
GraphML Transformation�

Ulrik Brandes and Christian Pich��

Department of Computer & Information Science, University of Konstanz, Germany
{Ulrik.Brandes,Christian.Pich}@uni-konstanz.de

Abstract. The efforts put into XML-related technologies have exciting
consequences for XML-based graph data formats such as GraphML. We
here give a systematic overview of the possibilities offered by XSLT style
sheets for processing graph data, and illustrate that many basic tasks
required for tools used in graph drawing can be implemented by means of
style sheets, which are convenient to use, portable, and easy to customize.

1 Introduction

Among the multitude of software packages that process graphs, some are ded-
icated graph packages while others operate on graph structures implicitly. All
of them have in common the need to input existing data and to output their
computation results in files or streams. GraphML (Graph Markup Language) is
an XML-based format for the description of graph structures, designed to im-
prove tool interoperability and reduce communication overhead [1]. It is open
to user-defined extensions for application-specific data. Thanks to its XML syn-
tax, GraphML-aware applications can take advantage of a growing number of
XML-related technologies and tools, such as parsers and validators.

It is straightforward to provide access to graphs represented in GraphML
by adding input and output filters to an existing software application. However,
we find that Extensible Stylesheet Language Transformations (XSLT) [7] offer
a more natural way of utilizing XML formatted data, in particular when the
resulting format of a computation is again based on XML. The mappings that
transform input GraphML documents to output documents are defined in XSLT
style sheets and can be used stand-alone, as components of larger systems, or
in, say, web services.

This article is organized as follows. Section 2 provides some background on
GraphML, XSLT and their combination. Basic means and concepts of trans-
formations are outlined in Sect. 3, while different types of transformations are
discussed in Sect. 4. The integration of XSLT extension mechanisms is described
in Sect. 5, and results are discussed and summarized in Section 6.

� Research partially supported by DFG under grant Br 2158/1-2 and EU under grant
IST-2001-33555 COSIN.

�� Corresponding author.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 89–99, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

90 Ulrik Brandes and Christian Pich

2 Background

A key feature of GraphML is the separation into structural and data layer, both
conceptually and syntactically; this enables applications to extend the stan-
dard GraphML vocabulary by custom data labels that are transparent to other
applications not aware of the extension. Furthermore, applications are free to
ignore unknown concepts appearing in the structural layer, such as <port>s,
<hyperedge>s or nested <graph>s.

Thanks to its XML syntax, GraphML can be used in combination with other
XML based formats: On the one hand, its own extension mechanism allows to at-
tach <data> labels with complex content (possibly required to comply with other
XML content models) to GraphML elements, such as Scalable Vector Graph-
ics [5] describing the appearance of the nodes and edges in a drawing; on the
other hand, GraphML can be integrated into other applications, e.g. in SOAP
messages [6].

Since GraphML representations of graphs often need to be preprocessed or
converted to other XML formats, it is convenient to transform them using XSLT,
a language specifically designed for transforming XML documents; while origi-
nally created for formatting and presenting XML data, usually with HTML, it
also allows general restructuring, analysis, and evaluation of XML documents.
To reduce parsing overhead and to allow for XML output generation in a natural
and embedded way, XSLT itself is in XML syntax.

Basically, the transformations are defined in style sheets (sometimes also
called transformation sheets), which specify how an input XML document gets
transformed into an output XML document in a recursive pattern matching
process. The underlying data model for XML documents is the Document Object
Model (DOM), a tree of DOM nodes representing the elements, attributes, text
etc., which is held completely in memory. Fig. 1 shows the basic workflow of a
transformation.

Fig. 1. Workflow of an XSLT transformation. First, XML data is converted to a tree
representation, which is then used to build the result tree as specified in the style sheet.
Eventually, the result tree is serialized as XML.

GraphML Transformation 91

DOM trees can be navigated with the XPath language, a sublanguage of
XSLT: It expresses paths in the document tree seen from a particular context
node (similar to a directory tree of a file system) and serves to address sets of its
nodes that satisfy given conditions. For example, if the context node is a <graph>
element, all node identifiers can be addressed by child::node/attribute::id,
or node/@id as shorthand. Predicates can be used to specify more precisely
which parts of the DOM tree to select; for example, the XPath expression
edge[@source=’n0’]/data selects only those <data> children of <edge>s start-
ing from the <node> with the given identifier.

