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Abstract. We say that an encryption scheme or a signature scheme pro-
vides anonymity when it is infeasible to determine which user generated
a ciphertext or a signature. To construct the schemes with anonymity,
it is necessary that the space of ciphertexts or signatures is common to
each user. In this paper, we focus on the techniques which can be used
to obtain this anonymity property, and propose a new technique for ob-
taining the anonymity property on RSA-based cryptosystem, which we
call “sampling twice.” It generates the uniform distribution over 2k by
sampling the two elements from ZN where |N | = k. Then, by applying
the sampling twice technique, we construct the schemes for encryption,
undeniable and confirmer signature, and ring signature, which have some
advantage to the previous schemes.

Keywords: RSA, anonymity, encryption, undeniable and confirmer sig-
nature, ring signature

1 Introduction

We say that an encryption scheme or a signature scheme provides anonymity
when it is infeasible to determine which user generated a ciphertext or a sig-
nature. A simple observation that seems to be folklore is that standard RSA
encryption, namely, a ciphertext is xe mod N where x is a plaintext and (N, e)
is a public key, does not provide anonymity, even when all moduli in the sys-
tem have the same length. Suppose an adversary knows that the ciphertext y
is created under one of two keys (N0, e0) or (N1, e1), and suppose N0 ≤ N1. If
y ≥ N0 then the adversary bets it was created under (N1, e1), else the adversary
bets it was created under (N0, e0). It is not hard to see that this attack has non-
negligible advantage. To construct the schemes with anonymity, it is necessary
that the space of ciphertexts is common to each user. We can say the same thing
about RSA-based signature schemes.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security re-
quirement of the encryption schemes called “key-privacy” or “anonymity.” It
asks that the encryption provide (in addition to privacy of the data being en-
crypted) privacy of the key under which the encryption was performed. In [1],
they provided the key-privacy encryption scheme, RSA-RAEP, which is a vari-
ant of RSA-OAEP (Bellare and Rogaway [2], Fujisaki, Okamoto, Pointcheval,
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and Stern [3]), and made the space of ciphertexts common to each user by re-
peating the evaluation of the RSA-OAEP permutation f(x, r) with plaintext x
and random r, each time using different r until the value is in the safe range.
For deriving a value in the safe range, the number of the repetition would be
very large (the value of the security parameter). In fact, their algorithm can fail
to give a desired output with some (small) probability.

The anonymous encryption scheme has various applications. For example,
anonymous authenticated key exchange protocol such as SKEME (Krawczyk [4]),
anonymous credential system (Camenisch and Lysyanskaya [5]), and auction
protocols (Sako [6]).

Chaum and Antwerpen provided undeniable signature which cannot be ver-
ified without the signer’s cooperation [7, 8]. The validity or invalidity of an un-
deniable signature can be ascertained by conducting a protocol with the signer,
assuming the signer participates. Chaum provided confirmer signature [9] which
is undeniable signature where signatures may also be verified by interacting
with an entity called the confirmer who has been designated by the signer. Gal-
braith and Mao proposed a new security notion for undeniable and confirmer
signature named “anonymity” in [10]. We say that an undeniable or confirmer
signature scheme provides anonymity when it is infeasible to determine which
user generated the message-signature pair. In [10], Galbraith and Mao provided
the undeniable and confirmer signature scheme with anonymity. They made the
space of signatures common to each user by applying a standard RSA permu-
tation to the signature and expanding it to the common domain [0, 2k) where
N is a public key for each user and |N | = k. This technique was proposed by
Desmedt [11].

Rivest, Shamir, and Tauman [12] proposed the notion of ring signature, which
allows a member of an ad hoc collection of users S to prove that a message
is authenticated by a member of S without revealing which member actually
produced the signature. Unlike group signature, ring signature has no group
managers, no setup procedures, no revocation procedures, and no coordination.
The signer does not need the knowledge, consent, or assistance of the other ring
members to put them in the ring. All the signer needs is knowledge of their
regular public keys. They also proposed the efficient schemes based on RSA
and Rabin. In their RSA-based scheme, the trap-door RSA permutations of the
various ring members will have ranges of different sizes. This makes it awkward
to combine the individual signatures, so one should construct some trap-door
one-way permutation which has a common range for each user. Intuitively, in
the ring signature scheme, Rivest, Shamir, and Tauman solved this problem by
encoding the message to an Ni-ary representation and applying a standard RSA
permutation f to the low-order digits where Ni is a public key for each user.
This technique is considered to be essentially the same as that by Desmedt. As
mentioned in [12], for deriving a secure permutation g with a common range,
the range of g would be 160 bits larger than that of f .

Hayashi, Okamoto, and Tanaka [13] recently proposed the RSA family of
trap-door permutations with a common domain denoted by RSACD. They
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showed that the θ-partial one-wayness of RSACD is equivalent to the one-wayness
of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to the
one-wayness of RSA which is the standard RSA family of trap-door permuta-
tions. They also proposed the applications of RSACD to the key-privacy encryp-
tion scheme and ring signature scheme. Their schemes have some advantages to
the previous schemes.

1.1 Our Contribution

In this paper, we focus on the techniques which can be used to obtain this
anonymity property.

