
Chosen-Ciphertext Security of Multiple
Encryption

Yevgeniy Dodis1,� and Jonathan Katz2,��

1 Dept. of Computer Science, New York University
2 Dept. of Computer Science, University of Maryland

Abstract. Encryption of data using multiple, independent encryption
schemes (“multiple encryption”) has been suggested in a variety of con-
texts, and can be used, for example, to protect against partial key ex-
posure or cryptanalysis, or to enforce threshold access to data. Most
prior work on this subject has focused on the security of multiple en-
cryption against chosen-plaintext attacks, and has shown constructions
secure in this sense based on the chosen-plaintext security of the com-
ponent schemes. Subsequent work has sometimes assumed that these
solutions are also secure against chosen-ciphertext attacks when compo-
nent schemes with stronger security properties are used. Unfortunately,
this intuition is false for all existing multiple encryption schemes.

Here, in addition to formalizing the problem of chosen-ciphertext se-
curity for multiple encryption, we give simple, efficient, and generic con-
structions of multiple encryption schemes secure against chosen-ciphertext
attacks (based on any component schemes secure against such attacks) in
the standard model. We also give a more efficient construction from any
(hierarchical) identity-based encryption scheme secure against selective-
identity chosen plaintext attacks. Finally, we discuss a wide range of
applications for our proposed schemes.

1 Introduction

Encrypting data using multiple, independent instantiations of a basic encryp-
tion scheme (or schemes) is a simple — yet powerful — approach which can
be used both to improve security as well as to provide additional functionality
not present in any of the underlying schemes. The security implications of mul-
tiple encryption (as we refer to it here) were noted as early as Shannon [38],
who proposed using “product ciphers” to enhance the security of symmetric-
key primitives. This idea was further explored and rigorously formalized in a
number of subsequent works (e.g., [32, 21, 31]) analyzing the security of cascade
ciphers (in which a message m is encrypted via Ek1(E ′

k2
(m)), where k1, k2 are
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two independent keys and E , E ′ are symmetric-key encryption schemes) in the
symmetric-key setting. The approach can be applied to public-key encryption as
well; for example, “cascaded encryption” (which we will call sequential encryp-
tion) was advocated as part of the NESSIE recommendation [34]: “[f]or very high
level security we note that double encryption. . . gives a good range of security”.

Multiple encryption, of which sequential encryption is but one example, of-
fers at least two potential security advantages: First, the resulting scheme may
be secure as long as any one of the component schemes is secure (indeed, se-
quential encryption is secure against chosen-plaintext attacks as long as either of
the component schemes are). Thus, multiple encryption offers a way to “hedge
one’s bets” about the security of any particular scheme (see also the recent work
of Herzberg [28]). This is especially important when the security of different
schemes depends upon different, and incomparable, cryptographic assumptions.
A second potential advantage of multiple encryption is that the resulting encryp-
tion scheme may in fact be more secure than any of the component schemes;
this is the rationale, for example, behind using triple-DES (see also [1]).

Beyond the security-oriented advantages listed above, multiple encryption
schemes potentially offer functionality not present in any of the component
schemes. We briefly highlight two applications of multiple encryption, and defer
a more detailed discussion of these and other applications to Section 6:

Threshold Encryption. In a threshold encryption scheme [16], the data is en-
crypted in such a way that only particular sets of users can recover it; typically,
a scheme requires any t-out-of-n users in order to decrypt, but more general
access structures can also be considered. Multiple encryption gives generic con-
structions of threshold encryption in either the private- or public-key settings.
For example, to enforce n-out-of-n decryption in the private-key setting, one
may provide each user i with an independent key ki and encrypt a message
M via E1

k1
(M1), . . . , E i

ki
(Mi), where the Mi are chosen at random subject to

⊕n
i=1Mi = M (and the E i may, in general, be different schemes). Let J (with
|J | < n) represent the set of corrupted players; i.e., if j ∈ J then the adversary
has the key kj . The above scheme, which we will refer to as parallel encryp-
tion, informally satisfies the following level of security against chosen-plaintext
attacks: as long as any encryption scheme E i with i �∈ J is secure, the message
remains secret. Thus, in addition to enabling threshold access to the data, this
scheme also allows one again to “hedge one’s bets” about the security of any
particular scheme (as in the case of sequential encryption, discussed earlier).

(Strong) Key-Insulated Encryption. Multiple encryption has also been used
to give a generic construction of a key-insulated public-key encryption scheme
secure against chosen-plaintext attacks [20]. Without going into the full details —
and omitting some details unimportant for the present discussion — in this case a
message M is encrypted by first splitting the message into shares M1, . . . , Mi and
then encrypting each share Mi with respect to a particular public key PKi. (This
general technique is similar to the parallel encryption discussed above; indeed,
parallel encryption is obtained if the shares constitute an n-out-of-n sharing
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of M .) If the message is “split” a second time (before the sharing described
above), and one of these shares is encrypted with a public key whose secret key
is known only to the user, it is possible to obtain a generic construction of strong
key-insulated encryption [20].

Other Applications. We remark that multiple encryption is applicable to many
other domains as well, including anonymous routing [14, 26], broadcast encryp-
tion [22], proxy encryption (see [19]), and certificate-based encryption [24]. We
defer a more detailed discussion to Section 6.

1.1 Motivation for Our Work

Chosen-ciphertext security (“CCA security”) is as much of a concern in each
of the above settings as it is in the case of standard encryption. One might
hope to achieve CCA security for any of the above settings by simply “plugging
in” an appropriate CCA-secure multiple encryption scheme. However (with one
recent exception; see below), we are unaware of any previous work which con-
siders chosen-ciphertext security for multiple encryption. To be clear: there has
been much work aimed at giving solutions for specific applications using spe-
cific number-theoretic assumptions: for example, in the context of CCA-secure
threshold encryption [40, 13, 30], broadcast encryption [20], and key-insulated
encryption [18]. However, this type of approach suffers from at least two draw-
backs: first, it does not provide generic solutions, but instead only provides
solutions based on very specific assumptions. Second, the derived solutions are
application-dependent, and must be constantly “re-invented” and modified each
time one wants to apply the techniques to a new domain. Although solutions
based on specific assumptions are often more efficient than generic solutions, it is
important to at least be aware that a generic solution exists so that its efficiency
can be directly compared with a solution based on specific assumptions. Indeed,
we argue in Section 6 that for some applications, a generic solution may be
roughly as efficient as (or may offer reasonable efficiency tradeoffs as compared
to) the best currently-known solutions based on specific assumptions.

Making the problem even more acute is that currently-known schemes for
multiple encryption are demonstrably insecure against chosen-ciphertext attacks
(this holds even with respect to the weakest definition considered here; see Sec-
tion 3.1). Zhang, et al. [41] have also recently noticed this problem, and appear
to be the first to have considered chosen-ciphertext security for multiple encryp-
tion. We compare our work to theirs in the following section.