The transformation process can be roughly described as follows: A style sheet
consists of a list of templates, each having an associated pattern and a template
body containing the actions to be executed and the content to be written to the
output. Beginning with the root, the processor performs a depth-first traversal
(in document order) through the DOM tree. For each DOM node it encounters, it
checks whether there is a template whose pattern it satisfies; if so, it selects one of
the templates and executes the actions given in that template body (potentially
with further recursive pattern matching for the subtrees), and does not do any
further depth-first traversal for the DOM subtree rooted at that DOM node;
else, it automatically continues the depth-first traversal recursively at each of its
children.

3 Basic Means of Transformation

The expressivity and usefulness of XSLT transformations goes beyond their orig-
inal purpose of only “adding style” to the input. The following is an overview of
some important basic concepts of XSLT and how these concepts can particularly
be employed in order to formulate advanced GraphML transformations that also
take into account the underlying combinatorial structure of the graph instead of
only the DOM tree. For some example style sheets, see Sect. 4.

3.1 Parameterization

Especially when integrated as component of a larger system, it is desirable or
necessary to parameterize the transformations. Therefore, style sheets can be
given an arbitrary number of global parameters <xsl:param> that serve as an
interface to the outside world. When used autonomously, parameters are passed
to the processor as command line parameters.

Such parameters are often used to determine which part of the source doc-
ument is to be processed. For example, a GraphML file might contain multiple
<graph>s; a parameter can express the unique identifier of a particular graph
that is to be selected. Newer versions of XSLT even allow passing complex XML
subtree structures to the transformation.

3.2 Recursion

In the pattern matching process described in Sect. 2, templates were instantiated
and executed implicitly or explicitly, when a matching DOM node was encoun-

92 Ulrik Brandes and Christian Pich

tered in the tree traversal. However, templates can also be given unique names
and called like functions together with arbitrary scalar or complex arguments,
independently from the tree traversal.

For implementation of more advanced computations, such as graph algo-
rithms, templates may recursively call themselves, typically passing local pa-
rameters as function arguments. Similar to the global parameters (see Sect. 3.1),
local parameters can represent both scalar values and complex tree fragments.
With some limitations, XSLT can be considered a functional language, since
templates (and the style sheet as a whole) define functions that are applied to
subtrees of the input document and return fragments of the output document.

Due to the lack of assignment statements and side-effects, conventional im-
perative graph algorithms have to be formulated solely in terms of functions;
states, data structures, and intermediate results must be expressed as parame-
ters of function calls. For example, in a breadth-first search the set of all unvis-
ited nodes is passed to a recursive incarnation of the BFS template, instead of
becoming marked (see Sect. 4.3).

3.3 Modularization

To make transformations more flexible, they are not necessarily defined in one
single file, but can be distributed over a set of modules. The main style sheet
imports all templates from another style sheet with <xsl:import>, with its
own templates having a higher priority, or includes them textually using an
<xsl:include> tag. Alternatively, style sheets can be composed in advance in-
stead of being imported and included at transformation runtime. Since XSLT is
XML, it is even possible for style sheets to compose and transform other style
sheets.

Another way of modularizing large transformations is to split them up into
several smaller exchangeable style sheets that define successive steps of the trans-
formation, each of which operates on the GraphML result produced in the pre-
vious step.

In effect, modularizing transformations facilitates implementing a family of
general-purpose and specialized style sheets. Users are free to use specialized
modules, or to design new custom templates that extend the general ones.

3.4 External Code

XSLT is designed to be an open, extensible system. While parameterization is
one way of using an interface to the outside world when XSLT serves as a com-
ponent, another even more powerful mechanism is the integration of extension
functions into XSLT, i.e. code external to the style sheet. This is especially use-
ful when pure XSLT implementations are inefficient to run or too complicated
to use, especially when the input document is large, or when XSLT does not
provide necessary functionality at all, e.g. when random numbers, mathematical
operations, date functions, or complex string manipulations are needed.

It is important to note that extension functions and classes may violate the
declarative, functional design idea of XSLT, since instance-level methods can pro-

GraphML Transformation 93

vide information about mutable states, thus making side-effects possible because
a template may now produce different output at different times of execution.

The mechanism is described in more detail in Sect. 5, where we present an
extension to be used with GraphML.