From the previous results mentioned above, we can find three techniques,
repeating, expanding, and using RSACD, for anonymity of cryptosystems based
on RSA.

Repeating. Repeating the evaluation of the encryption (respectively the sign-
ing) with plaintext x (resp. message m), random r, and the RSA function,
each time using different r until the value is smaller than any public key N
of each user.
In [1], Bellare, Boldyreva, Desai, and Pointcheval used this technique for the
encryption scheme.

Expanding. Doing the evaluation of the encryption (respectively the signing)
with plaintext x (resp. message m), random r, and the RSA function, and
expanding it to the common domain.
This technique was proposed by Desmedt [11]. In [10], Galbraith and Mao
used this technique for the undeniable signature scheme. In [12], Rivest,
Shamir, and Tauman also used this technique for the ring signature.

RSACD. Doing the evaluation of the encryption (respectively the signing) with
plaintext x (resp. message m), random r, and the RSACD function. This
function was proposed by Hayashi, Okamoto, and Tanaka [13].

In this paper, we propose a new technique for obtaining the anonymity prop-
erty of RSA-based cryptosystems. We call this technique “sampling twice.” In
our technique, we employ an algorithm ChooseAndShift. It takes two numbers
x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where |N | = k, and if x1

and x2 are independently and uniformly chosen from ZN then y is uniformly
distributed over [0, 2k).

Sampling Twice. Doing the evaluation of the encryption (respectively the
signing) twice with plaintext x (resp. message m), random r1 and r2, and
the RSA function, and applying our proposed algorithm ChooseAndShift
for the two resulting values.

Then, by applying the sampling twice technique, we construct the schemes
for encryption, undeniable and confirmer signature, and ring signature (See Fig-
ure 1.).

We summarize the (dis)advantage of our proposed schemes.
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Sampling Twice Repeating Expanding RSACD

Encryption this paper Bellare et al. - Hayashi et al.

Undeniable and
Confirmer Signature

this paper - Galbraith et al. -

Ring Signature this paper - Rivest et al. Hayashi et al.

Fig. 1. The previous and our proposed schemes.

Our proposed encryption scheme with sampling twice is efficient with respect
to the size of ciphertexts and the decryption cost. It is also efficient with respect
to the encryption cost in the worst case. On the other hand, that in the average
case is larger than that of the previous schemes. More precisely, in our encryption
scheme, the number of modular exponentiation to encrypt in the worst case is
2, while those in the previous schemes are 1 or 1.5.

Our proposed undeniable and confirmer signature scheme with sampling
twice is efficient with respect to the size of signatures. On the other hand, the
number of exponentiations for signing and that of computation of square roots
is always 2, while those of the other schemes are 1 or 1.5 in the average case.

Our proposed ring signature scheme with sampling twice is efficient with
respect to the size of signatures and the verification cost. On the other hand,
the signing cost of our scheme is larger than those of the previous schemes.

If we use the RSACD function, the resulting value is calculated by applying
the RSA function either once or twice. Fortunately, since applying the RSA
function twice does not reduce security, we can prove that the RSACD function is
one-way if the RSA function is one-way. Generally speaking, a one-way function
does not always have this property, and we cannot construct a one-way functions
with a common domain.

On the other hand, in the sampling twice, repeating, and expanding tech-
niques, the resulting value is calculated by applying the RSA function once.
Therefore, it might be possible to apply these techniques to other one-way func-
tions and prove the security of the resulting schemes.

The organization of this paper is as follows. In Section 2, we review the
definitions of families of functions and the standard RSA family. In Section 3,
we construct the algorithm ChooseAndShift and propose the sampling twice
technique. We propose the encryption schemes with anonymity in Section 4,
the undeniable and confirmer signature schemes with anonymity in Section 5,
and the ring signature schemes with anonymity in Section 6. We conclude in
Section 7.

2 Preliminaries

We describe the definitions of families of functions, families of trap-door permu-
tations, and θ-partial one-way.

Definition 1 (Families of Functions [1]). A family of functions F =(K,S,E)
consists of three algorithms. The randomized key-generation algorithm K takes
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as input a security parameter k ∈ N and returns a pair (pk, sk) where pk is a
public key and sk is an associated secret key. (In cases where the family is not
trap-door, the secret key is simply the empty string.) The randomized sampling
algorithm S takes input pk and returns a random point in a set that we call the
domain of pk and denote by DomF (pk). The deterministic evaluation algorithm
E takes input pk and a point x ∈ DomF (pk) and returns an output we denote by
Epk(x). We let RngF (pk) = {Epk(x) |x ∈ DomF (pk)} denote the range of the
function Epk(·).
Definition 2 (Families of Trap-Door Permutations [1]). We say that F
is a family of trap-door functions if there exists a deterministic inversion al-
gorithm I that takes input sk and a point y ∈ RngF (pk) and returns a point
x ∈ DomF (pk) such that Epk(x) = y. We say that F is a family of trap-door
permutations if F is a family of trap-door functions, DomF (pk) = RngF (pk),
and Epk is a bijection on this set.