1.2 Our Contributions

Our results may be summarized as follows:

Definitions of Security. We provide formal definitions of chosen-ciphertext
security for multiple encryption. Interestingly, multiple definitions make sense
in this context, and we introduce three such definitions and briefly comment on
the relationships between them. We also which of these definitions is the “right”
one for a number of different applications.
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CCA-Secure Multiple Encryption. We show two constructions of CCA-
secure multiple encryption schemes which are generic (i.e., they may be con-
structed based on any CCA-secure standard encryption scheme) and are proven
secure in the standard model. Our first construction achieves a “basic” level of se-
curity which suffices for many (but not all!) applications of multiple encryption.
Our second construction satisfies the strongest notion of security proposed here,
and suffices for all applications we consider. We also show a more efficient con-
struction based on any (hierarchical) identity-based encryption scheme secure
against selective-identity chosen plaintext attacks.

Applications. As mentioned earlier, our work was motivated by the applications
of CCA-secure multiple encryption to a variety of settings; we therefore conclude
the paper by sketching a number of applications of the constructions given here.
Our resulting schemes are, for most cases, the first known generic constructions
achieving CCA security in the given setting. Furthermore, in some cases the
solutions we give are roughly as efficient as (or even more efficient than) previous
solutions which were based on very specific assumptions. As one example, we
show a CCA-secure threshold encryption scheme with completely non-interactive
decryption (and a proof of security in the standard model); for the two-party
case, our solution is roughly as efficient as the only previous solution [30].

Comparison to Previous Work. Our definitions differ from those given by
Zhang, et al. [41], and the definitions given in their work are weaker than those
given here. In fact, the best construction given by Zhang, et al. only satisfies
the weakest of our definitions; therefore, their constructions are not sufficient
for certain applications such as threshold encryption. (Indeed, they concentrate
primarily on the application to key-insulated encryption, while we consider a
much wider range of applications.) Finally, their constructions require the ran-
dom oracle model whereas our results all hold in the standard model.

2 Preliminaries

We begin by introducing some notation. A (standard) public-key encryption
scheme E = (Gen, Enc, Dec) consists of three ppt algorithms: the key-generation
algorithm Gen takes as input security parameter 1k and outputs a encryption
key EK and a decryption key DK. The randomized encryption algorithm Enc
takes as input EK, a label �, and a message m, and outputs a ciphertext C; for
brevity, we sometimes omit EK and write this as C ← Enc�(m). The decryption
algorithm Dec takes as input DK, a ciphertext C, and a label �; it outputs a
message m, or ⊥ if C is “invalid”. We write this as m ← Dec�(C) (where we
again sometimes omit DK). We assume Dec�(Enc�(m)) = m for any message m
and label �. Security for encryption is defined following [3, 39]. In particular, we
use “CPA-secure” to refer to what is called IND-CPA security in [3], and “CCA-
secure” to refer to what is called IND-CCA2 in [3] (modified to take labels into
account as in [39]).
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A signature scheme Σ = (Sig-Gen, Sig, Ver) consists of three ppt algorithms:
the key-generation algorithm Sig-Gen takes as input a security parameter 1k and
outputs a signing key SK and a verification key VK. The signing algorithm Sig
takes as input SK and a message m, and outputs a signature σ; we will sometimes
omit SK and write σ ← Sig(m). The verification algorithm Ver takes as input
VK, a message m, and a signature σ; it outputs 1 iff the signature is valid. We
write this as a ← Ver(m, σ) (again, sometimes omitting VK). We require that
Ver(m, Sig(m)) = 1, for all m.

Unless specified otherwise, the notion of security we consider for signature
schemes is that of strong unforgeability under adaptive chosen-message attacks,
following [27, 4]. We also use the notion of one-time signature schemes which sat-
isfy an analogous definition of security except that an adversary is only allowed
to request a signature on a single message.

Secret Sharing Schemes. A secret sharing scheme is a pair of transforma-
tions SSS = (Share, Rec).1 Share(·) is a probabilistic transformation which takes
a message M and outputs n secret shares s1, . . . , sn and possibly one public
share pub. Rec is a deterministic transformation which takes n shares s′

1, . . . , s
′
n

(some of which might be ⊥) and (if present) the public share pub, and out-
puts some message M ′ (possibly ⊥). The basic correctness property states that
Rec(Share(M)) = M . Security may be quantified by the following thresholds:

– tp — the privacy threshold. Determines the maximum number of shares
which (together with pub) reveal “no information” about the message.

– tf — the fault-tolerance threshold. Determines the minimum number of cor-
rect shares which (together with pub) suffice to recover the message, when
the other shares are missing.

– tr — the robustness threshold. Determines the minimum number of correct
shares which (together with pub) suffice to recover the message, when the
other shares are adversarially set.

– ts — the soundness threshold. Determines the minimum number of correct
shares which (together with pub) ensure that it is impossible to recover an
incorrect message M ′ �∈ {M,⊥}, when the other shares are adversarially set.

The above must satisfy tp + 1 ≤ tf ≤ tr ≤ n and ts ≤ tr. The security prop-
erties corresponding to the thresholds above can all be formalized in a straight-
forward way, so we omit them. In a basic secret sharing scheme, only privacy
and fault-tolerance are addressed. This is useful when all the parties holding the
corresponding shares are trustworthy, but some shares may have been leaked to
an adversary and/or some parties may be (temporarily) unavailable. Shamir’s
scheme [37] is the classical example; this scheme achieves information-theoretic
privacy, has no public share, and achieves tf = tp + 1 and |M | = |si|. General-
izing this idea [23], one can achieve arbitrary tf > tp. Krawczyk [29] extended
Shamir’s scheme to the computational setting by using the scheme to share a

1 Sometimes, we may also have a setup procedure which prepares public parameters.
For simplicity, we omit this from our description.



Chosen-Ciphertext Security of Multiple Encryption 193

short symmetric key k, and then encrypting the message M using k. The result-
ing ciphertext can either be stored publicly, or shared among the servers using an
information dispersal scheme [35] (i.e., a secret sharing scheme which achieves
fault-tolerance and/or robustness, but has tp = 0). In fact, this approach can be
applied to any information-theoretic secret sharing scheme to obtain a computa-
tional scheme with share size proportional to the security parameter and public
part proportional to the message length. When fault-tolerance is not needed,
one can also use computational all-or-nothing transforms (AONTs) [36, 11] to
achieve extremely short shares.

Sometimes, basic secret sharing schemes already enjoy certain robustness
properties. For example, Shamir’s scheme achieves tr = (n + tf )/2. Moreover,
there are several simple methodstotransformany(tp, tf , n)-secret sharing scheme
into a robust (tp, tf , tr, ts, n)-secret sharing scheme (in a computational sense),
achieving optimal values ts = 0 and tr = tf . We describe two such methods now.
In both methods, the dealer first computes the regular sharing (s1, . . . , sn, pub)
of M . In the first method, the dealer then generates signing/verification keys
(SK, VK) for a signature scheme, and sets s′

i = (si, SigSK(i, si)), pub′ = (pub, VK).
To reconstruct, users apply the original reconstruction algorithm only to shares
whose signatures are correct. In the second method, the dealer uses a com-
mitment scheme to commit to (i, si); let ci (resp., di) be the corresponding
commitment (resp., decommitment). The dealer then sets s′

i = (si, di), pub′ =
(pub, c1, . . . , cn). As before, users will only use those shares whose proper decom-
mitment is revealed. In this second method the size of the public information is
O(n), but using, e.g., Merkle trees this storage can be reduced considerably at
the expense of slightly increasing the share size.

3 Multiple Encryption

We now define a multiple encryption scheme.

