
Further Simplifications in Proactive RSA
Signatures

Stanis�law Jarecki and Nitesh Saxena

School of Information and Computer Science,
UC Irvine, Irvine, CA 92697, USA
{stasio, nitesh}@ics.uci.edu

Abstract. We present a new robust proactive (and threshold) RSA sig-
nature scheme secure with the optimal threshold of t < n/2 corruptions.
The new scheme offers a simpler alternative to the best previously known
(static) proactive RSA scheme given by Tal Rabin [36], itself a simpli-
fication over the previous schemes given by Frankel et al. [18, 17]. The
new scheme is conceptually simple because all the sharing and proac-
tive re-sharing of the RSA secret key is done modulo a prime, while the
reconstruction of the RSA signature employs an observation that the
secret can be recovered from such sharing using a simple equation over
the integers. This equation was first observed and utilized by Luo and
Lu in a design of a simple and efficient proactive RSA scheme [31] which
was not proven secure and which, alas, turned out to be completely in-
secure [29] due to the fact that the aforementioned equation leaks some
partial information about the shared secret. Interestingly, this partial
information leakage can be proven harmless once the polynomial sharing
used by [31] is replaced by top-level additive sharing with second-level
polynomial sharing for back-up.

Apart of conceptual simplicity and of new techniques of independent
interests, efficiency-wise the new scheme gives a factor of 2 improvement
in speed and share size in the general case, and almost a factor of 4 im-
provement for the common RSA public exponents 3, 17, or 65537, over
the scheme of [36] as analyzed in [36]. However, we also present an im-
proved security analysis and a generalization of the [36] scheme, which
shows that this scheme remains secure for smaller share sizes, leading to
the same factor of 2 or 4 improvements for that scheme as well.

1 Introduction

The idea of distributing a cryptosystem so that to secure it against corruption
of some threshold, e.g. a minority, of participating players is known as threshold
cryptography. It was introduced in the works of Desmedt [13], Boyd [4], Croft
and Harris [9], and Desmedt and Frankel [14], which built on the polynomial
secret-sharing technique of Shamir [39]. A threshold signature scheme [14] is an
example of this idea. It allows a group of n players to share the private signature
key in such a way that the signature key remains secret, and the signature
scheme remains secure, as long as no more than t of the players are corrupt.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 510–528, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Further Simplifications in Proactive RSA Signatures 511

Simultaneously, as long as at least n − t players are honest, these players can
efficiently produce correct signatures on any message even if the other t players
act in an arbitrarily malicious way.

Proactive signature schemes [28, 27] are threshold signature schemes which
offer an improved resistance against player corruptions. Time is divided into up-
date rounds, and the proactive signature scheme offers the same combination of
security and robustness even in the presence of so-called mobile faults [34], where
a potentially new group of up to t players becomes corrupted in each update
round. Technically, this is done by the players randomly re-sharing the shared
private key at the beginning of each update round. A proactive signature scheme
offers stronger security guarantee then a threshold scheme, especially in an appli-
cation which might come under repeated attacks, like a certification authority or
a timestamping service. Moreover, a proactive scheme offers more secure man-
agement of a system whose size and make-up need to change throughout its
lifetime. Efficiency of the distributed signature protocol involved in a proactive
signature scheme is very important in some applications, like in a timestamping
service, or in the decentralized control of peer-to-peer groups, ad-hoc groups,
or sensor networks [30, 37]. An efficient proactive scheme for RSA signatures is
especially important because RSA signatures are widely used in practice, and
because verification of RSA signatures is several orders of magnitude faster than
verification of other signatures.

Prior Work on Threshold and Proactive RSA. While the work of Herzberg et
al. [28, 27] and Gennaro et al. [25, 26] quickly yielded efficient secure proactive
signature schemes for discrete-log based schemes like Schnorr [38] or DSS [33] sig-
natures, the work on secure proactive RSA schemes progressed more slowly, and
the initial threshold RSA scheme of Desmedt and Frankel [14] was robust only
against crashes and not malicious faults, and had only heuristic security. The
difficulty in adopting Shamir’s polynomial secret-sharing technique to threshold
RSA was caused by the fact that the RSA private key d is an element of a group
Zφ(N), where φ(N) needs to remain hidden from all players because it allows im-
mediate computation of the private key d from the RSA public exponent e. This
difficulty was overcome by the schemes of Frankel et al. [16, 12] which provided
a proof of security but used secret shares which were elements of a polynomial
extension field of Zn, which increased the cost of the signature operation by a
factor of at least t. These schemes were then extended to provide robustness
against malicious faults by [19, 24]. Subsequently, Victor Shoup [40] presented a
threshold RSA signature scheme which was robust and provably secure with op-
timal adversarial threshold t < n/2, and which did away with the extension field
representation of the shares, thus making the cost of the signature operation for
each participating player comparable to the standard RSA signature generation.

Proactive RSA scheme is a harder problem because it requires the players to
re-share the private key d in each update round even if no single player is allowed
to know the secret modulus φ(N). The first proactive RSA scheme of Frankel
et al. [18] solved this problem using additive secret sharing over integers in
conjunction with combinatorial techniques which divide the group of n players

512 S. Jarecki and N. Saxena

into two levels of families and sub-families. However, the resulting proactive
protocol did not achieve optimal adversarial threshold t < n/2 and did not
scale well with the group size n. These shortcomings were later overcome by the
same authors [17], who showed that the RSA private key d can be shared over
integers using polynomials with specially chosen large integer coefficients that
simultaneously allowed interpolation without knowing φ(N) and unpredictability
of the value d given any t polynomial shares. In this solution, even though the
underlying secret sharing was polynomial, the players need to create a one-time
additive sharing for every group of players participating in threshold signature
generation. A simpler and more efficient proactive RSA scheme was then given by
Tal Rabin [36]. Her solution also used sharing of the private key over integers, and
employed shares of size about twice the length of the private key. The new idea
was that the secret d was shared additively among the players, every share was
backed-up by a secondary level of polynomial secret sharing, and the proactive
update consisted of shuffling and re-sharing of the additive shares.

Limitations and Open Problems in Proactive RSA. The proactive RSA schemes
of [18, 17, 36] leave at least two important problems unaddressed. While the new
proactive RSA scheme we present in this paper does not solve these problems
either, the techniques we present might help solve these problems in the future.
The first problem is that of handling adaptive rather than static adversaries.
The static adversary model assumes that the adversary decides which player to
corrupt obliviously to the execution of the protocol, while the adaptive model
allows the adversary to decide which player to corrupt based on his view of the
protocol execution. This difference in the adversarial model is not known to be
crucial for the security of the above protocols in practice. However, the above
protocols are not known to be adaptively secure, while the known adaptively
secure RSA schemes [20, 7, 21, 22] are significantly less efficient.