Definition 3 (θ-Partial One-Way [1]). Let F = (K, S, E) be a family of
functions. Let b ∈ {0, 1} and k ∈ N be a security parameter. Let 0 < θ ≤ 1 be a
constant. Let A be an adversary. Now, we consider the following experiments:

Experiment Expθ-pow-fnc
F,A (k)

(pk, sk)← K(k)
x

R← DomF (pk)
y ← Epk(x)
x1 ← A(pk, y) where |x1| = �θ · |x|�
if

(
Epk(x1||x2) = y for some x2

)
return 1 else return 0

Here “ ||” denotes concatenation and “ x
R← DomF (pk)” is the operation of

picking an element x uniformly from DomF (pk). We define the advantages of
the adversary via

Advθ-pow-fnc
F,A (k) = Pr[Expθ-pow-fnc

F,A (k) = 1]

where the probability is taken over K, x
R← DomF (pk), E, and A. We say that

the family F is θ-partial one-way if the function Advθ-pow-fnc
F,A (·) is negligible for

any adversary A whose time complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the
standard notion of one-wayness. We say that the family F is one-way when F is
1-partial one-way.

We describe the standard RSA family of trap-door permutations denoted by
RSA.

Definition 4 (The Standard RSA Family of Trap-Door Permutations).
The specifications of the standard RSA family of trap-door permutations RSA =
(K, S, E) are as follows. The key generation algorithm takes as input a security
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parameter k and picks random, distinct primes p, q in the range 2�k/2�−1 <
p, q < 2�k/2� and 2k−1 < pq < 2k. It sets N = pq. It picks e, d ∈ Z

∗
φ(N) such that

ed = 1 (mod φ(N)) where φ(N) = (p− 1)(q− 1). The public key is N, e, k and
the secret key is N, d, k. The sets DomRSA(N, e, k) and RngRSA(N, e, k) are both
equal to Z

∗
N . The evaluation algorithm EN,e,k(x) = xe mod N and the inversion

algorithm IN,d,k(y) = yd mod N . The sampling algorithm returns a random point
in Z

∗
N .

Fujisaki, Okamoto, Pointcheval, and Stern [3] showed that the θ-partial one-
wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5.

3 The Sampling Twice Technique

In this section, we propose a new technique for obtaining the anonymity property
of RSA-based cryptosystems. We call this technique “sampling twice.” In our
technique, we employ the following algorithm ChooseAndShift. It takes two
numbers x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where |N | = k.

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k −N)

return

{
x1 with probability 1

2

x1 + N with probability 1
2

elseif (2k −N ≤ x1, x2 < N)
return x1

else
y1 ← min{x1, x2}; y2 ← max{x1, x2}
%%% Note that 0 ≤ y1 < 2k −N and 2k −N ≤ y2 < N. %%%

return






y1 with probability (1
2 + N

2k+1 )× 1
2

y1 + N with probability (1
2 + N

2k+1 )× 1
2

y2 with probability 1
2 − N

2k+1

Note that 2k−1 < N < 2k ensures 2k − N < N , 0 < 1
2 − N

2k+1 < 1, and
0 < 1

2 + N
2k+1 < 1. In order to run this algorithm, it is sufficient to prepare only

k + 3 random bits.
We prove the following theorem on the property of ChooseAndShift.

Theorem 1. If x1 and x2 are independently and uniformly chosen from ZN

then the output of the above algorithm is uniformly distributed over [0, 2k).

Proof. To prove this theorem, we show that if x1 and x2 are independently and
uniformly chosen from ZN then Pr[ChooseAndShift(x1, x2) = z] = 1/2k for any
z ∈ [0, 2k). For any z ∈ [0, 2k −N), we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 0 ≤ x2 < 2k −N ]× 1

2
+ Pr[(x1 = z ∧ 2k −N ≤ x2 < N) ∨ (x2 = z ∧ 2k −N ≤ x1 < N)]
×(1

2 + N
2k+1 )× 1

2

= 1
N × 2k−N

N × 1
2 + ( 1

N × 2N−2k

N )× 2× (1
2 + N

2k+1 )× 1
2 = 1

2k .
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It is clear that Pr[ChooseAndShift(x1, x2) = z′] = Pr[ChooseAndShift(x1, x2)
= z′ + N ] for any z′ ∈ [0, 2k − N). Therefore, for any z ∈ [N, 2k), we have
Pr[ChooseAndShift(x1, x2) = z] = 1/2k.

Furthermore, for any z ∈ [2k −N, N), we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 2k −N ≤ x2 < N ]

+ Pr[(x1 = z ∧ 0 ≤ x2 < 2k −N) ∨ (x2 = z ∧ 0 ≤ x1 < 2k −N)]
×(1

2 − N
2k+1 )

= 1
N × 2N−2k

N + ( 1
N × 2k−N

N )× 2× (1
2 − N

2k+1 ) = 1
2k . 	


By using the algorithm ChooseAndShift, we propose a new technique for
obtaining the anonymity property. We call this technique “sampling twice.”

Sampling Twice. Doing the evaluation of the encryption (respectively the
signing) twice with plaintext x (resp. message m), random r1 and r2, and
the RSA function, and applying our proposed algorithm ChooseAndShift
for the two resulting values.