Definition 1. A (non-interactive) public-key multiple encryption scheme is a
tuple of ppt algorithms T E = (TGen, TEnc, Split, TDec, Combine) such that:

– TGen, the key generation algorithm, is a probabilistic algorithm which takes
as input a security parameter 1k and outputs a public key TEK along with n
secret keys TDK = (TDK1, . . . ,TDKn).

– TEnc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key TEK, a message M , and a label L. It outputs a ciphertext
C ← TEncL(M).

– Split, the splitting algorithm, is a deterministic algorithm which takes as
input a public key TEK, a ciphertext C and a label L. It either outputs ⊥,
or n ciphertext shares C = (C1, . . . , Cn) and some auxiliary info aux.

– TDec, the partial decryption algorithm, takes as input i ∈ {1, . . . , n}, a se-
cret key TDKi, and a ciphertext share Ci; it outputs the message share Mi
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or the distinguished symbol ⊥. We denote the output of this algorithm by
TDeci(Ci). We also let DEC(C, aux) def= (TDec1(C1), . . . ,TDecn(Cn), aux).

– Combine, the combining algorithm, takes as input shares M = (M1, . . . , Mn)
and the auxiliary info aux, and outputs a message M or ⊥.
Correctness (refined later) requires that for all TEK,TDK output by TGen, all

messages M and labels L, we have: Combine(DEC(SplitL(TEncL(M)))) = M .

Before discussing security, a few remarks are in place. It is important to rec-
ognize that multiple encryption might be used in a number of different scenarios.
In one scenario, the set of decryption keys TDK (or some subset of these keys)
are co-located, so a single user receiving a ciphertext C would perform the split-
ting, partial decryption, and combining by itself. In another scenario, there are
a set of n servers and server i stores TDKi. Here, a user receiving a ciphertext C
would perform the splitting himself to obtain C, aux, would keep aux, and would
send the ciphertext share Ci to server i for decryption. Server i would respond
with Mi and the various message shares would be combined by the user to re-
cover the original message. These different ways of thinking about the decryption
process are each appropriate for different applications of multiple encryption.

When decryption keys TDKi are stored at different locations (i.e., on different
servers), the above definition implies that servers do not communicate with each
other and do not keep any intermediate state. Also, we remark that we could have
ignored the splitting algorithm altogether and simply have TDKi operate on the
entire ciphertext C (performing any splitting itself, as necessary). The reason for
not doing so is that C might contain information which is not “relevant” to server
i, and thus sending the entire ciphertext to each server might be wasteful. In
fact, our solutions achieve

∑
|Ci| = O(|C|), so the total communication between

the user and all servers is proportional to the size of the original ciphertext.
In either of the above scenarios (i.e., whether the decryption keys are co-

located or stored at different servers), it is possible for some of the decryption
keys to be compromised by an adversary. This raises the first security issue, which
is that of message privacy. When keys are stored on separate servers, there is
also the possibility that some servers may be compromised in their entirety; this
raises the additional issue of decryption robustness. Since the security issues in
the latter case are stronger than those in the former case, for the remainder of this
section we will speak in terms of a central user running the splitting/combining
algorithm and n servers performing the partial decryption of each share.

Message Privacy. We assume that the adversary may learn tp < n decryption
keys, where tp is the privacy threshold. Formally, given a set I =

{
i1, . . . , itp

}
, an

adversary is given a randomly-generated public key TEK, the set of secret keys
TDKI =

{
TDKi1 , . . . ,TDKitp

}
, and oracle access to some oracle O whose mean-

ing will be clarified shortly. B outputs two messages M0, M1 (along with some la-
bel L), and receives a challenge ciphertext C ← TEnc(Mb) for a randomly-chosen
b. The adversary succeeds if it correctly guesses b, and the adversary’s advantage
is defined as the absolute value of the difference between its success probability
and 1/2. If the oracle O is “empty”, we say that B is performing a (multiple)
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chosen-plaintext attack (MCPA). As for the (multiple) chosen-ciphertext attack,
there are several meaningful flavors described below in the order of increasing
adversarial power.

In the weakest such attack, denoted wMCCA (“weak MCCA”), we have O =
Combine(DEC(Split(·)(·))) (where the adversary is prohibited from submitting
(C, L) to this oracle). Namely, B only gets access to the entire decryption pro-
cess without seeing any partial decryption results and without being able to ask
questions to the decryption servers directly. While this notion already suffices for
some applications, it assumes that the adversary can never see the intermediate
decryption shares. In a (regular) MCCA attack, we let O = DEC(Split(·)(·)) (as
before, we forbid the adversary from submitting (C, L) to this oracle). Namely,
we still assume that the ciphertext gets passed through a proper splitting pro-
cedure but B also learns the intermediate decryption results M1, . . . , Mn. As we
shall see, this attack is sufficient for most applications of multiple encryption.

However, sometimes we need to consider an even stronger attack denoted
sMCCA (for “strong MCCA”), where we have O = TDec(·)(·). Namely, we allow
B to ask arbitrary and questions to the individual decryption servers. Of course,
to make sense of this attack, we need to add some restrictions. First and most
obvious, for a challenge ciphertext C (with label L) we disallow questions (i, Ci),
where Ci is the ciphertext share for server i that results from “splitting” C
using label L. Second and less obvious, we assume (for all i) that the mapping
Spliti from (C, L) to Ci is weakly collision-resistant. This means that no ppt
adversary A can succeed with non-negligible probability in the following game:
A(TDK) supplies some pair (M, L) to the encryption oracle, and gets back a
ciphertext C ← TEncL(M). A succeeds if it can output a pair (C ′, L′) �= (C, L)
and an index i such that Spliti(C, L) = Spliti(C ′, L′). Indeed, without this latter
condition it seems unnecessarily restrictive to prohibit the adversary B in the
sMCCA game from asking questions (i, Ci = Spliti(C, L)). This is because there
is a chance such a question might have “legally” come from a different ciphertext
(C ′, L′) �= (C, L). We further observe that when the Split procedure does satisfy
this condition, the sMCCA attack is at least as strong as the MCCA attack,2

and it is easy to see that this conclusion does not hold without weak collision
resistance. Therefore, we will insist on weak collision-resistance when talking
about sMCCA attacks.

Definition 2. Let X ∈ {MCPA, wMCCA, MCCA, sMCCA}. We say multiple en-
cryption scheme T E is X-secure with privacy threshold tp, if the advantage
of any ppt adversary B performing attack X with any set I of size tp is
negligible.

Decryption Robustness. The correctness property of Definition 1 only ensures
correct decryption when all algorithms are honestly and correctly executed. Just
as in the case of secret sharing, however, one may often desire fault-tolerance,

2 This is so since one can simulate (with all but negligible probability) any “allowed”
call to DEC(Split(·)(·)) by n “allowed” calls to TDec(·)(·).
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robustness, and/or soundness. As in the case of secret sharing, these are pa-
rameterized by thresholds tf , tr, ts, whose meaning is completely analogous to
their meaning in the case of secret sharing (described earlier). Our solutions
can achieve optimal ts = 0, tr = tf , and any tp < tf .

3.1 Insecurity of Known Multiple Encryption Schemes

It is instructive to note that known constructions of multiple encryption schemes
(even when instantiated with a CCA-secure standard encryption scheme) are
insecure under the weakest definition of chosen-ciphertext security considered
above. We briefly illustrate this for the simplest case of n = 2.

