null
indegree. Given a subset X ⊆ V , a vertex x ∈ X is a relative source of X for
O if it has a null indegree in GX . We note Source(O, X) the set of the relative
sources of X for O.

The two following lemmas justify the term of deficiency for ρ.

Lemma 4 ([5]). A connected bipartite graph G has a (2, ≤1)-orientation if and
only the minimal degree of vertices in V � is at least 2 and if

∀X ⊆ V, |E(GX)| ≤ 2 |X � | + |X • | (4)

Lemma 5. Let G be a bipartite planar graph and a (2, ≤1)-orientation of G.
Let X ⊆ V . Then ρ(X) is equal to the sum of the number of sources of G in X
and of the number of arcs entering X from V \ X.

Proof. The result is easily obtained by summing up the indegrees of the vertices
in X . 	

Lemma 6. Let O be a (2, ≤1)-orientation of G and let X ⊆ V . Then there
exists a (2, ≤1)-orientation O′ of G such that

Source(O, Clos(X)) ⊆ Source(O′, Clos(X)) ⊆ Source(O′, V )
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Proof. Let Y be the subset of V \Clos(X) formed by the vertices y such that there
exists a directed path from y to a vertex x ∈ Clos(X). We proceed iteratively,
while decreasing the number of sources of G in Y .

If Y includes no source of O, then any vertex in Y has its incoming edges in-
cident to vertices in Y ∪Clos(X). Thus ρ(Clos(X)∪Y ) ≤ ρ(Clos(X)) = ρmin(X),
a contradiction. Hence Y is empty, thus Source(O′, Clos(X)) ⊆ Source(O′, V ).

Otherwise, let y be source of G in Y . By assumption, there exists a directed
path from y to a vertex x ∈ X . According to Lemma 3, Clos(X) = N (Clos � (X)).
Thus if the directed path has minimal length, x ∈ Clos • (X). Reorienting the
directed path from x to y decreases the number of sources in Y , decreases
Y and gives rise to a new (2, ≤1)-orientation of G. As the reorientation may
not have killed a relative source of Clos(X), we have Source(O, Clos(X)) ⊆
Source(O′, Clos(X)). 	

Lemma 7. Let O be a (2, ≤1)-orientation of G and let X ⊆ V . Assume that any
vertex x ∈ X � which has a neighbor out of X has at least two neighbors in X and
that Source(O, Clos(X)) ⊆ Source(O, V ). Then there exists a (2, ≤1)-orientation
O′ of G, which differs with O only on E(Clos(X)), such that:

Source(O, Clos(X)) ∩ X ⊆ Source(O′, Clos(X)) ⊆ Source(O′, V ) ∩ X

Proof. We proceed by induction on the cardinality of Source(O, Clos(X)) \ X .
If Source(O, Clos(X)) ⊆ X , we are done. Otherwise, let s ∈ Source(O,

Clos(X)) \X . Let Y be the subset of the vertices x ∈ Clos(X) reachable from s
by a directed path. If Y ∩ X = ∅, then ρ(Clos(X) \ Y ) < ρ(Clos(X)) although
X ⊆ Clos(X) \ Y , contradicting the minimality of ρ(Clos(X)). Thus Y ∩X �= ∅.
Let v1 = s, . . . , vk be a minimal length directed path from s to a vertex in
X . If vk ∈ X � , there exists an outgoing arc at vk to a vertex vk+1 ∈ X • , as
vk has degree at least 2 in X by assumption, as the indegree of vk is 2 and
as vk has an incoming edge from vk−1 �∈ X . Reversing the orientation of the
path v1, . . . , vk (resp. v1, . . . , vk+1) if vk ∈ X • (resp. vk ∈ X � ), we obtain a
new (2, ≤1)-orientation O′ of G. As this orientation differs with O on GClos(X)

only, we still have Source(O′, Clos(X)) ⊆ Source(O′, V ). As we may not have
killed a source in X , Source(O, Clos(X))∩X ⊆ Source(O′, Clos(X)). Moreover,
| Source(O, Clos(X)) \ X| decreased by one. 	

Definition 3. A subset X of vertices of a connected plane graph G is a disk if
any vertex of X having a neighbor out of X belongs to the outer face of GX and
X = N (X � ).

Theorem 6. Assume G = (V � , V • , E) is a connected bipartite plane graph such
that the minimum degree of vertices in V � is at least 2 and such that ∀X ⊆ V ,

|X � | ≥ 2 =⇒ |E(GX)| ≤ 2 |X � | + |X • | − 3 (5)

Then G has a (2, ≤1)-orientation O such that, for any disk X with |X � | ≥ 2,
we have

| Source(O, X) ∩ Extr(X)| ≥ 3 (6)

where Extr(X) denotes the vertex set of the outer face of GX .
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Proof. According to Lemma 4, G has a (2, ≤1)-orientation O0.
We prove by induction over ( |V | , |V \ Extr(V )| ) that the required (2, ≤1)-

orientation O may be found, with the additional properties that the sources of
O0 in Extr(V ) are also sources of O.