In the following sections, by applying the sampling twice technique, we con-
struct the schemes for encryption, undeniable and confirmer signature, and ring
signature.

4 Encryption

4.1 Definitions

In [1], Bellare, Boldyreva, Desai, and Pointcheval proposed a new security re-
quirement of encryption schemes called “key-privacy.” It asks that the encryp-
tion provide (in addition to privacy of the data being encrypted) privacy of the
key under which the encryption was performed. In [1], a public-key encryption
scheme with common-key generation is described as follows.

Definition 5. A public-key encryption scheme with common-key generation PE
= (G,K, E ,D) consists of four algorithms. The common-key generation algorithm
G takes as input some security parameter k and returns some common key I.
The key generation algorithm K is a randomized algorithm that takes as input the
common key I and returns a pair (pk, sk) of keys, the public key and a matching
secret key. The encryption algorithm E is a randomized algorithm that takes the
public key pk and a plaintext x to return a ciphertext y. The decryption algorithm
D is a deterministic algorithm that takes the secret key sk and a ciphertext y to
return the corresponding plaintext x or a special symbol ⊥ to indicate that the
ciphertext was invalid.

In [1], they formalized the property of “key-privacy.” This can be considered
under either the chosen-plaintext attack or the chosen-ciphertext attack, yielding
two notions of security, IK-CPA and IK-CCA. (IK means “indistinguishability
of keys.”)
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Definition 6 (IK-CPA, IK-CCA [1]). Let PE = (G, K, E ,D) be an encryp-
tion scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1

cpa, A
2
cpa), Acca =

(A1
cca, A

2
cca) be adversaries that run in two stages and where Acca has access to

the oracles Dsk0(·) and Dsk1 (·). Note that si is the state information. It contains
pk0, pk1, and so on. For atk ∈ {cpa, cca}, we consider the following experiments:

Experiment Expik-atk-b
PE,Aatk

(k)
I ← G(k); (pk0, sk0)← K(I); (pk1, sk1)← K(I)
(x, si)← A1

atk(pk0, pk1); y ← Epkb
(x); d← A2

atk(y, si)
return d

Above it is mandated that A2
cca never queries Dsk0(·) and Dsk1(·) on the challenge

ciphertext y. For atk ∈ {cpa, cca}, we define the advantages via

Advik-atk
PE,Aatk

(k) =
∣
∣
∣Pr[Expik-atk-1

PE,Aatk
(k) = 1]− Pr[Expik-atk-0

PE,Aatk
(k) = 1]

∣
∣
∣.

The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the
function Advik-cpa

PE,Acpa
(·) (resp. Advik-cca

PE,Acca
(·)) is negligible for any adversary A

whose time complexity is polynomial in k.

4.2 Encryption with Sampling Twice

In this section, we propose the encryption scheme with the sampling twice tech-
nique.

Definition 7. The common-key generation algorithm G takes a security param-
eter k and returns parameters k, k0 and k1 such that k0(k)+k1(k) < k for all k >
1. This defines an associated plaintext-length function n(k) = k− k0(k)− k1(k).
The key generation algorithm K takes k, k0, k1, runs the key-generation algo-
rithm of RSA, and gets N, e, d. The public key pk is (N, e), k, k0, k1 and the
secret key sk is (N, d), k, k0, k1. The other algorithms are depicted below. Let G
: {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note
that [x]n denotes the n most significant bits of x and [x]m denotes the m least
significant bits of x. Note that the valid ciphertext y satisfies y ∈ [0, 2k) and
(y mod N) ∈ Z

∗
N .

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

r1, r2
R← {0, 1}k0 v ← y mod N

s1 ← (x||0k1)⊕G(r1); t1 ← r1 ⊕H(s1) s← [vd]n+k1 ; t← [vd]k0

v1 ← (s1||t1)e mod N r ← t⊕H(s)
s2 ← (x||0k1)⊕G(r2); t2 ← r2 ⊕H(s2) x← [s⊕G(r)]n; p← [s⊕G(r)]k1

v2 ← (s2||t2)e mod N if (p = 0k1) z ← x else z ←⊥
y ← ChooseAndShift(v1, v2) return z
return y

4.3 Analysis

We compare the four schemes with sampling twice, repeating, RSACD, and
expanding.
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Security. Bellare, Boldyreva, Desai, and Pointcheval [1] proved that the scheme
with repeating (RSA-RAEP) is secure in the sense of IND-CCA2 and IK-CCA in
the random oracle model assuming RSA is θ-partial one-way for θ > 0.5. Hayashi,
Okamoto, and Tanaka [13] proved that the encryption scheme with RSACD is
also secure in the sense of IND-CCA2 and IK-CCA in the random oracle model
assuming RSACD is θ-partial one-way for θ > 0.5.

In order to prove that the scheme with sampling twice is secure in the sense
of IK-CCA, we need the restriction as follows.

Since if c is a ciphertext of m for pk = (N, e, k) and c < 2k−N then c+N is
also a ciphertext of m, the adversary can ask c + N0 to decryption oracle Dsk0

where c is a challenge ciphertext such that c < 2k − N0 and pk0 = (N0, e0, k),
and if the answer of Dsk0 is m, then c is encrypted by pk0.