In sequential encryption, M is encrypted via C ← EncEK1(EncEK2(M)). An
adversary, when given the decryption key DK1 and a challenge ciphertext C, can
break the encryption scheme as follows: decrypt C using DK1 to obtain C ′ ∈
EncEK2(M) and then re-encrypt C ′ using EK1; this results in a second, different
ciphertext C̃. Now, by submitting C̃ to its decryption oracle, the adversary will
receive in return the original message M .

Attacks are also possible for the case of parallel encryption. Here, a message
M is encrypted as C = 〈C1, C2〉, where C1 ← EncEK1(s1), C2 ← EncEK2(s2),
and s1 and s2 are chosen at random subject to s1⊕ s2 = M . Now, even without
being given any decryption keys, an adversary given a challenge ciphertext C can
compute C̃1 ← EncEK1(0) and C̃2 ← EncEK2(0), and then submit the ciphertexts
〈C̃1, C2〉 and 〈C1, C̃2〉. Note that the adversary thus obtains both s1 and s2
separately, from which it can recover the original message M = s1 ⊕ s2.

4 Generic Constructions

In this section we describe how to build MCCA- and sMCCA-secure multiple en-
cryption schemes from any (standard) CCA-secure encryption scheme E . In our
schemes, the decryption keys will simply be decryption keys DKi independently-
generated by E , and partial decryption will essentially require only a single de-
cryption with this key. Our results achieve: (1) ciphertext length linear in the
length of the plaintext message; (2) communication with each server independent
of the number of servers and the length of the message. We also stress that when
the decryption keys are held by several servers, no interaction between servers
is required. A drawback is that the ciphertext and public-key lengths in our so-
lutions are proportional to the number of decryption keys n (of course, for small
n, such as the important case of n = 2, this is not a problem). We believe that
this dependence in unavoidable if we are not willing to assume any algebraic
structure on E . Indeed, in the following section we show how this dependence
can be avoided when starting from (hierarchical) identity-based encryption.

For the remainder of this section, let SSS = (Share, Rec) be a (tp, tf , tr, ts, n)-
secret sharing scheme. All multiple encryption schemes we construct will inherent
the same thresholds tp, tf , tr, ts, which elegantly allows us to push all the privacy
and robustness constraints onto the much simpler secret sharing primitive.
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4.1 Achieving Chosen-Ciphertext Security

Recall that in parallel encryption the message M is first shared using SSS,
and then each share is separately encrypted using an independent key. As noted
earlier, this folklore scheme is not secure against chosen-ciphertext attacks (even
against a weak MCCA attack and with no corrupted keys). We show a simple and
elegant way to extend parallel encryption so as to solve this problem, without
introducing much extra complexity. In brief, we use a secure one-time signature
scheme Σ = (Sig-Gen, Sig, Ver) to bind all the local ciphertexts to each other
(and to the label L). The main twist which makes this work is that we also bind
the verification key of Σ to each of the ciphertexts.

Before giving the formal description of our solution, we illustrate our con-
struction for the case n = 2 (with tf = tr = ts = 2, tp = 1, and no labels). The
public key consists of two independently-generated keys EK1, EK2, and the secret
key contains the corresponding decryption keys DK1, DK2. Let Enc1

def= EncEK1

and similarly for Enc2. To encrypt M , a sender first “splits” M by choosing
random s1 and setting s2 = M ⊕ s1. The sender then generates a key pair
(VK, SK) for a one-time signature scheme, and computes C1 ← EncVK

1 (s1) and
C2 ← EncVK

2 (s2). Finally, the sender computes σ = SigSK(C1, C2); the complete
ciphertext is 〈VK, C1, C2, σ〉. Decryption is done in the obvious way: if σ is not
a valid signature on C1, C2 with respect to VK, the ciphertext is invalid. Other-
wise, DK1 and DK2 are used to obtain s1 and s2 from which the original message
M = s1 ⊕ s2 can be recovered.

We now generalize this solution to arbitrary n and using an arbitrary secret
sharing scheme SSS = (Share, Rec).

– TGen(1k): For i = 1, . . . , n, let (EKi, DKi) ← Gen(1k) and set TEK =
(EK1, . . . ,EKn), TDKi = DKi, so that TDK = (DK1, . . . ,DKn). Below, let
Enci

def= EncEKi and Deci
def= DecDKi .

– TEncL(M): Let (s1, . . . , sn, pub)← Share(M), and (VK, SK)← Sig-Gen(1k).
Set Ci = EncVK

i (si) (for i = 1, . . . , n) and then compute the signature σ =
SigSK(C1, . . . , Cn, pub, L). Output C = (C1, . . . , Cn, pub, VK, σ).

– SplitL(C): Parse C as (C1, . . . , Cn, pub, VK, σ), and reject if verification fails;
i.e., if VerVK((C1, . . . , Cn, pub, L), σ) = 0. Otherwise, set ciphertext share
Ĉi = (Ci, VK) and aux = pub.

– TDeci(Ci, VK): Output s′
i = DecVK

i (Ci).
– Combine(s′

1, . . . , s
′
n, pub): Output Rec(s′

1, . . . s
′
n, pub).

As with the folklore scheme, each decryption server simply performs a single
regular (now CCA-secure) decryption, but here using a label which is the veri-
fication key of a one-time signature scheme (and which is used to bind all the
ciphertexts together). We claim:

Theorem 1. If E is CCA-secure, SSS is a (tp, tf , tr, ts, n)-secret sharing
scheme, and Σ is a secure one-time signature scheme, then T E is MCCA-secure
with thresholds tp, tf , tr, ts.
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Proof. Robustness thresholds tf , tr, ts follow immediately from those of the se-
cret sharing scheme, due to the definition of Combine = Rec. We now argue
message privacy.

Assume there exists some ppt adversary B attacking MCCA-security who
has some non-negligible advantage. Recall, this B has oracle access to O(·, ·) =
DEC(Split(·)(·)), chooses some messages M0, M1 and a label L, gets an unknown
ciphertext C = (C1, . . . , Cn, pub, VK, σ), and tries to guess whether this corre-
sponds to the encryption of M0 or M1 (with label L). Let X denote the event
that B asks O a query (C ′, L′) �= (C, L), where C ′ includes the same verification
key VK′ = VK as the challenge, but σ′ is a new, valid signature (with respect
to VK) of the corresponding “message” (C ′

1, . . . , C
′
n, pub′, L′). It is immediate

that Pr[X] = negl(k), or else an easy argument (omitted) shows that we can use
B to construct a ppt adversary breaking the security of the one-time signature
scheme Σ with non-negligible advantage.

We can therefore construct an adversary B′ who never makes a query to O
using the same verification key as in the challenge ciphertext, yet whose advan-
tage is negligibly close to the advantage of B. Let ε0 denote the advantage of
B′, and assume w.l.o.g. that B′ corrupts servers {n− tp + 1, . . . , n}. We refer to
this game involving B′ as G0, and now gradually change this game into games
G1, . . . , Gn−tp . In general, Gi is identical to G0, except for one step in the com-
putation of the challenge ciphertext C. Recall, in G0 we have Cj ← EncVK

j (sj),
where sj is the j-th share of the secret sharing scheme. In game Gi we instead
do this only for j > i, but set Ci ← EncL

i (0) for j ≤ i (where 0 is some arbitrary
fixed message in our space). In other words, Gi−1 and Gi are identical except
Gi−1 sets Ci ← EncVK

i (si), while Gi sets Ci ← EncVK
i (0) Denote by εi the advan-

tage of B′ in predicting the challenge bit b in game Gi. We claim that for every
1 ≤ i ≤ n− tp we have |εi − εi−1| = negl(k).