The second problem is that of requiring some form of additive rather than
polynomial secret-sharing. The additive sharing implies that the shares of all
temporarily unavailable players need to be reconstructed by the active players
that participate in the signature generation protocol. This hurts both the effi-
ciency and the resilience of a scheme in applications where one player might be
temporarily unavailable to another without an actual corruption by the adver-
sary. Since the threshold (but not proactive) RSA signature schemes discussed
above do not resort to additive sharing, this is a disadvantage of the currently
known proactive RSA schemes.

This somewhat unsatisfactory state of the known proactive RSA schemes led
a group of network security researchers to design a proactive RSA scheme [30]
which attempted to solve these problems by using polynomial secret sharing.
The technique they employed was very simple. It relied on an observation that
the secret sharing of the private key d modulo any modulus which has only large
prime factors enables efficient reconstruction of d over integers. Consequently,
by the homomorphic properties of exponentiation, it also enables reconstruction
of the RSA signature md mod N . This scheme, however, did not come with a
security proof, and indeed upon a closer examination [29], the proposed inter-

Further Simplifications in Proactive RSA Signatures 513

polation over the integers leaks a few most significant bits of the shared private
key d, which together with the adversarial ability to manipulate the choice of
shares in the proactive update protocol allows the threshold attacker to stage
a binary search for d. Nevertheless, the above technique, which was utilized by
the insecure scheme of [30], can be corrected, resulting in the provably secure
proactive RSA scheme we present here.

Our Contribution: Further Simplification and Efficiency Improvements in Proac-
tive RSA. Based on the corrected use of a technique discovered by Lu and Luo
[31], we present a new robust and provably secure optimal-threshold proactive
RSA scheme. Our scheme is known to be secure only in the static model, and it
employs top-level additive sharing similarly as the Rabin’s scheme [36], but it is
interesting for the following reasons: (1) It is simpler than the previous schemes;
(2) It offers factor of 2 improvement in share size and signature protocol effi-
ciency for general RSA public keys, and factor of 4 improvement for the common
case of public exponents like 3, 17, or 65537, over the most efficient previously
known proactive RSA scheme [36] as originally analyzed by [36]; (3) The new
scheme led us to a tighter security analysis of the [36] scheme, which resulted in
similar, up to a logarithmic factor, efficiency improvements for the [36] scheme;
(4) The new scheme offers an interesting case of a technique, invented by Lu and
Luo [31], which makes a distributed protocol run faster but leaks some partial
information about the shared secret. This partial information leakage led to an
efficient key-recovery attack [29] on the original scheme of [31]. Yet, with some
fixes, this partial information leakage can be provably neutralized and the same
technique results in a provably secure scheme presented here; (5) Finally, our
scheme offers new techniques which could aid in overcoming the two problems
that still haunt proactive RSA solutions, namely achieving efficient adaptive
security and the removal of additive sharing.

Paper Organization. Section 2 describes our adversarial model; section 3 presents
the new scheme; section 4 contains the security proof; and section 5 shows an
efficiency improvement for the proactive RSA scheme of [36].

2 Our Computation Model and the Adversarial Model

We work in the standard model of threshold cryptography and distributed al-
gorithms known as synchronous, secure links, reliable broadcast, trusted dealer,
static, and proactive adversary model. This is the same model as employed for
example in [28, 27, 18, 17, 36] discussed in the introduction, with the exception
that the first two did not need a trusted dealer (but did not handle RSA).

This model involves n players M1, ..., Mn equipped with synchronized clocks
and an ability to erase information. The players are connected by weakly syn-
chronous communication network offering secure point-to-point channels and a
reliable broadcast. The time is apriori divided into evenly spaced update rounds,
say of length of one day. We assume the presence of the so-called “mobile” adver-
sary, modeled by a probabilistic polynomial time algorithm, who can statically,

514 S. Jarecki and N. Saxena

i.e., at the beginning of the life time of the scheme, schedule up to t < n/2 arbi-
trarily malicious faults among these n players, independently for every update
round. We also assume a trusted dealer who initializes the distributed scheme
by picking an RSA key and securely sharing the private key among the players.
Since the adversary attacks a proactive signature scheme, the adversary can also
stage a chosen-message attack [CMA], i.e. it can ask any of the n players to run
a signature protocol on any message it chooses. The adversary’s goal is to either
(1) forge a signature on a message he did not request a signature on, exactly as
in the CMA attack against a standard (non-threshold) signature scheme, or (2)
to prevent the efficient generation of signatures on messages which at least t + 1
uncorrupted players want to sign.

3 The New Proactive RSA Signature Scheme

3.1 Overview of the Proposed Scheme

The sharing of the private RSA key d is done additively modulo a prime q
s.t. q ≥ r2|N |+τ , where r is the maximal number of rounds in the lifetime of
the system, |N | is the bit length of the RSA modulus N , and τ is a security
parameter, e.g. τ = 80. Namely each player Mi holds a share di which is a
random number in Zq s.t. d1 + ... + dn = d mod q. Each of these top-level
additive shares is also polynomially shared for backup reconstruction of di in
case Mi is corrupted, using the information-theoretically secret verifiable secret
sharing (VSS) of Pedersen [35], similarly as in the proactive RSA scheme of
Rabin [36]. In order to handle the common case of a small public RSA exponent
e more efficiently, the most significant l = |N |

2 bits of the private key d can be
publicly revealed as dpub, and only the remaining portion of the private key d,
namely d − 2|N |−ldpub, is shared as above modulo q, for any q ≥ r2|N |−l+τ .

The proactive update is very easy in this setting, adopting the original proac-
tive secret sharing of [28] to additive sharing. Such method was used before e.g.
in [7]. To re-randomize the the sharing, each Mi picks random partial shares dij

in Zq s.t. di = di1 + ... + din mod q, and sends dij to Mj . Each Mj computes
then his new share as d′

j = d1j + ... + dnj mod q, and shares it polynomially for
backup again. All this can be easily verified using Pedersen’s VSS, and the new
shares sum to the same secret d modulo q.

For the threshold signature protocol, we use the observation of [31] that if∑n
j=1 dj = d (mod q) and 0 ≤ dj ≤ q − 1 for all j’s, then

d =
n∑

j=1

dj − αq (over the integers) (1)

for some integer α ∈ {0, ..., n − 1}. Consequently, if ∀j , sj = mdj mod N then

md = (
n∏

j=1

sj)m−αq (mod N)

Further Simplifications in Proactive RSA Signatures 515

Therefore the signature md mod N can be reconstructed if players submit
their partial signatures as sj = mdj (mod N), and the correct value of α is
publicly reconstructed by cycling over the possible n choices of α, which adds
at most 2n modular exponentiations to the cost of the signature generation
protocol. (Note that in most applications n < 100.) In the (rare) case of a
malicious fault causing a failure in this procedure, each player has to prove
in zero-knowledge that it used a correct value di in its partial signature, i.e.
the value committed in the Pedersen VSS that shares this di. Efficient zero-
knowledge proofs to handle such statement were given by Camenisch and Michels
[5], and Boudot [2], and while not blazing fast, they have constant number of
exponentiations, and they are practical. This procedure is more expensive than
the robustness procedure in [36], but we believe that this efficiency difference
does not matter since active corruptions of this type should be unlikely, as active
faults are rare in general and the adversary would not gain much by using his
corrupted player in this way.