To prevent this attack, we add some natural restriction to the adversaries
in the definitions of IK-CCA. That is, it is mandated that the adversary never
queries Dsk0 on (c mod N0) + β0N0 where β0 ∈ �(2k − (c mod N0))/N0�, and
Dsk1 on (c mod N1) + β1N1 where β1 ∈ �(2k − (c mod N1))/N1�.

Similarly, in order to prove that the scheme with sampling twice is secure in
the sense of IND-CCA2, we need the same restriction. That is, in the definition of
IND-CCA2, it is mandated that the adversary never queries Dsk on (c mod N)+
γN where γ ∈ �(2k − (c mod N))/N�.

We think these restrictions are natural and reasonable. Actually, in the case
of undeniable and confirmer signature schemes, Galbraith and Mao [10] defined
the anonymity on undeniable signature schemes with the above restriction.

If we add these restrictions then we can prove that the scheme with sampling
twice is secure in the sense of IK-CCA in the random oracle model assuming
RSA is θ-partial one-way for θ > 0.5. More precisely, we can prove the following
theorem.

Theorem 2. If RSA is partial one-way then the encryption scheme Π with sam-
pling twice is secure in the sense of IK-CCA in the random oracle model. More
precisely, for any adversary A attacking the anonymity of our scheme under
an adaptive chosen-ciphertext attack, and making at most qdec decryption oracle
queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a θ-partial
inverting adversary B for the RSA family, such that for any k, k0(k), k1(k), and
θ = k−k0(k)

k ,

Advik-cca
Π,A (k) ≤ 8qhash · ((1− ε1) · (1− ε2) · (1− ε3))

−1 ·Advθ-pow-fnc
RSA,B (k)

+qgen · qhash · (1− ε3)−1 · 2−k+3

where

ε1 =
1
2
; ε2 =

1
2k/2−3 − 1

; ε3 =
2qgen + qdec + 2qgenqdec

2k0
+

2qgen

2k1
+

2qhash

2k−k0
,

and the running time of B is that of A plus qgen · qhash ·O(k3).

Noticing that the range of valid ciphertexts changes, the proof is similar to
that for RSA-RAEP (See Appendix C in the full version of [1].), and will be
available in the full version of this paper.
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Sampling Twice Repeating [1] RSACD [13] Expanding

# of mod. exp. to encrypt
(average / worst)

2 / 2 1.5 / k1 1.5 / 2 1 / 1

# of mod. exp. to decrypt
(average / worst)

1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts k k k k + 160

# of random bits to encrypt
(average / worst)

2k0 + k + 3
/ 2k0 + k + 3

1.5k0 / k1k0 1.5k0 / 1.5k0
k0 + 160
/ k0 + 160

Fig. 2. The comparison of the encryption schemes.

We can also prove that the scheme with sampling twice is secure in the sense
of IND-CCA2 in the random oracle model assuming RSA is θ-partial one-way
for θ > 0.5. More precisely, we can prove that if there exists a CCA2-adversary
A = (A1, A2) attacking indistinguishability of our scheme with advantage ε,
then there exists a CCA2-adversary B = (B1, B2) attacking indistinguishability
of RSA-OAEP with advantage ε/2. We construct B as follows.

1. B1 gets pk and passes it to A1. B1 gets (m0, m1, si) which is an output of
A1, and B1 outputs it.

2. B2 gets a challenge ciphertext y and sets y′ ← y + tN where t
R← {0, 1}. If

y′ ≥ 2k then B2 outputs Fail and halts; otherwise B2 passes (y′, si) to A2.
B2 gets d ∈ {0, 1} which is an output of A2, and B2 outputs it.

If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B
outputs Fail] < 1/2, the advantage of B is greater than ε/2.

Efficiency. We show the number of modular exponentiations to encrypt and
decrypt, the size of ciphertexts, and the bit-length of randomness to encrypt in
Figure 2. We assume that N is uniformly distributed in (2k−1, 2k).

5 Undeniable and Confirmer Signature

5.1 Definitions

Digital signatures are easily verified as authentic by anyone using the corre-
sponding public key. This property can be advantageous for many users, but
it is unsuitable for many other users. Chaum and Antwerpen provided unde-
niable signature which cannot be verified without the signer’s cooperation [7,
8]. The validity or invalidity of an undeniable signature can be ascertained by
conducting a protocol with the signer, assuming the signer participates. Chaum
provided confirmer signature [9] which is undeniable signature where signatures
may also be verified by interacting with an entity called the confirmer who has
been designated by the signer, and many undeniable and confirmer signature
schemes were proposed. We describe the definition of undeniable and confirmer
signature.

Definition 8. An undeniable signature scheme SIG = (Cgen,Kgen,Sign,
Conf,Deny) consists of three algorithms and two protocols.
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– Cgen is a (randomized) common-key generation algorithm that takes as in-
put some security parameter k and returns a common key I.

– Kgen is a (randomized) key generation algorithm that takes as input the
common key I and returns a pair (pk, sk) of keys, the public key and a
matching secret key.

– Sign is a (randomized) signing algorithm that takes as input a secret key sk
and a message m and outputs a signature s.