4 Transformation Types

Since GraphML is designed as a general format not bound to a particular area
of application, an abundance of XSLT use cases exist. However, we found that
transformations can be filed into three major categories, depending on the actual
purpose of transformation. Note that transformations may correspond to more
than one type.

4.1 Internal

While one of GraphML’s design goals is to require a well-defined interpretation
for all GraphML files, there is no uniqueness the other way round, i.e. there
are various GraphML representations for a graph; for example, its <node>s and
<edge>s may appear in arbitrary order. However, applications may require their
GraphML input to satisfy certain preconditions, such as the appearance of all
<node>s before any <edge> in order to set up a graph in memory on-the-fly while
reading the input stream.

Generally, some frequently arising transformations include

– pre- and postprocessing the GraphML file to make it satisfy given conditions,
such as rearranging the markup elements or generating unique identifiers,

– inserting default values where there is no explicit entry, e.g. edge directions
or default values for <data> tags,

– resolving XLink references in distributed graphs,
– filtering out unneeded <data> tags that are not relevant for further process-

ing and can be dropped to reduce communication or memory cost, and
– converting between graph classes, for example eliminating hyperedges, ex-

panding nested graphs, or removing multiedges.

For such GraphML-to-GraphML transformations that operate on the syn-
tactical representation rather than on the underlying combinatorial structure,
XSLT style sheets are a very useful and lightweight tool. Often, the source code
fits on one single page. See, e.g., Fig. 2 and Fig. 3.

4.2 Format Conversion

Although in recent years GraphML and similar formats like GXL [9] became
increasingly used in various areas of interest, there are still many applications
and services not (yet) capable of processing them. To be compatible, formats
need to be translatable to each other, preserving as much information as possible.

In doing so, it is essential to take into account possible structural mismatch
in terms of both the graph models and concepts that can be expressed by the

94 Ulrik Brandes and Christian Pich

involved formats, and their support for additional data. Of course, the closer
the conceptual relatedness between source and target format is, the simpler the
style sheets typically are.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:template match="data|desc|key|default"/> <!-- empty template-->

<xsl:template match="/graphml">
<graphml>

<xsl:copy-of select="key|desc|@*"/>
<xsl:apply-templates match="graph"/> <!-- process graph(s) -->

</graphml>
</xsl:template>

<xsl:template match="graph"> <!-- override template -->
<graph>

<xsl:copy-of select="key|desc|@*"/>
<xsl:copy-of select="node"/> <!-- nodes first -->
<xsl:copy-of select="edge"/> <!-- then edges -->

</graph>
</xsl:template>

</xsl:stylesheet>

Fig. 2. This transformation rearranges the graph so that the nodes appear before the
edges. All subtrees related to data extensions (data and key tags) are omitted.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:import href="rearrange.xsl"/> <!-- import templates -->

<xsl:template match="graph">
<graph>

<xsl:copy-of select="key|desc|@*"/>
<xsl:copy-of select="node"/>
<xsl:apply-templates match="edge"/>

</graph>
</xsl:template>

<xsl:template match="edge"> <!-- new template rule for edges-->
<xsl:copy>

<xsl:copy-of select="@*[name()!=’id’]|*"/>
<xsl:attribute name="id"> <!-- create new ID attribute -->
<xsl:value-of select="generate-id()"/> <!-- XPath-generated ID -->

</xsl:attribute>
</xsl:copy>

</xsl:template>
</xsl:stylesheet>

Fig. 3. The transformation in Fig. 2 is extended by importing its templates and over-
riding the template for graphs, as described in Sect. 3.3. Edges are copied to the output
document, except for their identifiers, which are generated anew.

GraphML Transformation 95

While conversion will be necessary in various settings, two use cases appear
to be of particular importance:

– Conversion into another graph format: We expect GraphML to be used in
many applications to archive attributed graph data and in Web services
to transmit aspects of a graph. While it is easy to output GraphML, style
sheets can be used to convert GraphML into other graph formats and can
thus be utilized in translation services like GraphEx [3]. Converting between
GraphML and GXL is discussed in [2].

– Export to some graphics format: Of course, graph-based tools in general
and graph drawing tools in particular will have to export graphs in graphics
formats for visualization purposes. In fact, this is the most natural use of style
sheets, and we give an example tranformation to SVG (see Appendix A).