In the attack [29] on a similar scheme involving polynomial rather than ad-
ditive top-level sharing, the adversary uses the fact that the above procedure
reveals whether d is greater or smaller than some value in the [0, q] interval
which the adversary can easily compute from his shares. Since the adversary can
perfectly control his shares in the proactive update protocol for this (top-level)
polynomial secret sharing scheme, the adversary can use this partial information
leakage to stage a binary search for the shared secret d.

However, the scheme we present fixes the above problem. Assume that the
adversary corrupts players M1, ..., Mt. Giving the adversary the extra knowledge
of shares dt+1, ..., dn−1, the only information about the secret key revealed by
value α is, by equation (1), whether or not the secret d is smaller or larger than
R = (D mod q) where D = d1 + ... + dn−1. Since the adversary does not have
enough control over the shares created by our “additive” proactive update pro-
tocol, shares dt+1, ..., dn−1 are random in Zq, and hence so is value R. Therefore,
if q is significantly larger than the maximal value of d, then the α value almost
never reveals anything about d, because d is almost always smaller than R. For
this reason, if q ≥ r2|N |+τ then the modified scheme keeps d indistinguishable
from a value uniform in Zn, with the statistical difference of 2−τ . The additional
factor r in the bound on q appears because of the linear increase in the statisti-
cal difference with every update round. This captures the security proof of our
scheme in a nutshell.

We now give the detailed description of our scheme.

3.2 Setup Procedure

We require a trusted dealer to securely set up the system. The dealer generates
RSA private/public key pair, i.e. an RSA modulus N , public exponent e, and
private key d = e−1 mod φ(N). Optionally, l ≤ |N |

2 most significant bits of d
can be publicly revealed as dpub (otherwise dpub = 0 and l = 0). The dealer also
chooses an instance of Pedersen commitment [35], i.e. primes p and q s.t. q|(p−1),
and two random elements g, h of order q in Z

∗
p, for |q| = log2 r + |N | − l + τ + 1,

516 S. Jarecki and N. Saxena

where τ is a security parameter (τ ≥ 80) and r is the number of rounds the
system is expected to run. The dealer then runs the sharing protocol of Figure 1.

Input: private key d ∈ Zφ(n), public value dpub corresponding to l MSBs of d, public
RSA modulus N , Pedersen commitment instance (p, q, g, h).

1. Select shares dj ∈ Zq uniformly at random for j = 1, . . . , n − 1 and set dn =
d − 2|N|−ldpub − ∑n−1

j=1 dj (mod q).
2. Share each dj using Pedersen’s VSS protocol [35]. Namely, select random poly-

nomials fj(z) = dj + fj1z + · · · + fjtz
t and f ′

j(z) = d′
j + f ′

j1z + · · · + f ′
jtz

t over
Zq of degree t s.t. fj(0) = dj . Compute and publish the witnesses wj0 = gdj hd′

j

(mod p) and wjk = gfjkhf ′
jk (mod p) for k = 1, . . . , t.

3. Compute the secret shares ssij and ss′
ij as ssij = fj(i) (mod q) and ss′

ij = f ′
j(i),

deliver di, d
′
i, ssij and ss′

ij (∀j) to each Mi over a secure channel.

Fig. 1. Trusted Dealer’s Protocol: Sharing of the Private Key d

3.3 Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to generate in a distributed
manner an RSA signature s = md (mod N) under the secret-shared key d,
where m ∈ Z

∗
n is some hashed/padded function of the signed message, e.g.

m = H(M) for the Full Domain Hash RSA [1]. Our protocol consists of two
parts. First each player Mj creates its partial signature on the intended message
sj = mdj mod N , and sends it to the signature recipient. The recipient then
locally reconstructs the RSA signature from these partial signatures using the
n-bounded reconstruction algorithm of [31]. The threshold signature generation
and reconstruction protocol is summarized in Figure 2, and we explain the details
of the reconstruction algorithm below.

Input: (hashed) message m ∈ Z
∗
n, outputs of the Setup procedure

1. Player Mi broadcasts its partial signature si = mdi (mod N).
2. If Mi fails to provide its partial signature, all players reconstruct di and compute

si = mdi (mod N).
3. Reconstruct RSA signature using the n-bounded offsetting algorithm (see below).
4. If signature reconstruction fails, trace the faulty signer(s) by executing the pro-

tocol ZKPK(di : wi0 = gdihd′
i (mod p) ∧ si = mdi (mod N)) ∧ di ∈ [0, q−1]))

with each Mi (see Appendix).
5. If Mi fails this proof, any set of t + 1 players reconstruct di and compute and

broadcast si = mdi (mod N).

Fig. 2. Signature Generation and Reconstruction

Further Simplifications in Proactive RSA Signatures 517

Signature Reconstruction with n-Bounded Offsetting. On receiving n partial sig-
natures sj from the n players, the signature recipient reconstructs the RSA
signature s using the n-bounded-offsetting algorithm [30] which works as follows.
Since

∑n
j=1 dj = d − 2|N |−ldpub (mod q) and 0 ≤ dj ≤ q − 1 for all j’s, therefore

d = 2|N |−ldpub +
n∑

j=1

dj − αq (over the integers) (2)

for some integer α ∈ {0, . . . , n − 1}, which implies that

s = md = m2|N|−ldpub(
n∏

j=1

sj)m−αq (mod N)

Since there can be at most n possible values of α, the signature recipient can
recover s = md (mod N) by trying each of the n possible values Yα = Y (m−q)α

(mod N) for Y = m2|N|−ldpub(
∏n

j=1 sj) and α = 0, ..., n−1, and returning s = Yα

if (Yα)e = m (mod N). The decisive factor in the cost of this procedure is the
cost of the full exponentiation mq mod N , where q can be e.g. 613-bit long for
N = 1024, e = 3, l = |N |/2, τ = 80, and r ≤ 220.

As discussed in the overview subsection above, this procedure reveals value
α which contains some partial information on the shared secret d. Namely,
granting to the adversary some extra knowledge and assuming he knows shares
d1, ..., dn−1, the α value reveals whether d ∈ Zφ(n) lies in the interval [0, R[or in
[R, N], where R = (D mod q) and D = d1 + . . . + dn−1, if l = 0. More generally,
α reveals if d is smaller or larger than R + 2|N |−ldpub.