To show the claim, using B′ we construct an adversary Ai who succeeds
in breaking CCA-security of E with advantage δi = 1

2 |εi−1 − εi|. Since E is
assumed to be CCA-secure, the claim follows. Ai gets an encryption key EK
for E , sets EKi = EK, and generates the remaining (n − 1) public/secret keys
by himself. These public keys, as well as the last tp secret keys, are given to
B′. Adversary Ai then honestly simulates the run of Gi−1/Gi until B′ submits
the challenge (M0, M1, L). At this point, Ai chooses a random bit b, generates
(SK, VK), computes the shares (s1, . . . , sn, pub) ← Share(Mb), and prepares Cj

for j �= i just as in Gi−1 and Gi. Furthermore,A′ outputs the challenge (si, 0, VK)
in its own CCA game. Upon receiving the challenge ciphertext C, it sets Ci = C,
signs whatever is needed, and passes the resulting challenge ciphertext to B′.
It only remains to specify how Ai deals with oracle queries of B′. Notice that
Ai can decrypt all ciphertexts C ′

j for j �= i by himself, since the appropriate
decryption keys are known. As for C ′

i, since (by construction) B′ does not reuse
the challenge value VK, this means thatAi can always submit C ′

i to its decryption
oracle using the label VK′ �= VK. Finally, Ai outputs 1 iff B′ correctly predicts
b. This completes the description of Ai, and it is not hard to see that Ai gives a
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perfect simulation of either game Gi−1 or Gi depending on which of si or 0 was
encrypted. The claim regarding |εi−1 − εi| follows easily.

Now, since (n− tp) is polynomial in k and ε0 is assumed to be non-negligible,
we get that εn−tp is non-negligible as well. But let us now examine the game
Gn−tp

more closely. When encrypting the challenge Mb, only t = tp shares (and
the value pub) are used in creating the ciphertext. But then the privacy of the
secret sharing scheme implies that εn−tp

must be negligible, a contradiction.
(This is not hard to see, and we omit the obvious details.)

Replacing Signatures with MACs. At the expense of settling for (weaker)
wMCCA-security, we can use the recent technique of Boneh and Katz [10] to
replace the one-time signature scheme by the more efficient combination of a
message authentication code (MAC) and a weak form of commitment. The idea
is to commit to a MAC key τ , then encrypt both the message M and the de-
commitment d using the secret sharing technique above, but with the public
verification key VK replaced by the commitment c. Finally, τ is used to compute
a message authentication code on the entire resulting ciphertext. In brief, the
reason this only yields wMCCA-security is that the message authentication code
computed over the ciphertext (as opposed to the one-time signature computed
above) can only be verified after all the shares are collected. More details are
given in Appendix A.

4.2 Achieving Strong Chosen-Ciphertext Security

The scheme above does not enjoy sMCCA-security since, in particular, the map-
ping Spliti from (C, L) to Ci is not weakly collision-resistant; indeed, it ignores
all ciphertexts other than Ci. A natural first thought is to simply append a hash
α of the entire ciphertext C to each of the local decryption shares Ci (and let
each server simply ignore α). While this may make each Spliti weakly collision-
resistant, it will not achieve sMCCA-security: Since the servers ignore α anyway,
the adversary can simply replace α by “garbage” while keeping the rest of the
Ci the same; this will result in a “valid” decryption request to each server, but
will result in a proper decryption of Ci to the adversary.

A natural way to fix this is to let each server check the hash α by sending
to the server the entire ciphertext C. In fact, if we are willing to send the entire
ciphertext to each server, we no longer need α: each server can just perform the
corresponding splitting procedure on C by itself. In fact, doing so will trivially
give sMCCA-security. However, sending all of C (and having each server perform
the splitting procedure) may be wasteful in some scenarios; it therefore remains
interesting to explore improved solutions with lower user-server communication
and in which more of the work is shifted to the user rather than the servers.

For the case of the particular MCCA-secure scheme T Ecca of the previous
section, sMCCA-security can be achieved at a very small additional cost. Let
H = {H} be a family of collision-resistant hash functions. We now describe the
modified scheme T Escca.



200 Y. Dodis and J. Katz

– TGen(1k). Sample H ← H and for i = 1, . . . , n, let (EKi, DKi) ← Gen(1k).
Set TEK = (EK1, . . . ,EKn, H), TDKi = DKi. Below, denote Enci = EncEKi

,
Deci = DecDKi

.
– TEncL(M). Let (s1, . . . , sn, pub)← Share(M), and (VK, SK)← Sig-Gen(1k).

Set Ci = EncVK
i (si) for i = 1, . . . , n; then compute α = H(C1, . . . , Cn, pub, L)

and σ = SigSK(α). Output C = (C1, . . . , Cn, pub, VK, σ).
– SplitL(C). Parse C = (C1, . . . , Cn, pub, VK, σ), set α = H(C1, . . . , Cn, pub, L),

and reject if VerVK(α, σ) = 0. Otherwise, set the ciphertext share to be
Ĉi = (Ci, VK, α, σ) and set aux = pub.

– TDeci(Ci, VK, α, σ). Output DecVK
i (Ci) if VerVK(α, σ) = 1, and ⊥ otherwise.

– Combine(s′
1, . . . , s

′
n, pub). Output Rec(s′

1, . . . s
′
n, pub).

Thus, the only effective change is to force each server to verify a signature
(of a one-time signature scheme) before performing the decryption. The cost of
this will typically be small compared to the cost of decryption.

We now consider the security of the above. On an intuitive level, when an
adversary makes a decryption query, either: (1) the adversary reuses a previ-
ous VK, which implies that it uses a previous α (due to unforgeability of the
signature scheme), which in turn implies that the query is illegal (since H is
collision-resistant); or (2) the adversary uses a new VK, in which case the chosen-
ciphertext security of the underlying encryption schemes (which use VK as a la-
bel) implies that the resulting ciphertexts are unrelated to the challenge. Notice,
there is no need for the server to check that α is the correct hash; having a valid
signature of α implicitly assures the server that either this decryption query is
unrelated to the challenge, or α is indeed correct due to the unforgeability of
the one-time signature scheme. Notice also that once again the communication
between the user and each server is independent of n. The above intuition can
in fact be used to prove the following theorem:

Theorem 2. If E is CCA-secure, SSS is a (tp, tf , tr, ts, n)-secret sharing scheme,
Σ is a secure one-time signature scheme, and H is collision-resistant, then
T Escca is sMCCA-secure with thresholds tp, tf , tr, ts.

Proof. As before, robustness thresholds tf , tr, ts follow immediately from those of
the secret sharing scheme since Combine = Rec. We now argue message privacy.
Here we need to argue two things: indistinguishability of the scheme against
sMCCA attack and weak collision resistance of the splitting procedure.