The transformation need not be applied to a filed document, but can also be
carried out in memory by applications that ought to be able to export in some
target format. Note that, even though XSLT is typically used for mapping be-
tween XML documents, it can also be utilized to generate non-XML output.

4.3 Algorithmic

Algorithmic style sheets appear in transformations which create fragments in
the output document that do not directly correspond to fragments in the input
document, i.e. when there is structure in the source document that is not explicit
in the markup. This is typical for GraphML data: For example, it is not possible
to determine whether or not a given <graph> contains cycles by just looking at
the markup; some algorithm has to be applied to the represented graph.

To get a feel for the potential of algorithmic style sheets, we implemented
some basic graph algorithms using XSLT, and with recursive templates outlined
in Sect. 3.2, it proved powerful enough to formulate even more advanced algo-
rithms. For example, a style sheet can be used to compute the distances from a
single source to all other nodes or execute a layout algorithm, and then attach
the results to <node>s in <data> labels. See Fig. 4 and Appendix A.

5 Java Language Binding

We found that pure XSLT functionality is expressive enough to solve even more
advanced GraphML related problems. However, it suffers from some general
drawbacks:

– With growing problem complexity, the style sheets tend to become dispro-
portionately verbose.

– Algorithms must be reformulated in terms of recursive templates, and there
is no way to use existing implementations.

– Computations may perform poorly, especially for large input. This is often
due to excessive DOM tree traversal and overhead generated by template
instantiation internal to the XSLT processor.

– There is no direct way of accessing system services, such as date functions
or data base connectivity.

96 Ulrik Brandes and Christian Pich

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:param name="source">s</xsl:param> <!-- global parameter -->

<xsl:template match="data|desc|key"/>

<xsl:template match="/graphml/graph">
<graphml>

<graph>
<xsl:copy-of select="@*|*[name()!=’node’]"/>
<key for="node" name="distance"/>
<xsl:variable name="bfsnodes">

<xsl:call-template name="bfs">
<xsl:with-param name="V" select="node[@id!=$source]"/>
<xsl:with-param name="W" select="node[@id=$source]"/>
<xsl:with-param name="dist" select="number(0)"/>

</xsl:call-template>
</xsl:variable>
<xsl:copy-of select="$bfsnodes/node"/>
<xsl:for-each select="node[not(@id=$bfsnodes/node/@id)]">

<xsl:copy>
<xsl:copy-of select="*|@*"/>
<data key="distance">-1</data> <!-- not reachable -->

</xsl:copy>
</xsl:for-each>

</graph>
</graphml>

</xsl:template>

<xsl:template name="bfs">
<xsl:param name="dist"/> <!-- current distance to source -->
<xsl:param name="V"/> <!-- unvisited nodes -->
<xsl:param name="W"/> <!-- BFS front nodes -->
<xsl:for-each select="$W">

<xsl:copy>
<xsl:copy-of select="*|@*"/>
<data key="distance"><xsl:value-of select="$dist"/></data>

</xsl:copy>
</xsl:for-each>
<xsl:variable name="new" select="$V[@id=../edge[@source=$W/@id]/@target]"/>
<xsl:if test="$new"> <!-- newly visited nodes? -->

<xsl:call-template name="bfs"> <!-- start BFS from them -->
<xsl:with-param name="V" select="$V[count(.|$new)!=count($new)]"/>
<xsl:with-param name="W" select="$new"/>
<xsl:with-param name="dist" select="$dist+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Fig. 4. An algorithmic style sheet that starts a breath-first search from a source speci-
fied in a global parameter. The computed distances from that source node are attached
to the nodes as data tags with a newly introduced key.

Therefore, most XSLT processors allow the integration of extension functions
implemented in XSLT or some other programming language. Usually, they sup-
port at least their native language. For example, Saxon [4] can access and use
external Java classes since itself is written entirely in Java. In this case, exten-

GraphML Transformation 97

sion functions are methods of Java classes available on the class path when the
transformation is being executed, and get invoked within XPath expressions.
Usually, they are static methods, thus staying compliant with XSLT’s design
idea of declarative style and freeness of side-effects. However, XSLT allows to
create objects and to call their instance-level methods by binding the created
objects to XPath variables.

Fig. 5 shows the architecture of a transformation integrating external classes.
See Appendix A for a style sheet that makes use of extension functions for
random graph generation.