Robustness Mechanisms. In case some player Mu does not issue a partial sig-
nature, share du of Mu needs to be reconstructed to recover partial signature
su = mdu (mod N). In reconstruct du, every player Mi broadcasts its shares
ssiu, ss′

iu of du. The validity of these shares can be ascertained by checking

gssiuhss′
iu =

t∏

k=0

(wuk)ik

(mod p).

Share du can then be recovered using the interpolation

du =
∑

j∈G

ssjulj(u) (mod q)

where G is a subgroup of t + 1 players who broadcast valid shares and lj(u) =∏
j∈G,j �=i

(u−j)
i−j mod q is the Lagrange interpolation polynomial computed at u.

If all the partial signatures are present but the above n-bounded signature
reconstruction algorithm fails, then at least one out of n players did not issue
a correct partial signature. The signature recipient must then trace the faulty
players(s) by verifying the correctness of each partial signature. Once a player

518 S. Jarecki and N. Saxena

is detected as faulty, the share(s) of the faulty player(s) can be reconstructed
as above. To prove correctness of its partial signature, each Mi proves in zero-
knowledge that there is a pair of integers (di, d

′
i) s.t.

wi0 = gdihd′
i mod p , si = mdi mod N , 0 ≤ di < q

It is crucial that the range of di is checked because otherwise player Mi can
submit its partial signature as md′

i mod N where d′
i = di + kq for some k.

An efficient zero-knowledge proof system for the proof of equality of discrete
logarithms (and representations) in two different groups was given in [3, 6], and
the efficient proof that a committed number lies in a given range appeared in [2].
The resulting ZKPK proof system is in the appendix. It is non-interactive in the
random oracle model and involves a (small) constant amount of exponentiations.

3.4 Proactive Update Protocol

At the beginning of every update round, the players perform the share update
protocol of Figure 3 to re-randomize the sharing of d.

Input: Outputs of the Setup procedure or the previous Update protocol.
Let r ≥ 1 be the round number. Denote current values d

(r−1)
i , d

′(r−1)
i , w

(r−1)
ij , etc.

1. Each player Mi selects (sub)shares dij and d′
ij ∈ Zq, uniformly at random for

j = 1, . . . , n − 1, and sets din = d
(r−1)
i − ∑n−1

k=1 dik (mod q) and d′
in = d

′(r−1)
i −

∑n−1
k=1 d′

ik (mod q). Mi broadcasts witness values w
(r)
ij = gdij hd′

ij (mod p), and
hands (dij , d

′
ij) to Mj (∀j) over a secure channel.

2. Mj verifies the validity of the received shares using witness values as w
(r)
ij =

gdij hd′
ij (mod p), and ascertains whether the sub-shares in fact sum up to the

previous share of Mi by checking that
∏n

j=1 w
(r)
ij = w

(r−1)
i0 (mod p).

3. Mj computes its new additive shares as d
(r)
j =

∑n
i=1 dij (mod q) and d

′(r)
j =

∑n
i=1 d′

ij (mod q). (Note that
∑n

j=1 d
(r)
j = d − 2|N|−ldpub (mod q).)

4. Mj shares its new additive shares d
(r)
j , d

′(r)
j using Pedersen’s VSS, as in the setup

phase described in Section 3.2. In order to check if Mj is indeed sharing its new
additive share, every player checks that the witness value in this VSS instance
corresponding to the shares d

(r)
j , d

′(r)
j equals to

∏n
i=1 w

(r)
ij (mod p).

Fig. 3. Proactive Share Update

4 Security Analysis of the New Proactive RSA Scheme

Theorem 1 (Security). If there is a t-threshold proactive adversary for t <
n/2, which in time T succeeds with probability β in a chosen-message attack
against our new proactive (full domain hash) RSA signature scheme running
for up to r rounds, for any l ≤ |N | and prime q ≥ r2|N |−l+τ , then there is
a CMA attack against the standard (full domain hash) RSA signature scheme,

Further Simplifications in Proactive RSA Signatures 519

which succeeds in time T +poly(n, |N |) with probability β −2−τ given the l most
significant bits of the secret key d as an additional public input.

Proof. We show that if the adversary succeeds in staging the CMA attack on
our (Full Domain Hash) proactive RSA signature scheme in time T with prob-
ability β, then there is also an efficient CMA attack against the standard (non-
threshold) FDH-RSA signature which given the l most significant bits of d suc-
ceeds in time comparable to T by an amount polynomial in |N | and n, with
probability no worse than β − 2−τ . We show it by exhibiting a very simple
simulator, which the adversary against the standard FDH-RSA scheme can run
to interact with the proactive adversary which (T, β)-succeeds in attacking the
proactive scheme. We will argue that the statistical difference between the view
presented by this simulator on input of the public RSA parameters, l MSBs of
d, and (message,signature) pairs acquired by the CMA attacker from the CMA
signature oracle, and the adversarial view of the run of the real protocol on these
parameters, for any value of the private key d with these l most significant bits,
is at most 2−τ , which will complete the proof.

The simulator SIM is described in Figure 4. The simulation procedure is
very simple. The simulator picks a random value d̂ in Zn with the given l most-
significant bits, and runs the secret-sharing protocol in the setup stage using
this d̂. Similarly in every update, the simulator just runs the actual protocol,
but on the simulated values which we denote d̂i, d̂ij , etc. The only deviation
from the protocol is that in the simulation of the threshold signature protocol,
assuming w.l.o.g. that the Mn is an uncorrupted player, the simulator runs the
actual protocol for all uncorrupted players except of Mn, i.e. it outputs ŝj = md̂j

for each uncorrupted Mj , j �= n. The simulator then determines the α̂ value,
which is an approximation to the actual value α the adversary would see in
the protocol, by computing D =

∑n−1
j=1 d̂j , and taking α̂ = �D/q� + 1. In this

way we have D = (α̂ − 1)q + R where R = (D mod q). Finally, the simulator
computes the missing partial signature ŝn corresponding to the player Mn as
ŝn = s ∗ mα̂q/(m2|N|−ldpub

∏n−1
j=1 ŝj) (mod N). In this way, partial signatures

ŝj add up to a valid RSA signature ŝ, and value α̂ the adversary sees in the
simulation of the signature reconstruction algorithm is equal to the above α
with an overwhelmingly high probability.

For ease of the argument, assumethat the adversary corrupts players M1, ...,Mt

throughout the lifetime of the scheme. We will argue that the adversarial views
of the protocol and the simulation are indistinguishable with the statistical
difference no more than 2−τ , even if the adversary additionally sees shares
dt+1, ..., dn−1 and the shared secret key d.