Let A = Extr(V ). According to Lemmas 6 and 7, there exists a (2, ≤1)-
orientation O1 of G, such that

Source(O0, V ) ∩ A ⊆ Source(O1, Clos(A)) ⊆ Source(O1, V ) ∩ A

Let B1 = V \ Clos(A), B2 = N (B1) \ B1 and B3 = N (B2) \ B2. According to
Lemma 3, B2 ⊆ V • and B3 ⊆ V � . Moreover, B3 ⊆ Extr(B1 ∪ B2 ∪ B3). Let
G′ be the directed bipartite plane graph obtained from G as follows: First, we
remove all the vertices not in B1 ∪ B2 ∪ B3 and all the arcs oriented from B2

to B3. Finally, for every v ∈ B3, we add two new vertices v1 and v2 on the
outer face with arcs (v1, v) and (v2, v). Let C be the corresponding set of added
black vertices. Then, B3 ∪ C belong to the outer face of G′ and the orientation
of G′ is a (2, ≤1)-orientation having every vertex in C as a source. As V � (G′) is
either strictly included in V � (G) or is equal but then |Extr � (V (G′))| is strictly
greater than |Extr � (V (G))| , the induction applies. Thus there exists a (2, ≤1)-
orientation O2 of G′, such that any vertex in C is a source of O2 and such that
(6) holds for any disk X with |X � | ≥ 2.

Let O be the orientation of G induced by O1 on GV \B1 and O2 on GB1∪B2 . By
construction, O is a (2, ≤1)-orientation of G such that Source(O0, V )∩Extr(V ) ⊆
Source(O, V ) and Source(O, Clos(A)) ⊆ Source(O, V ) ∩ Extr(V ).

Let X be a disk of G such that |X � | ≥ 2 and let Y = X ∩ Clos(A).
Assume |Y � | ≥ 2. According to (5), we get |E(GY )| ≤ 2 |Y � | + |Y • | − 3.

According to Lemma 5, | Source(O, Y )| ≥ 3. Moreover, as X is a disk and as
Clos(A) has no entering arc, every relative source of Y belongs to the outer face
of GX . Thus | Source(O, X) ∩ Extr(X)| ≥ | Source(O, Y ) ∩ Extr(X)| ≥ 3.

Otherwise, X � is included in the vertex set of G′. In G′ we thus get

| Source(O2, X) ∩ Extr(X)| ≥ 3.

By construction of G′ and O, we deduce | Source(O, X) ∩ Extr(X)| ≥ 3. 	

Theorem 7. A connected bipartite graph G = (V � , V • , E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

– G is planar,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V such that |X ∩ V � | ≥ 2,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | − 3 (7)

Proof. According to Theorem 4, G is the contact graph of a family of pseudo-
segments A. According to Theorem 6, G has a (2, ≤1)-orientation O, such that
any disk X with |X � | ≥ 2 has at least 3 relative sources on the outer face of
GX . Thus, according to Theorem 5, A is stretchable into a contact family of
segments. 	
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Corollary 1. A graph G = (V, E) is the intersection graph of a (one-sided)
simple contact family of segments if and only if

– G is planar,
– any subgraph H ⊆ G of order nH ≥ 2 has its size bounded by: mH ≤ 2nH−3.

Proof. Apply Theorem 7 to the bipartite graph obtained by subdividing each
edge of G exactly once. 	


In [2], it is proved that any 4-connected 3-colorable plane graphs is the contact
graphs of a set of pseudo-segments. It is also proved in [2] that the assumptions
of Theorem 6 hold for the incidence graph of the contact system. Thus, we get:

Corollary 2. Any 4-connected 3-colorable plane graphs is the contact graphs of
a family of segments.

In [2], representations of planar graphs by intersection of pseudo-segments are
obtained using local perturbations of contact systems of pseudo-segments. The
assumptions of Theorem 6 are proved to hold for the contact system in [2].
Thus, using Theorem 7 and a perturbation argument, this theorem may be
strengthened:

Corollary 3. Any 4-colored planar graph without induced C4 using 4 colors is
the intersection graph of a family of straight line segments.

4 Open Problems

It is not difficult to prove that any contact family of pseudo-segments is home-
omorphic to a contact family of polylines composed by three segments.

Problem 2. Is any contact family of pseudo-segments homeomorphic to a contact
family of polylines composed by two segments?

It is known that every planar graph is representable as the contact graph of a
family of triangles[10]. Using stretching techniques, this result might extend:

Problem 3. Is any planar linear hypergraph representable as the contact hyper-
graph of a family of triangles?

Scheinerman’s conjecture may be straightened as follows, as a self-dual state-
ment:

Problem 4. Is any planar linear hypergraph representable as the intersection
hypergraph of a family of segments?

As the coloration seems to play a central role, we may also ask:

Problem 5. Is any planar graph G representable as the intersection graph of a
family of segments in χ(G) directions?
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