– Conf is a confirmation protocol between a signer and a verifier which takes
as input a message m, a signature s, and signer’s public key pk and allows
the signer to prove to a verifier that the signature s is valid for the message
m and the key pk.

– Deny is a denial protocol between a signer and a verifier which takes as
input a message m, a signature s, and signer’s public key pk and allows the
signer to prove to a verifier that the signature s is invalid for the message
m and the key pk.

A confirmer signature scheme is essentially the same as above, except the role
of confirmation and denial can also be performed by a third party called a con-
firmer. The significant modification is that the key generation algorithm produces
a confirmation key ck which is needed for the confirmation or denial protocol.

Galbraith and Mao proposed a new security notion of undeniable and con-
firmer signatures named “anonymity” in [10]. We say that an undeniable or con-
firmer signature scheme provides anonymity when it is infeasible to determine
which user generated the message-signature pair.

We slightly modify the definition of anonymity in [10] in order to put a
common key generation into it explicitly.
Definition 9 ([10]). Let SIG = (Cgen,Kgen,Sign,Conf, Deny) be an un-
deniable or confirmer signature scheme. Let b ∈ {0, 1} and k ∈ N (security pa-
rameter). Let A = (A1, A2) be adversaries that run in two stages. A has access to
the oracles Signsk0 ,Signsk1 and A can execute confirmation and denial protocols
Confsk0 ,Confsk1 ,Denysk0 ,Denysk1 on any message-signature pair. However,
it is mandated that A2 never execute Confsk0 ,Confsk1 ,Denysk0 ,Denysk1 on
(m′, σ′) ∈ EC(m, σ, pk0) ∪ EC(m, σ, pk1) (EC means “equivalence class.” If we
get a message-signature pair (m, σ) under the key pk, then we can easily compute
all elements in EC(m, σ, pk).). Note that si be a state information. It contains
common keys, public keys, and so on. Now we consider the following experiments:

Experiment ExpAnonym-b
SIG,A (k)

I ← Cgen(1k); (pk0, sk0)← Kgen(I); (pk1, sk1)← Kgen(I)
(m, si)← A1(pk0, pk1); σ ← Signskb

(m); d← A2(m, σ, si)
return d

We define the advantages of the adversaries via:

AdvAnonym
SIG,A (k) =

∣∣
∣Pr[ExpAnonym-1

SIG,A (k) = 1]− Pr[ExpAnonym-0
SIG,A (k) = 1]

∣∣
∣.

The scheme SIG provides anonymity if the function AdvAnonym
SIG,A (·) is negligible

for any adversary A whose time complexity is polynomial in k.
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5.2 Undeniable and Confirmer Signature with Sampling Twice

In this section, we propose the undeniable and confirmer signature schemes with
the sampling twice technique.

Definition 10. The common-key generation algorithm Cgen takes a security
parameter k and returns parameters k, k0 and k1 such that k0(k) + k1(k) < k
for all k > 1. The key generation algorithm Kgen takes k, k0, k1, runs the key-
generation algorithm of RSA, and gets N, e, d, p, q where p, q are the safe primes
(i.e. (p − 1)/2 and (q − 1)/2 are also primes)1. It picks g from Z

∗
N and sets

h ← gd mod N . The public key pk is (N, g, h), k, k0, k1 and the secret key sk is
(N, e, d, p, q), k, k0, k1. Let G0 : {0, 1}∗ → {0, 1}k1, G1 : {0, 1}k1 → {0, 1}k0, G2

: {0, 1}k1 → {0, 1}k−k0−k1−1, and F : {0, 1}k → {0, 1}k be hash functions. The
signing algorithm is as follows.

Sign(m)
r1, r2

R← {0, 1}k0

m̄1 ← Sign2(m, r1); t1
R← {c ∈ ZN | c2 = ±m̄1 (mod N)}; s1 ← (t1)d mod N

m̄2 ← Sign2(m, r2); t2
R← {c ∈ ZN | c2 = ±m̄2 (mod N)}; s2 ← (t2)d mod N

s← ChooseAndShift(s1, s2)
if (s mod N = s1) r ← r1 else r ← r2

return (s, r)

where

Sign2(m, r)
w← G0(m||r); r∗ ← G1(w)⊕ r; M ← 0||w||r∗||G2(w); m̄←M
while

((
m̄
N

) �= 1
)
repeat m̄← F (m̄)

return m̄

Conf (respectively Deny) is a non-interactive designated verifier proof which
proves the knowledge of an integer e such that g = he (mod N) and s2e =
±Sign2(m, r) (mod N) (resp. g = he (mod N) and s2e �= ±Sign2(m, r)
(mod N)). To construct such proofs, we first employ protocols similar to those
in [14] by Galbraith, Mao, and Paterson. Then, we transform them to corre-
sponding non-interactive designated verifier proofs by the method of Jakobsson,
Sako, and Impagliazzo [15] 2. The equivalence class of this scheme is
EC(m, (s, r), pk) = {(m, (±s′ ± uN, r)) | s′ = s mod N ∧ u ∈ �(2k − s′)/N�}.