Setup Procedure: Since di and d′
i in the protocol and d̂i and d̂′

i in the simula-
tion are all picked uniformly from Zq for i = 1, . . . , n − 1, the two ensembles
(d, {di, d

′
i}i=1,...,n−1) and (d, {d̂i, d̂

′
i}i=1,...,n−1) have identical distributions.

By the information theoretic secrecy of Pedersen VSS, the second-layer shares
and the associated verification values visible to the adversary are also distributed
identically in the protocol and in the simulation.

520 S. Jarecki and N. Saxena

Input: Pedersen commitment instance (p, q, g, h), RSA public parameters (N, e),
optional values l > 0 and dpub < 2l (otherwise set l = dpub = 0).
Additionally, for every simulation of the threshold signature protocol, the simulator
gets pair (m, s) s.t. s = md mod N .

Setup Procedure
Pick random d̂ ∈ Zn and proceed as in the Setup of the actual protocol:

1. Select random shares d̂j , d̂
′
j ∈ Zq, for j = 1, . . . , n − 1, and set d̂n = d̂ −

2|N|−ldpub − ∑n−1
i=1 d̂j (mod q), as in step 1 of the Setup procedure.

2. Share each d̂j and d̂′
j using the Pedersen’s VSS: Choose random polynomials

f̂j(z) = d̂j + f̂j1z+ · · ·+ f̂jtz
t and f̂ ′

j(z) = d̂′
j + f̂ ′

j1z+ · · ·+ f̂ ′
jtz

t over Zq of degree
t; compute and publish the witnesses ŵj0 = gd̂j hd̂′

j (mod p) and ŵjk = gf̂jkhf̂ ′
jk

(mod p) for k = 1, . . . , t.
3. Compute the secret shares ŝsij and ŝs′

ij as ŝsij = f̂j(i) (mod q) and ŝs′
ij = f̂ ′

j(i)
and distribute d̂i, d̂

′
i, ŝsij and ŝs′

ij (∀j) to each Mi over a secure channel.

Threshold Signature Protocol (on additional input (m, s)):

1. Generate partial signatures ŝi for i = 1, . . . , n − 1 as ŝi = md̂i (mod N).
Compute D = d̂1 + . . . + d̂n−1, and α̂ = �D/q� + 1. Compute ŝn = s ∗
mα̂q/(m2|N|−ldpub

∏n−1
j=1 ŝj) (mod N).

2. Output values ŝi on behalf of the uncorrupted players Mi.
3. If needed, execute the ZKPK proof for Mi �= Mn, and simulate it for Mn.

Proactive Update
Proceed in exactly the same manner as the Proactive Update protocol:

1. At the beginning of round r, for all uncorrupted players Mi, select (sub)shares
d̂ij and d̂′

ij uniformly in Zq for j = 1, . . . , n − 1, and set d̂in = d̂
(r−1)
i − ∑n−1

k=1 d̂ik

(mod q) and d̂′
in = d̂

′(r−1)
i −∑n−1

k=1 d̂′
ik (mod q). Broadcast witness values ŵ

(r)
ij =

gd̂ij hd̂′
ij (mod p), and hand (d̂ij , d̂

′
ij) to Mj (∀j) over a secure channel.

2. Compute Mj ’s new secret shares d̂
(r)
j =

∑n
i=1 d̂ij (mod q) and d̂

′(r)
j =

∑n
i=1 d̂′

ij

(mod q), as in the Proactive Update protocol.
3. Re-share the new additive share d̂

(r)
j , d̂

′(r)
j using Pedersen’s VSS, as in the Proac-

tive Update protocol.

Fig. 4. Simulator Construction (SIM)

Threshold Signature Protocol: Since di and d̂i, for i = 1, . . . , n − 1, have the
identical distributions, therefore distributions of the corresponding partial sig-
natures si and ŝi, are also identical. However, values sn and ŝn are the same
only in the event that value α in the protocol and value α̂ in the simulation are
the same. Recall that α̂ in the simulation is computed as α̂ = �D/q� + 1 where
D =

∑n−1
j=1 d̂j . Note that D = (α̂ − 1)q + R where R = (D mod q). By equation

(2), value α computed by the protocol would satisfy equation

Further Simplifications in Proactive RSA Signatures 521

d = 2|N |−ldpub + D + dn − αq = 2|N |−ldpub + R + dn + (α̂ − α − 1)q

because d1, ..., dn−1 are distributed identically to d̂1, ..., d̂n−1.
Since dn and R are elements in Zq for q ≥ 2|N |−l+τ+log r, and since d ∈

[2|N |−ldpub, 2|N |−ldpub + 2|N |−l], the above equation implies that there are only
two possible cases: α = α̂ − 1 and α = α̂. The first case happens if d ≥
2|N |−ldpub + R and the second if d < 2|N |−ldpub + R. However, the probabil-
ity that d < 2|N |−ldpub + R, and hence that α = α̂, is at least 1 − 2−(τ+log r)

because the probability of the other case is at most the probability that R is less
than 2|N |−l, which, given that R is a uniformly distributed element in [0, q], is
at most 2−(τ+log r).

Note that value α stays the same in all instances of the threshold signature
protocol in any given update round. Since the same holds for the α̂ value in
the simulation, the probability that the adversary’s view of all these protocol
instances is different from the view of all the simulation instances remains at
most 2−(τ+log r). In other words, the statistical difference between the adversary’s
view of the real execution and the simulation in any update round, is at most
(1/r)2−τ .

Proactive Update Protocol: Since values {di}i=1..n−1 and {d̂i}i=1..n−1 are dis-
tributed identically, the only difference in the execution and the simulation of
the update protocol can come from sharing of the dn value in the protocol and
d̂n in the simulation. However, since this sharing is a “additive” equivalent of
Pedersen VSS, and the second-layer sharing of the shares of the dn or d̂n value is
done with Pedersen VSS too, the whole protocol hides the shared value dn per-
fectly, and hence the adversarial view in the simulation of the update protocol
is identical to the adversarial view of the actual protocol.

Since the statistical difference between the protocol and the simulation is zero
in the setup stage and in any proactive update stage, and at most (1/r)2−τ in any
single update round, given r rounds the overall difference between adversarial
view of the protocol execution and its simulation is at most 2−τ , which completes
our argument.

Theorem 2 (Robustness). Under the Discrete Logarithm and Strong RSA as-
sumptions, our proactive signature scheme is robust against a t-threshold proac-
tive adversary for t < n/2.