We start with the second part. Take any adversary A attacking weak collision
resistance of T Escca. A gets the entire secret key TDK, produces a pair (M,L),
gets C ← TEncL(M), and outputs (C ′, L′) �= (C, L) and an index i. If it is the
case that Spliti(C, L) = Spliti(C ′, L′) then (by definition of Split) this means
that (Ci, VK, α, σ) = (C ′

i, VK′, α′, σ′). But then H(C1 . . . Cn, pub, L) = α = α′ =
H(C ′

1 . . . C ′
n, pub′, L′) and this violates collision-resistance of H.

Next, we show security against sMCCA attack. Assume there exists some ad-
versary B attacking sMCCA-security who has some non-negligible advantage. Re-
call,B has oracle access toO(·, ·) = TDec(·)(·), chooses some messages M0, M1 and
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a label L, gets a challenge ciphertext C = (C1, . . . , Cn, pub, VK, σ), and tries to
predict whether this ciphertext corresponds to an encryption of M0 or of M1 (with
label L). Let X denote the event that B asks O a query (i, (C ′

i, VK, α′, σ′)), where
VK is the same verification key as the one used in the challenge ciphertext but σ′ is
a new, valid signature with respect to VK of the corresponding message α′. Namely,
σ′ is a valid signature of α′, but (α′, σ′) �= (α, σ). Clearly, Pr(X) = negl(k) or oth-
erwise B can be used to break the security of the one-time signature scheme Σ.

We thus assume that X never occurs in the run of B, yet B still has non-
negligible advantage. Since B is forbidden to ask any challenge query of the form
(i, (Ci, VK, α, σ)), this means that every query (i, (C ′

i, VK′, α′, σ′)) that B makes
satisfies one of three conditions: (1) VerVK′(α′, σ) = 0, in which case the response
is automatically ⊥ (and so we can assume that B never makes such a query);
(2) (VK′, α′, σ′) = (VK, α, σ), but C ′

i �= Ci (recall, we proved that VK′ = VK
implies (α′, σ′) = (α, σ), so the only way for this query to be legal while keeping
VK′ = VK is to have C ′

i �= Ci); (3) VK′ �= VK. Since we excluded queries of
type (1), we combine cases (2) and (3) to conclude that every query of B must
have (C ′

i, VK′) �= (Ci, VK).
Given this observation, the rest of the proof is almost identical to the proof

of Theorem 1 (with obvious syntactic modifications). Namely, we create hybrid
games in which encryptions of the shares of Mb are gradually replaced by encryp-
tions of 0. As in the proof of the previous theorem, we show that any such change
cannot be noticed byB since the corresponding encryption scheme Ei isCCA-secure.
The only new aspect of this proof is the description of how Ai handles B’s queries
(j, (C ′

j , VK′, α′, σ′)). When j �= i, then Ai can simply decrypt by itself, as before.
For j = i, Ai first checks the validity of the signature, and then asks its own de-
cryption oracle to decrypt (C ′

i, VK′). So all we need to argue is that this query is
different fromAi’s own challenge (Ci, VK) (whichAi is forbidden to ask). But this
is precisely what we argued about B’s behavior in the previous paragraph.

Remark 1. The existence of collision-resistant hash functions does not seem to
follow from the existence of CCA-secure encryption schemes. However, by slightly
sacrificing the efficiency of our construction, we can rely on universal one-way
hash functions (UOWHFs) (which are implied by the existence of CCA-secure
encryption) thus making our construction completely generic. Briefly, instead of
using a single H ∈ H in the public key, the sender will choose a new H ← H
for every encryption. The description of H will then be included as part of the
ciphertext, signed together with α, and be included as part of each server’s
share. Since one can achieve |H| ∼ log n [6], this still keeps the user-server
communication very low.

5 Direct Constructions from Selective Identity
IBE/HIBE Schemes

We assume the reader is familiar with the basic terminology of identity-based
encryption (IBE) and hierarchical identity-based encryption (HIBE); see [8, 25].



202 Y. Dodis and J. Katz

Recently, Canetti et al. [12] gave a simple and elegant construction transform-
ing a “weak” (so called selective-identity-secure) IBE scheme secure against CPA
attacks into a CCA-secure (standard) public-key encryption scheme. Their trans-
formation uses a secure one-time signature scheme, by first encrypting the mes-
sage M with the identity VK (for newly chosen keys (SK, VK)), and then signing
the resulting ciphertext with SK. The receiver, who stores the master secret key
for the IBE scheme, can then decrypt the ciphertext if the signature is valid.

We could then use the resulting CCA-secure encryption schemes in our trans-
formations to get CCA-secure multiple encryption schemes, where each server
would store a master key for an independent IBE scheme. However, this will
result in generating (n + 1) one-time keys and signatures per ciphertext, which
is wasteful. Instead, we notice that the same verification key VK can be used as
the identity for all n IBE schemes, and then used to sign the concatenation of
n ciphertexts (or its hash). This gives a much more efficient direct construction
with only a single one-time signature per ciphertext.

However, just like our original scheme, the public key of the resulting mul-
tiple encryption is still proportional to the number of parties n. We now show
that using a two-level hierarchical IBE scheme (secure against selective-identity
CPA-attack), we can make the first relatively generic multiple encryption scheme
whose public key is independent of the number of players (although the ciphertext
size still is). Specifically, the public key pk is simply the mater public key of the
two-level HIBE. The i-th decryption key TDKi consists of level-1 identity-based
secret key corresponding to identity i. To encrypt a message M , the sender
(as before) generates a key pair (SK, VK) ← Sig-Gen(1k) and applies a secret
sharing scheme to the message M resulting in shares s1 . . . sn (and pub). Now,
however, the sender encrypts si “to” the level-2 identity (i,VK), and then signs
the resulting ciphertexts (or their hash) using SK. Each server i can still de-
crypt its share since it knows the level-1 secret key for the parent identity i,
while the collusion-resistance of the HIBE easily implies that no other coalition
of servers can get any information from this share. We omit a formal proof in
this abstract.

We remark that Boneh and Boyen [7] have recently constructed simple and
efficient selective-identity IBE/HIBE schemes, which immediately give rise to sim-
ple and efficient multiple encryption schemes using our paradigm. In particular,
using their HIBE scheme we get an efficient multiple encryption scheme with
a constant-size public key. We also notice that the technique of replacing sig-
natures by MACs [10] also applies here to obtain more efficient wMCCA-secure
multiple encryption.

6 Applications

We outline in brief a number of applications of multiple encryption.

CCA-Secure Threshold Encryption. In the generally-considered model for
threshold encryption, there is a combiner who receives a ciphertext and sends
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some information to various servers who may then potentially interact, either
with each other or with the combiner. The information sent to the servers is
typically assumed to be the ciphertext itself, but in general (and in our case in
particular) it is possible to transmit a smaller amount of information to each
server. In either case, the servers then send decryption shares back to the com-
biner, who uses these to recover the original message. In a chosen-ciphertext
attack on a threshold encryption scheme (see, e.g., [40, 13, 30]), an adversary
can expose the decryption shares stored at some number of servers, observe a
ciphertext C, and send ciphertexts C ′ �= C to the combiner. When it does so,
in addition to receiving the decryption of C ′, it is also typically assumed that
the adversary can observe all communication in the network, both between the
servers and the combiner as well as between the servers themselves.