Fig. 5. Extending a transformation with Extension Functions. The box around the
Java classes may represent a wrapper class.

In particular, this technique enables developers to implement extensions for
graph algorithms. They can either implement extension functions from scratch,
or make use of already existing off-the-shelf graph libraries. We implemented a
prototype extension for GraphML that basically consists of three layers:

– Java classes for graph data structures and algorithms.
– A wrapper class (the actual XSLT extension) that converts GraphML

markup to a wrapped graph object, and provides computation results.
– The style sheet that instantiates the wrapper and communicates with it.

Thus, the wrapper acts as a mediator between the graph object and the style
sheet. The wrapper instantiates a graph object corresponding to the GraphML
markup, and, for instance, applies a graph drawing algorithm to it. In turn, it
provides the resulting coordinates and other layout data in order for the style
sheet to insert it into the XML (probably GraphML) result of the transformation,
or to do further computations.

98 Ulrik Brandes and Christian Pich

The approach presented here is only one of many ways of mapping an ex-
ternal graph description file to an internal graph representation. A stand-alone
application could integrate a GraphML parser, build up its graph representation
in memory apart from XSLT, execute a transformation, and serialize the result
as GraphML output. However, the intrinsic advantage of using XSLT is that it
generates output in a natural and embedded way, and that the output generation
process can be customized easily.

6 Discussion

We have presented a simple, lightweight approach to processing graphs repre-
sented in GraphML. XSLT style sheets have proven to be useful in various areas
of application, both when the target format of a transformation is GraphML,
and in other formats with a similar purpose where the structure of the output
does not vary too much from the input.

They are even powerful enough to specify advanced transformations that go
beyond mapping XML elements directly to other XML elements or other simple
text units. However, advanced transformations may result in long-winded style
sheets that are intricate to maintain, and most likely to be inefficient. Extension
functions appear to be the natural way out of such difficulties.

We found that, as rule-of-thumb, XSLT should be used primarily to do the
structural parts of a transformation, such as creating new elements or attributes,
whereas specialized extensions are better for complex computations that are
difficult to express or inefficient to run using pure XSLT.

References

1. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML
progress report: Structural layer proposal. Proc. 9th Intl. Symp. Graph Drawing
(GD ’01), LNCS 2265:501–512. Springer, 2001.

2. U. Brandes, J. Lerner, and C. Pich: GXL to GraphML and vice versa with XSLT.
Proc. 2nd Intl. Workshop Graph-Based Tools (GraBaTs ’04). To appear.

3. S. Bridgeman. GraphEx: An improved graph translation service. Proc. 11th Intl.
Symp. Graph Drawing (GD ’03), LNCS 2912:307–313. Springer, 2004.

4. M. Kay. SAXON. http://saxon.sourceforge.net/.
5. W3C. Scalable Vector Graphics. http://www.w3.org/TR/SVG.
6. W3C. SOAP. http://www.w3.org/TR/soap12-part0/.
7. W3C. XSL Transformations. http://www.w3.org/TR/xslt.
8. R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles: Visualization and automatic

layout of graphs. Proc. 9th Intl. Symp. Graph Drawing (GD ’01), LNCS 2265:453–
454. Springer, 2001.

9. A. Winter. Exchanging Graphs with GXL. Proc. 9th Intl. Symp. Graph Drawing
(GD ’01), LNCS 2265:485–500. Springer, 2001.

GraphML Transformation 99

A Supplement

Due to space limitations, we do not give extensive examples for style sheets. The
following examples are referred to in this paper and can be obtained from the
GraphML homepage (graphml.graphdrawing.org):

GraphML → SVG. An example for conversion into an XML-based graphics
format (requires coordinates).

Spring Embedder. A computational style sheet computing coordinates using
a popular layout algorithm.

Random Graph Generator. Generates random graphs in the Erdős-Rényi
model by calling an external random number generator (Java language bind-
ing).

	1 Introduction
	2 Background
	3 Basic Means of Transformation
	3.1 Parameterization
	3.2 Recursion
	3.3 Modularization
	3.4 External Code

	4 Transformation Types
	4.1 Internal
	4.2 Format Conversion
	4.3 Algorithmic

	5 Java Language Binding
	6 Discussion
	References
	A Supplement