Proof. Note that the only way robustness can be broken is if some malicious
player Mi cheats either in the proactive update protocol, by re-sharing a value
different than its proper current share di committed in Pedersen commitment
wi = gdihdi mod p, or Mi cheats in the signature protocol, by proving correct
the wrong partial signature si �= mdi mod N . Since the first type of cheating
is infeasible under the discrete logarithm assumption and the second type is
infeasible under the strong RSA assumption, the claim follows.

522 S. Jarecki and N. Saxena

4.1 Security Implications

Taking l = 0, Theorem 1 implies that the new proactive signature scheme is as
secure as the standard RSA:

Corollary 1. Under the RSA assumption in the Random Oracle Model, our
scheme is a secure t-threshold proactive signature, for l = 0 and q ≥ r2|N |+80.

On the other hand, note that the RSA adversary can always correctly guess
the most significant half of the bits of d with probability 1/(e − 1).1 Together
with theorem 1, this implies the following corollary:

Corollary 2. Under the RSA assumption (in the Random Oracle Model), the
time TPRSA to break the new proactive signature scheme for e = 2i+1, l = |N |/2
and q ≥ r2|N |/2+80, is at least TPRSA ≥ 2−iTRSA, where TRSA is the time
required to break the CMA security of the standard (FDH) RSA signature scheme
for modulus of length |N |.

For the most popular value of e = 3, this implies that if the 1024-bit modulus
RSA has a 280 security then our proactive RSA scheme running on the same
modulus for l = 512 and q ≥ r2512+80 would have at least 279 security. For e = 17
the provable security would be 276. Of course, our scheme could be executed with
slightly larger N to compensate for the 2i factor in security degradation, but with
key shares sizes still limited by q < r2|N |/2+80. The efficiency of the resulting
schemes resulting from Corollary 2 should be compared with the straightforward
settings implied by Corollary 1, where same 280 security is given by 1024 bit N
but with larger bound of r2|N |+80 on the share size q.

However, since there are no known attacks against RSA which speed up the
factorization of N when half of the most significant bits of d are revealed for
small values of e, it can be plausibly hypothesized that for small e’s, the proposed
proactive RSA scheme remains as secure as standard RSA for the same modulus
size even with half of the most significant bits of d are revealed.

Finally we remark that the security analysis of our scheme given in Theorem
1 grants the adversary the knowledge of n − 1 shares instead of just t shares
he can see in the protocol, which suggests that our security analysis can be
improved and that our scheme is possibly secure using smaller share sizes than
our analysis recommends.

5 Improved Security Analysis of Rabin’s Proactive RSA

Overview of Proactive RSA Scheme of [36]. During the setup, a trusted dealer
generates the RSA public (N, e) and private (d, p̂, q̂) key pairs. The signature

1 Note that ed = 1 (mod φ(N)) implies that d = 1/e(1 + kφ(N)) for some integer
k = 1, ..., e − 1. Therefore, since N − φ(N) <

√
N , it follows that 0 ≤ d̂k − d <

√
N

for d̂k = �1/e(1+kN)� for one of the e−1 choices of k. Thus any adversary facing the
RSA cryptosystem can with probability 1/(e − 1) guess the |N |/2 most significant
bits of d by picking the right k and computing d̂k as above.

Further Simplifications in Proactive RSA Signatures 523

key d is shared additively among the players. Each Mi gets a share di, chosen
uniformly in [−R, R] where R = nN2, and the dealer publishes public value
dpublic such that

dpublic = d −
n∑

i=1

di (over Z) (3)

This can be easily extended, so that like our new scheme, l most significant bits
of d are publicly revealed and added to the dpub value, and only the remaining
(|N | − l)-bit value d − 2|N |−ldpub is shared as above. The witness value wi = gdi

(mod N) corresponding to each di is published, where g is an element of high
order in Z

∗
n. Each share di is then itself shared using the Feldman VSS [15] over

Zn. To sign a message m, each player Mi, generates a partial signature si = mdi

(mod N). Since the signature key d is shared over integers, the RSA signature
can be easily reconstructed by simply multiplying n partial signatures, i.e.,

s = mdpublic

n∏

i=1

si (mod N)

The detection of faults during the signing process can be performed using the
protocols of [24, 19]. The secret share of the faulty player is then reconstructed by
pooling in the shares of any t + 1 players using a special variant of polynomial
interpolation (refer to [36] for details). In the share update protocol each Mi

additively re-shares its secret share di with (sub)shares dij ∈ [−R/n, R/n] and

di,public = di −
n∑

j=1

dij (over Z)

is made a public value. The new secret share for d
(r)
i of Mi is then computed as

d
(r)
i =

∑n
j=1 dji, and Mi shares it using Feldman VSS over Zn.

Improved Security Analysis and Improved Performance. First, we note that the
simulator for the setup phase presented in [36] has a small error. That simulator
for the key distribution protocol picks random shares d̂i ∈ [−R, R], for i =
1, . . . , n−1, and it picks d̂public uniformly at random in [−nR, nR+N]. However,
values generated in this way are not statistically indistinguishable from the values
in the protocol, because if the di values are chosen uniformly in [−R, R], then
by equation (3), value dpublic has a normal probability distribution, which is
immediately distinguishable from the uniform distribution of d̂public.

The corrected simulation of the key distribution (and the subsequent update
protocols) works exactly in the same manner as the actual protocol. The simula-
tor should choose some secret value d̂ ∈ [0, N −1] at random, and share this new
value in exactly the same manner as in the protocol. After r update rounds, the
overall statistical difference between the view of the adversary interacting with
the protocol and the view of the adversary interacting with the (new) simulator
is at most rN/R. This difference is negligible if R = rN2τ , where τ ≥ 80, instead
of the R = nN2 value recommended in [36].

524 S. Jarecki and N. Saxena

This shows that secret shares can be picked from range [−rN2τ , rN2τ], in-
stead of range [−nN2, nN2] of the original scheme, which means an almost factor
of 2 improvement in the share size. Since the computational cost of this scheme
is driven by cost of the exponentiation si = mdi mod N done by each player,
factor of 2 improvement in the size of di speeds the signature generation by the
same factor.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

2. F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT’00, volume 1807 of LNCS, pages 431–444, 2000.

3. F. Boudot and J. Traor. Efficient Publicly Verifiable Secret Sharing Schemes with
Fast or Delayed Recovery. In Second International Conference on Information and
Communication Security (ICICS), pages 87–102, November 1999.

4. C. Boyd. Digital multisignatures. In Cryptography and Coding, pages 241–246.
Claredon Press, May 1989.

5. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In EUROCRYPT’99, volume 1592 of LNCS, pages
107–122, 1999.

6. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO’99, volume 1666 of LNCS, pages 106–121, 1999.

7. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security
for threshold cryptosystems. In CRYPTO’99, volume 1666 of LNCS, pages 98–115,
1999.

8. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In
EUROCRYPT’98, volume 1403 of LNCS, pages 561–575, 1998.