In our scheme (and also the scheme by Galbraith and Mao), we have to use
RSA moduli which are the products of safe primes for obtaining the anonymity
property. Gennaro, Krawczyk, and Rabin [16] proposed the RSA-based undeni-
able signature schemes where RSA moduli are restricted to the products of safe
primes, and the confirmation and denial protocols in [16] is more efficient than

1 We need this restriction for proving anonymity.
2 These proof transcripts must be encrypted when sent to the verifier if anonymity is

to be preserved.
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Sampling Twice Expanding [10] Repeating

# of mod. exp. to sign
(average / worst)

2 / 2 1 / 1 1.5 / k1

# of computation of square root
(average / worst)

2 / 2 1 / 1 1.5 / k1

size of signatures k + k0 2k + k0 (k − 1) + k0

# of random bits to sign
(average / worst)

k0 + k + 5
/ k0 + k + 5

k0 + k + 2
/ k0 + k + 2

1.5(k0 + 2)
/ k1(k0 + 2)

Fig. 3. The comparison of the undeniable and confirmer signature schemes.

those by Galbraith, Mao, and Paterson [14]. Therefore, it seems better to use the
protocols in [16]. However, if we use the protocols in [16], the prover will have to
prove that her RSA modulo has the proper form (i.e. a product of safe primes)
during the protocols, and it needs a costly proof. To avoid this, Galbraith, Mao,
and Paterson [14] constructed different scheme where there is no restriction for
the RSA moduli.

5.3 Analysis

We compare the four schemes with sampling twice, expanding, and repeating.

Security. Galbraith and Mao [10] proved that their scheme provides anonymity
in the random oracle model under the assumption that the composite decision
Diffie-Hellman problem is hard (Given (g, h, u, v) ∈ (Z∗

N )4, it is infeasible to
determine whether the two equations h = gr (mod N) and v = αur (mod N)
hold, where r ∈ Z

∗
φ(N) and ord(α) = 2. See [10] for details.). They also proved

that their scheme is existential unforgeable in the random oracle model under
the assumption that factoring integers which are products of safe primes is hard.
We can prove that the scheme with sampling twice provides anonymity in the
random oracle model under the assumption that the composite decision Diffie-
Hellman problem is hard, and is existential unforgeable in the random oracle
model under the assumption that factoring integers which are products of safe
primes is hard. Noticing that the signature space changes, the proofs are similar
to those for the Galbraith–Mao scheme (See Appendices B and C in [10].).

Efficiency. We show the number of modular exponentiations to sign, the num-
ber of computation of square root, the size of signatures, and the number of
random bits to sign in Figure 3. We assume that N is uniformly distributed in
(2k−1, 2k).

6 Ring Signature

6.1 Definitions

In [12], Rivest, Shamir, and Tauman proposed the notion of ring signature, which
allows a member of an ad hoc collection of users S to prove that a message
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is authenticated by a member of S without revealing which member actually
produced the signature. Unlike group signature, ring signature has no group
managers, no setup procedures, no revocation procedures, and no coordination.

Definition 11 (Ring Signature [12]). One assumes that each user Ui (called
a ring member) has received (via a PKI or a certificate) a public key Pi, for
which the corresponding secret key is denoted by Si. A ring signature scheme
consists of the following algorithms.

– ring-sign(m, P1, P2, · · · , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, · · · , Pr of the r ring members, to-
gether with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m, σ) which accepts a message m and a signature σ (which in-
cludes the public key of all the possible signers), and outputs either valid or
invalid.

The signer does not need the knowledge, consent, or assistance of the other
ring members to put them in the ring. All he needs is knowledge of their regular
public keys. Verification must satisfy the usual soundness and completeness con-
ditions, but in addition the signature scheme must satisfy “signer-ambiguity,”
which is the property that the verifier is unable to determine the identity of the
actual signer with probability greater than 1/r+ ε, where r is the size of the ring
and ε is negligible. Furthermore, the signature scheme must satisfy “existential
unforgeability under adaptive chosen message attack.”

The formal concept of ring signature can be related to an abstract concept
called combining functions. In [12], Rivest, Shamir, and Tauman proposed a
combining function based on a symmetric encryption scheme E modeled by a
(keyed) random permutation

Ck,v(y1, · · · , yr) = Ek(yr ⊕ Ek(yr−1 ⊕ · · ·Ek(y2 ⊕ Ek(y1 ⊕ v)) · · ·)).
For any k, v, z, any index s, and any fixed values of {yi}i�=s, we can easily find
ys such that Ck,v(y1, · · · , yr) = z by using the following equation:

ys = E−1
k

(
ys+1 ⊕ · · ·E−1

k (yr ⊕ E−1
k (z)) · · ·)⊕ Ek

(
ys−1 ⊕ · · ·Ek(y1 ⊕ v) · · ·).

6.2 Ring Signature with Sampling Twice

In this section, we propose a ring signature scheme with the sampling twice
technique. To verify the signatures deterministically, we add some information
ci to the signature.