It is not hard to see that the adversarial model thus described corresponds
exactly to a MCCA-attack. Moreover, if the combiner itself is untrusted (and can
send what it likes to the servers), we effectively have a sMCCA-attack. Thus, any
MCCA/sMCCA-secure multiple encryption scheme with privacy threshold tp im-
mediately gives a threshold encryption scheme with the same privacy threshold.
Furthermore, a MCCA/sMCCA-secure multiple encryption scheme with robust-
ness threshold tr immediately gives a threshold encryption scheme in which the
ciphertext can be correctly decrypted as long as tr servers remain uncorrupted.
Thresholds tf and ts can be interpreted similarly.

Our techniques thus give the first generic construction for CCA-secure thresh-
old encryption (note that no previous generic solution existed even in the ran-
dom oracle model). We remark further that for small values of n, our schemes
are competitive with previous threshold schemes. For example, when n = 2
and we use the Cramer-Shoup [15] encryption scheme as our building block, we
obtain a CCA-secure two-party public-key encryption scheme (in the standard
model) which has more efficient decryption than the scheme recently proposed by
MacKenzie [30]. In fact, although this construction increases the encryption time
and ciphertext size by (roughly) a factor of two as compared to [30], the time
required for decryption (by each server) is actually a factor of 10 more efficient;
furthermore decryption in our case is completely non-interactive. As another
example, if we use RSA-OAEP as our building block we obtain a very efficient
solution for CCA-secure, RSA-based threshold encryption with completely non-
interactive decryption (in the random oracle model).

CCA-Secure Key-Insulated and Strong Key-Insulated Encryption. We
assume the reader is somewhat familiar with the key-insulated model, as well
as with the generic constructions of [20] (which achieve only CPA security). In a
key-insulated public-key encryption scheme there is a server and a user ; at the
beginning of each time period, the user communicates with the server to update
the user’s secret key. Ciphertexts sent during any time period can be decrypted
by the user alone, without any further communication with the server. The main
property of such schemes is that exposing the secret information stored by the
user during many time periods leaves all non-exposed periods secure.
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At a high level, in the generic solution of [20] the server stores n secret keys for
a standard encryption scheme (and the n corresponding public keys constitute
the public key of the key-insulated scheme). At the beginning of each time period,
some � of these secret keys are given to the user. To encrypt a message during a
particular time period, the sender first splits the message into � shares using a
secret-sharing scheme, and then encrypts each of these shares using one of the
� keys associated with the current time period. The keys are chosen in such a
way so that multiple exposures of the user do not compromise “enough” of the �
keys associated with any other time periods. (In [20], it is shown how to “tune”
n and � to achieve the desired level of security in a reasonably-efficient way.)

It is immediately apparent that the above encryption process (namely, split-
ting the message and then encrypting each share with an independent key)
corresponds exactly to multiple encryption. For this particular application, a
single user stores all � keys that are used to decrypt during a given time pe-
riod; therefore, a chosen-ciphertext attack against a key-insulated cryptosystem
is equivalent to a wMCCA attack on a multiple encryption scheme (that is, an
adversary does not get to see the individual shares output by each partial de-
cryption algorithm). Thus, any wMCCA-secure multiple encryption scheme can
be used to achieve CCA-secure key-insulated encryption. We remark that robust-
ness is not needed for this particular application since all keys are stored by a
single entity (namely, the user).

Dodis, et al. [20] also show a generic conversion from any CPA-secure key-
insulated scheme to a CPA-secure strong key-insulated scheme (where in a strong
key-insulated scheme, encrypted messages are kept confidential even from the
server itself). In their conversion, they split the plaintext message into two shares,
encrypt one share using any “basic” key-insulated scheme, and encrypt the sec-
ond share using a key that is stored (at all times) only by the user. Again, it
can be seen that this solution corresponds to “double” encryption; thus, the
techniques outlined in this paper suffice to construct generic CCA-secure strong
key-insulated schemes from any CCA-secure key insulated scheme (thereby an-
swering a question left open by [5]).

CCA-Secure Certificate-Based Encryption. The notion of certificate-based
encryption (CBE) was recently introduced by Gentry [24]. In this model, a cer-
tificate — or, more generally, a signature — acts not only as a “certification”
of the public key of a particular entity, but serves also as a decryption key. In
particular, to decrypt a message a key-holder needs both its secret key and an
up-to-date certificate from its certification authority (CA). Certificate-based en-
cryption combines the aspects of identity-based encryption (IBE) and public-key
encryption (PKE). Specifically, the sender of the message does not need to check
whether the user is properly certified before sending the message, and the user
can decrypt the message only if he has been certified (this is called implicit certi-
fication, a feature of IBE but not of PKE). Additionally, (1) the certificates from
the CA can be sent to the user in the clear (as in PKE but unlike IBE), and
(2) the CA cannot decrypt messages sent to to the user since he does not know
the user’s private key (i.e., there is no escrow, again like PKE but unlike IBE).
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From the above description, one would expect that it should be possible to
construct a CBE scheme using a simple combination of any IBE and regular PKE.
In fact, this was the intuitive description of CBE as presented by Gentry [24],
and this approach achieves security against chosen-plaintext attacks. Unfortu-
nately, this does not suffice to achieve security against chosen-ciphertext attacks.
As a result, [24] only constructed a CCA-secure CBE scheme based on specific
assumptions, and left open the problem of designing a generic CCA-secure CBE
scheme. Using the techniques from this paper with n = 2, but applying them to
an IBE and a PKE (instead of two PKEs), we can easily resolve this open ques-
tion. Note that ones only needs a wMCCA-secure multiple encryption scheme
with no robustness in this case, since the user holds both keys and never reveals
any intermediate results.

Our technique also applies to most of the CBE extensions presented by Gentry,
such as hierarchical CBE (which combines CCA-secure hierarchical IBE and PKE)
and the general technique (based on subset covers) to reduce CA computation
in a multi-user environment.

CCA-Secure Broadcast Encryption. A broadcast encryption scheme allows
the sender to securely distribute data to a dynamically changing set of users over
an insecure channel, with the possibility of “revoking” users when they are no
longer “qualified”. One of the most challenging settings for this problem is that
of stateless receivers, where each user is given a fixed set of keys which cannot
be updated for the lifetime of the system. This setting was considered by Naor,
Naor, and Lotspiech [33], who also present a general “subset cover framework”
for this problem. Although originally used in the symmetric-key setting, Dodis
and Fazio [17] extended the subset cover framework to the public-key setting,
where anybody can encrypt the data using a single public key of the system.

Without getting into technical details, each user (more or less) stores a cer-
tain, user-specific subset of secret keys, while all the public keys are freely avail-
able to everybody (specifically, are efficiently derived from a single “global pub-
lic key”; in the case of [17] this is done by using an appropriate identity-based
mechanism whose details are not important for the present discussion). When
one wants to revoke a certain subset of users, one cleverly chooses a small subset
P of public keys satisfying the following two properties: (1) every non-revoked
user possesses at least one secret key corresponding to some key in P ; but (2) ev-
ery revoked user possesses no secret keys in P . Once this is done, a message is
simply encrypted in parallel using every key in P .