9. R. Croft and S. Harris. Public-key cryptography and re-usable shared secrets. In
Cryptography and Coding, pages 189–201. Claredon Press, May 1989.

10. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In EUROCRYPT’00, volume 1807 of LNCS, pages 418–430, 2000.

11. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In ASIACRYPT’02, volume 2501 of LNCS,
pages 125–142. Springer, 2002.

12. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proc. 26th ACM Symp. on Theory of Computing, pages 522–533,
Montreal, Canada, 1994.

13. Y. Desmedt. Society and Group Oriented Cryptosystems. In CRYPTO ’87, number
293 in LNCS, pages 120–127, 1987.

14. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89, number
435 in LNCS, pages 307–315, 1990.

15. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Symposium on Foundations of Computer Science (FOCS), pages 427–437,
1987.

16. Y. Frankel and Y. Desmedt. Parallel reliable threshold multisignature. Technical
Report TR-92-04-02, Dept. of EE and CS, U. of Winsconsin, April 1992.

Further Simplifications in Proactive RSA Signatures 525

17. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal-resilience proac-
tive public-key cryptosystems. In 38th Symposium on Foundations of Computer
Science (FOCS), pages 384–393, 1997.

18. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In
Crypto’97, volume 1294 of LNCS, pages 440–454, 1997.

19. Y. Frankel, P. Gemmell, and M. Yung. Witness-based cryptographic program
checking and robust function sharing. In Proc. 28th ACM Symp. on Theory of
Computing, pages 499–508, Philadelphia, 1996.

20. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure distributed threshold
public key systems. In Proceedings of ESA 99, 1999.

21. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure optimal-resilience
proactive RSA. In ASIACRYPT’99, volume 1716 of LNCS, 1999.

22. Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptive security for the additive-
sharing based proactive rsa. In Public Key Cryptography 2001, volume 1992 of
LNCS, pages 240–263, 2001.

23. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Mod-
ular Polynomial Relations. In CRYPTO ’97, volume 1294 of LNCS, pages 16–30,
1997.

24. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing
of RSA Functions. In CRYPTO ’96, volume 1109 of LNCS, pages 157–172, 1996.

25. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Sig-
natures. In EUROCRYPT ’96, number 1070 in LNCS, pages 354–371, 1996.

26. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete log based cryptosystems. In EUROCRYPT’99, volume 1592 of
LNCS, pages 295–310, 1999.

27. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In ACM Conference on Computers and Com-
munication Security, pages 100–110, 1997.

28. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or
how to cope with perpetual leakage. In CRYPTO ’95, volume 963 of LNCS, pages
339–352, 1995.

29. S. Jarecki, N. Saxena, and J. H. Yi. An Attack on the Proactive RSA Signature
Scheme in the URSA Ad Hoc Network Access Control Protocol. In ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN), pages 1–9, October 2004.

30. J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing Robust and Ubiquitous
Security Support for MANET. In IEEE 9th International Conference on Network
Protocols (ICNP), pages 251–260, 2001.

31. H. Luo and S. Lu. Ubiquitous and Robust Authentication Services for Ad Hoc
Wireless Networks. Technical Report TR-200030, Dept. of Computer Science,
UCLA, 2000. Available online at http://citeseer.ist.psu.edu/luo00ubiquitous.html.

32. D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent
Zero-Knowledge. In EUROCRYPT’03, volume 2656 of LNCS, pages 140–159, 2003.

33. NIST. Digital signature standard (DSS). Technical Report 169. National Institute
for Standards and Technology, August 30, 1991.

34. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In 10th ACM
Symp. on the Princ. of Distr. Comp., pages 51–61, 1991.

35. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Crypto 91, volume 576 of LNCS, pages 129–140, 1991.

36. T. Rabin. A Simplified Approach to Threshold and Proactive RSA. In CRYPTO
’98, volume 1462 of LNCS, pages 89 – 104, 1998.

526 S. Jarecki and N. Saxena

37. N. Saxena, G. Tsudik, and J. H. Yi. Admission Control in Peer-to-Peer: Design
and Performance Evaluation. In ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN), pages 104–114, October 2003.

38. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

39. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.
40. V. Shoup. Practical Threshold Signatures. In EUROCRYPT’00, volume 1807 of

LNCS, pages 207–220, 2000.

A Zero Knowledge Proof of Partial Signature
Correctness

For the purpose of proving the correctness of partial signatures in the proposed proac-
tive RSA scheme, we apply the zero knowledge proofs for the equality of committed
numbers in two different groups and for the range of a committed number. All these
proofs are honest verifier zero-knowledge and can be converted either into standard
zero-knowledge proof either at the expense of 1-2 extra rounds using techniques of
[10, 11, 32], or into a non-interactive proof in the random oracle model using the Fiat-
Shamir heuristic. We adopt the notation of [5] for representing zero-knowledge proof
of knowledge protocols. For example, ZKPK{x : R(x)} represents a ZKPK protocol
for proving possession of a secret x which satisfies statement R(x). In the protocols to
follow, u (≥ 80) and v (≥ 40) are security parameters.

Protocol for proving the correctness of a partial signature:

ZKPK{di, d
′
i : wi0 = gdihd′

i (mod p) ∧ si = mdi (mod N) ∧ di ∈ [0, q − 1]}
The signer (or prover) Mi proves to the verifier the possession of its correct secret

share di by using the following zero-knowledge proof system. The verifier can either be
one of the players or an outsider who has inputs wi0, g, h, p, si, m, N, q. All the protocols
run in parallel, and failure of these protocols at any stage implies the failure of the
whole proof.

1. The verifier follows the setup procedure of the Damgard-Fujisaki-Okamoto com-
mitment scheme [23, 11], e.g. it picks a safe RSA modulus n and two elements G, H
in Z

∗
n whose orders are greater than 2. (We refer to [11] for the details of this com-

mitment scheme.) If N is a safe RSA modulus then set n = N , G = (G′)2 mod N ,
H = (H ′)2 mod N for random G′, H ′ ∈ Z

∗
n.

2. The prover computes the commitment C = GdiHR (mod n), where R is picked
randomly from [0, 2v(q − 1)] and uses Protocol (1) (see below), by substituting
(x, x′

1, x
′
2, g1, h1, g2, h2, n1, n2, w1, w2, b, b

′) with (di, R, d′
i, G, H, g, h, n, p, C, wi0, q−

1, 2v(q − 1)), respectively, to execute:
ZKPK{di, R, d′

i : C = GdiHR (mod n) ∧ wi0 = gdihd′
i (mod p)}.