Definition 12. Let 	, k be security parameters. Let E be a symmetric encryption
scheme over {0, 1}k using 	-bit keys, and let h be a hash function which maps
strings of arbitrary length to 	-bit strings. Each user Ui has public key Pi =
(Ni, ei, k) and secret key Si = (Ni, di, k) by running the key generation algorithm
of RSA with security parameter k (i.e. the size of Ni is k). Let r be the number
of ring members. The signing algorithm is as follows.
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ring-sign(m, P1, P2, · · · , Pr, s, Ss)
for each i ∈ {1, · · · , s− 1, s + 1, · · · , r} do

x1
i , x

2
i

R← Z
∗
Ni

y1
i ← (x1

i )
ei mod Ni; y2

i ← (x2
i )

ei mod Ni

yi ← ChooseAndShift(y1
i , y2

i )
if (yi mod Ni = y1

i ) xi ← x1
i else xi ← x2

i

if (yi ≥ Ni) ci ← 1 else ci ← 0

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, · · · , yr) = v
if (ys ≥ Ns) cs ← 1 else cs ← 0
xs ← (ys)ds mod Ns

return σ = (P1, P2, · · · , Pr, v, (x1, c1), (x2, c2), · · · , (xr , cr))

The verification algorithm ring-verify(m, σ) computes yi ← ((xi)ei mod Ni) +
ci ·Ni for each (xi, ci) and z ← Ch(m),v(y1, · · · , yr). It returns valid if and only
if z = v.

6.3 Analysis

We compare the four schemes with sampling twice, expanding, RSACD, and
repeating.

Security. Rivest, Shamir, and Tauman [12] proved that their scheme is un-
conditionally signer-ambiguous and provably secure in the ideal cipher model
assuming RSA is one-way. Hayashi, Okamoto, and Tanaka [13] proved that their
scheme is unconditionally signer-ambiguous and provably secure in the ideal
cipher model assuming RSACD is one-way.

We can prove that our scheme is unconditionally signer-ambiguous, since
for each k and v the equation Ch(m),v(y1, · · · , yr) = v has exactly (2k−1)r−1

solutions, and all of them are chosen by the signature generation procedure with
equal probability, regardless of the signer’s identity.

Sampling Twice Expanding [12] RSACD [13] Repeating

# of mod. exp.
to sign

(average / worst)
2r / 2r r / r 1.5r / 2r 1.5r / kr

# of mod. exp.
to verify

(average / worst)
r / r r / r 1.5r / 2r r / r

size of signatures (3r + 1)k + r
(3r + 1)k

+160(r + 1)
(3r + 1)k (3r + 1)k − 1

# of random bits
to sign

(average / worst)

3(k + 1)(r − 1) + k
/ 3(k + 1)(r − 1) + k

(k + 160)r
/ (k + 160)r

kr / kr
1.5k(r − 1) + k − 1
/ k2(r − 1) + k − 1

Fig. 4. The comparison of the ring signature schemes (|Ni| = k).
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We can also prove that our scheme is existential unforgeable under adaptive
chosen message attack in the ideal cipher model assuming RSA is one-way. The
proof is almost the same as that for the Rivest–Shamir–Tauman scheme. The
difference is as follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given
y ∈ Z

∗
N , one slips y as a “gap” between two consecutive E functions along the

ring. Then, the forger has to compute the e-th root of y, and this leads one to
obtain the e-th root of y.

In the proof for our scheme, given y ∈ Z
∗
N , we pick a random bit t ∈ {0, 1},

set y′ ← y + tN . If y′ < 2k then one slips y′ as a “gap” between two consecutive
E functions along the ring. The rest of the proof is the same as that for the
Rivest–Shamir–Tauman scheme (See Section 3.5 in [12].).

Recently, Bresson, Stern, and Szydlo [17] improved the ring signature scheme
of Rivest, Shamir, and Tauman. They showed that its security can be based on
the random oracle model, which is strictly weaker than the ideal cipher model.
Furthermore, this greatly simplified the security proof provided in [12]. We can
apply their construction to the schemes with sampling twice and RSACD.

Efficiency. We show the number of modular exponentiations to sign and to
verify, the size of signatures, and the number of random bits to sign in Figure 4.
We assume that each Ni is uniformly distributed in (2k−1, 2k).

In the schemes with sampling twice and RSACD, it is necessary for each ring
member to choose her RSA modulo with the same length, and in the scheme
with repeating, it is necessary for each ring member to choose her RSA modulo
with almost the same length. In contrast to these schemes, in the scheme with
expanding, there is no restriction on the lengths of users’ moduli. However, if
there is one ring member whose RSA modulo is much larger than the other
member’s moduli, then the size of the signature and the number of random
bits depends on the largest modulo. For example, if there is a user whose RSA
modulo has length k + 	 and the other users’ moduli have lengths k, then the
size of signature is (3r + 1)k + 160(r + 1) + 	(r + 4) and the number of random
bits to sign is r(k + 160) + r	.

7 Concluding Remarks

In this paper, we have proposed a new technique for obtaining the anonymity
property of RSA-based cryptosystems, which we call “sampling twice.” By ap-
plying the sampling twice technique, we have constructed the schemes for en-
cryption, undeniable and confirmer signature, and ring signature.

In our analysis, we have observed that the scheme with sampling twice is
efficient with respect to the sizes of ciphertexts and signatures, the computational
costs to decrypt ciphertexts and to verify signatures in the average and worst
cases, and the computational costs to encrypt messages and to sign messages in
the worst case.
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