Clearly, the above corresponds exactly to a multiple encryption scheme with
tp = 0 and tf = 1. However, as acknowledged in [33, 17], the resulting broad-
cast encryption scheme is at best secure against “lunch-time” chosen-ciphertext
attacks even if the underlying encryption scheme being used is CCA-secure. Us-
ing the techniques of this paper, we can resolve this problem and extend the
subset-cover framework to achieve CCA-security (provided, of course, that the
corresponding basic encryption schemes are CCA-secure). This results in the first
generic CCA-secure broadcast encryption scheme. When instantiated with any of
the two subset cover methods given in [33, 17], we obtain two “semi-generic” con-
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structions of CCA-secure broadcast encryption: from any regular (e.g. [8]) or any
hierarchical (e.g. [25]) identity-based encryption scheme, respectively. Each of
these schemes, when properly instantiated, will offer several advantages over the
only previously known CCA-secure broadcast encryption scheme [18] (which was
based on specific assumptions), including a fixed public-key size, an unbounded
number of revocations, and qualitatively stronger traitor-tracing capabilities.

We remark that although wMCCA-security is already enough for this ap-
plication, a more communication-efficient solution can be achieved using our
sMCCA-secure scheme (since each user can then simply “ignore” the majority of
the ciphertext which is “not relevant” to him).

Cryptanalysis-Tolerant CCA-Secure Encryption. As discussed in the
Introduction, a multiple encryption scheme may be viewed as achieving
“cryptanalysis-tolerance” for public-key encryption: namely, a message can be
encrypted with respect to multiple encryption schemes (using independent keys)
such that the message remains confidential as long as any one of these schemes
remains secure (see [28] for further discussion of this concept). Herzberg [28]
shows constructions of cryptanalysis-tolerant CPA-secure encryption schemes;
the techniques outlined here resolve the question of constructing cryptanalysis-
tolerant CCA-secure encryption schemes.

CCA-Secure Proxy Encryption. Proxy encryption [19] may be viewed as non-
interactive, two-party, threshold encryption, where one server is the end-user and
the other server is called the proxy. The proxy receives the ciphertext C, partially
decrypts it into some ciphertext C ′, and forwards C ′ to the end-user. The user
stores the second part of the decryption key and can now recover the message
M from C ′. In [19], the authors give a formal treatment of proxy encryption but
left open the question of constructing a generic, CCA-secure scheme. The generic
2-party multiple encryption scheme presented in this paper resolves this open
question in the natural way. We remark that we require MCCA-security for this
application, since the attacker (who is one of the servers) has full oracle access
to the other server.

Other Applications. We believe that multiple encryption schemes will find
even more uses; we highlight two. One interesting direction is to apply multiple
encryption to the construction of “anonymous channels” [14] using, e.g., “onion
routing” [26]. It would be interesting to see if our methods can be extended
to give CCA-secure constructions in this setting. For the second application, we
mention recent work of Boneh, et al. [9] on searchable public-key encryption.
Here, one wants to design an encryption scheme for which one can encrypt some
keyword W as a ciphertext C such that that: (1) given some trapdoor TW one
can test whether C is an encryption of W ; (2) without such trapdoor, one gets
no information about W , even when given many other trapdoors TX for X �= W
(except that W is not one of these X’s). It is not hard to see that this concept is
also related to anonymous IBE, where the ciphertext should not reveal anything
about the identity of the recipient of the message. Alternately, it is also related
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to key-insulated encryption in which the ciphertext does not reveal the time
period for which the ciphertext was encrypted. In all these cases, one can adapt
the generic construction of key-insulated encryption from [20], discussed earlier
in this section, to obtain a CPA-secure version of the corresponding primitive,
provided that the regular encryption E is key-indistinguishable [2]. Indeed, one
of the constructions in [9] exactly follows this route. Using the techniques in
this paper, we can obtain generic CCA-secure searchable encryption, recipient-
anonymous IBE, or time-anonymous key-insulated encryption, provided one uses
a CCA-secure, key-indistinguishable encryption scheme (such as the Cramer-
Shoup encryption scheme [15], shown to be key-indistinguishable by [2]).
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A Replacing Signatures by MACs

Recall, a message authentication code (MAC) is given by a deterministic algo-
rithm Tag which outputs an “existentially unforgeable” tag T = Tagτ (M) for
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a given message M using a secret key τ . In fact, a “one-time” message authen-
tication code (defined analogously to a one-time signature scheme) is sufficient
for our purposes. We define a relaxed commitment scheme C = (Setup, Commit,
Open) (termed encapsulation in [10]) as follows: Setup(1k) outputs the public
commitment key CK, which is always input to both Commit and Open and is
omitted for brevity. Commit takes no inputs and produces a triple of values
(τ, c, d), where τ is a (random) key, c is the commitment to this key, and d is
the corresponding decommitment. Open(c, d) should produce τ under normal
circumstances. The hiding property states that τ “looks random” given c (i.e.,
one cannot efficiently distinguish (CK, c, τ) from (CK, c, r) for random r). The
relaxed binding property states that given a random triple (τ, c, d) output by
Commit, it is infeasible to produce d′ �= d such that Open(c, d′) �∈ {τ,⊥}. It is
easy to construct simple and efficient MACs and relaxed commitment schemes
(see [10]).

Given the above, we construct T Ewcca as follows:

– TGen(1k). Let CK← Setup(1k), and for i = 1 . . . n, let (EKi, DKi)← Gen(1k).
Set TEK = (EK1 . . .EKn, CK), TDKi = DKi, so that TDK = (DK1 . . .DKn).
Below, denote Enci = EncEKi

, Deci = DecDKi
.

– TEncL(M). Let (τ, c, d)← Commit(1k) and (s1, . . . , sn, pub)← Share(M,d).
Set Ci = Encc

i (si) (i = 1 . . . n) and compute σ = Tagτ (C1, . . . , Cn, pub, L).
Output C = (C1, . . . , Cn, pub, c, σ).

– SplitL(C). Parse C = (C1, . . . , Cn, pub, c, σ), and let ciphertext share Ĉi =
(Ci, c), and aux = (pub, c, L).

– TDeci(Ci, c). Output s′
i = Decc

i (Ci).
– Combine(s′

1, . . . , s
′
n, (pub, c, L)). Let (M, d) = Rec(s′

1, . . . s
′
n, pub) (if invalid,

reject). Let τ = Open(c, d). Reject if σ �= Tagτ (C1, . . . , Cn, pub, L). Other-
wise, output M .

Theorem 3. T Ewcca is wMCCA-secure with thresholds tp, tf , tr, ts, provided E
is CCA-secure, SSS is (tp, tf , tr, ts, n)-robust, C is a relaxed commitment scheme,
and MAC is a one-time message authentication code.

We give the complete proof in the full version, here only briefly sketching our
argument (which is based on [10]). The problem is the apparent circularity in the
usage of the MAC as Tag is applied to data which depends on the MAC key τ .
Intuitively, what saves us here is the relaxed binding property which holds even
when the adversary knows d. This means that when the attacker is given the
challenge ciphertext C, it has to either (1) try to use new value c (which does not
help due to the CCA-security of the underlying encryption scheme which uses c
as a label); or (2) reuse the same c and cause an invalid d′ �= d to be recovered
(which leads to rejection anyway); or (3) reuse the same pair (c, d), which results
in the same τ and then also to rejection due to the one-time security of the MAC.
The latter argument is the most delicate, and its proof in fact requires several
sub-arguments. See [10] for further details.
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