3. The prover then uses Protocol (1) (see below), by substituting (x, x′
1, x

′
2, g1, h1, g2,

h2, n1, n2w1, w2, b, b
′) with (di, R, 0, G, H, m, m, n, N, C, si, q−1, 2v(q−1)), respec-

tively, to execute:
ZKPK{di, R : C = GdiHR (mod n) ∧ si = mdi (mod N)}.

4. The prover uses Protocol (2) (see below), by substituting (x, x′, b) with (di, R, q−
1), respectively, to execute:
ZKPK{di, R : C = GdiHR (mod n) ∧ di ∈ [0, q − 1]}

Further Simplifications in Proactive RSA Signatures 527

Protocol (1). ZKPK{x, x′
1, x

′
2 : w1 = gx

1h
x′
1

1 (mod n1) ∧ w2 = gx
2h

x′
2

2 (mod n2)}

Assumption: x, x′
2 ∈ [0, b] and x′

1 ∈ [0, b′].
This protocol is from [5], [2], and is perfectly complete, honest verifier statistical

zero-knowledge and sound under the strong RSA assumption [23] with the soundness
error 2−u+1, given than (g1, h1, n1) is an instance of the Damgard-Fujisaki-Okamoto
commitment scheme [23, 11].

1. The prover picks random r ∈ [1, . . . , 2u+vb − 1] , η1 ∈ [1, . . . , 2u+vb′ − 1], η2 ∈
[1, . . . , 2u+vb−1] and computes W1 = gr

1hη1
1 (mod n1) and W2 = gr

2hη2 (mod n2).
It then sends W1 and W2 to the verifier V .

2. The verifier selects a random c ∈ [0, . . . , 2u − 1] and sends it back to the prover.
3. The prover responds with s = r + cx (in Z), s1 = η1 + cx′

1 (in Z) and s2 = η2 + cx′
2

(in Z)
4. The verifier verifies as gs

1h
s1
1 = W1w1

c (mod n1) and gs
2h

s2
2 = W2w2

c (mod n2).

Protocol (2). ZKPK{x, x′ : C = GxHx′
(mod n) ∧ x ∈ [0, b]}

Assumption: x ∈ [0, b] and x′ ∈ [0, 2vb].
This protocol (from [2]) is an exact range proof, honest verifier statistical zero-

knowledge, complete with a probability greater than 1 − 2−v, and sound under the
strong RSA assumption given that (G, H, n) is an instance of the Damgard-Fujisaki-
Okamoto commitment scheme, similarly as in protocol (1).

1. The prover sets T = 2(u + v + 1) + |b|, X = 2T x, X ′ = 2T x′, β = 2u+v+1
√

b and
CT = GXHX′

(mod n).
2. The prover uses Protocol (3) (see below), by substituting (x, x′, com, B, γ) with

(X, X ′, CT , 2T b, 2T/2β), respectively, to execute the following (note that X ∈
[0, 2T b]):
ZKPK{X, X ′ : CT = GXHX′

(mod n) ∧ X ∈ [−2T/2β, 2T b + 2T/2β]}
Proving that X ∈ [−2T/2β, 2T b + 2T/2β] implies that x ∈ [0, b], since 2T/2β < 2T .

Protocol (3). ZKPK{x, x′ : com = GxHx′
(mod n) ∧ x ∈ [−γ, B + γ]}

Here γ = 2u+v+1
√

B.

Assumption: x ∈ [0, B] and x′ ∈ [0, 2vB].
This proof was proposed in [2] and is honest verifier statistical zero-knowledge,

complete with a probability greater than 1 − 2−v, and sound under the strong RSA
assumption just like protocol (2).

1. The prover executes ZKPK{x, x′ : com = GxHx′
(mod n)}

2. The prover sets x1 = �√x�, x2 = x − x2
1, x̂1 = �√B − x�, x̂2 = B − x − x̂2

1, and
chooses randomly r1, r2, r̂1, r̂2 in [0, 2vB], such that r1 +r2 = x′ and r̂1 + r̂2 = −x′.

3. The prover computes new commitments e1 = Gx2
1Hr1 (mod n), ê1 = Gx̂2

1H r̂1

(mod n), e2 = Gx2Hr2 (mod n), ê2 = Gx̂2H r̂2 (mod n), and sends e1 and ê1 to
the verifier.

4. The verifier computes e2 = com/e1 (mod n) and ê2 = GB/(com ∗ ê1) (mod n).

528 S. Jarecki and N. Saxena

5. The prover uses Protocol (4) (see below), by substituting (x, x′, comsq) with
(x1, r1, e1) and then with (x̂1, r̂1, ê1), to execute the following:
ZKPK{x1 : e1 = Gx2

1Hr1 (mod n)}
ZKPK{x̂1 : ê1 = Gx̂2

1H r̂1 (mod n)}
This proves that e1 and ê1 hide a square.

6. The prover uses Protocol (5) (see below), by substituting (x, x′, com2, B1) with
(x2, r2, e2, 2

√
B), respectively and then with (x̂2, r̂2, ê2, 2

√
B), respectively, to ex-

ecute the following (note that x2 and x̂2 ∈ [0, 2
√

B]):
ZKPK{x2 : e2 = Gx2Hr2 (mod n) ∧ x2 ∈ [−γ, γ]}
ZKPK{x̂2 : ê2 = Gx̂2H r̂2 (mod n) ∧ x̂2 ∈ [−γ, γ]}
This proves that e2 and ê2 hide numbers belonging to [−γ, γ].

Steps 2, 5 and 6 above, imply that x ∈ [−γ, B + γ].

Protocol (4). ZKPK{x, x′ : comsq = Gx2
Hx′

(mod n)}
This protocol first appeared in [23], generalized (and corrected) in [11] and proves

that a committed number is a square. The protocol is honest verifier statistical zero-
knowledge, perfectly complete, and sound under the strong RSA assumption just like
protocol (2).

Protocol (5). ZKPK{x, x′ : com2 = GxHx′
(mod n) ∧ x ∈ [−2u+vB1, 2u+vB1]}

Assumption: x ∈ [0, B1], and x′ ∈ [0, 2vB1].

This proof was proposed in [8], allows a prover to prove the possession of a discrete
logarithm x lying in the range [−2u+vB1, 2u+vB1] given x which belongs to a smaller
interval [0, B1]. Using the commitment scheme of [23, 11], this proof is honest verifier
statistical zero-knowledge, complete with a probability greater than 1−2−v, and sound
under the strong RSA assumption with soundness error 2−u+1.

	Introduction
	Our Computation Model and the Adversarial Model
	The New Proactive RSA Signature Scheme
	Overview of the Proposed Scheme
	Setup Procedure
	Threshold Signature Protocol
	Proactive Update Protocol

	Security Analysis of the New Proactive RSA Scheme
	Security Implications

	Improved Security Analysis of Rabin's Proactive RSA
	A

