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Abstract. For computationally bounded adversarial models of error,
we construct appealingly simple, efficient, cryptographic encoding and
unique decoding schemes whose error-correction capability is much
greater than classically possible. In particular:

1. For binary alphabets, we construct positive-rate coding schemes
which are uniquely decodable from a 1/2 − γ error rate for any con-
stant γ > 0.

2. For large alphabets, we construct coding schemes which are
uniquely decodable from a 1 − √

R error rate for any information rate
R > 0.

Our results are qualitatively stronger than related work: the con-
struction works in the public-key model (requiring no shared secret key
or joint local state) and allows the channel to know everything that the
receiver knows. In addition, our techniques can potentially be used to
construct coding schemes that have information rates approaching the
Shannon limit. Finally, our construction is qualitatively optimal: we show
that unique decoding under high error rates is impossible in several nat-
ural relaxations of our model.

1 Introduction

The theory of error correction is concerned with sending information reliably
over a “noisy channel” that introduces errors into the transmitted data. In this
setting, a sender starts with some message, which is a fixed-length string of
symbols over some alphabet. The sender encodes the message into a longer string
over the same alphabet, then transmits the block of data over a channel. The
channel introduces errors (or noise) by changing some of the symbols of the
transmitted block, then delivers the corrupted block to the recipient. Finally,
the recipient decodes the block (hopefully to the intended message). Whenever
the sender wants to transmit a new message, the process is repeated.

Two quantities are of special interest in this setting: the information rate
(i.e., the ratio of the message length to the encoded block length) and the error
rate (i.e., the ratio of the number of errors to the block length). Coding schemes
having high information rate and tolerating high error rate are, of course, the
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most desirable. Small alphabets are desirable too, and in particular most natural
channels are indeed best at transmitting only bits.

But the question remains: how should we model a noisy channel?

Standard Channels. There are two historically popular ways to model a noisy
channel. Shannon’s symmetric channel independently changes each symbol to a
random different one, with some fixed probability. Hamming’s adversarial chan-
nel changes symbols in a worst-case fashion, subject only to an upper bound
on the number of errors per block of data. In particular — though this is not
often stated explicitly — the adversarial channel is computationally unbounded.
Working with this “pessimistic” model certainly ensures the robustness of the
resulting coding scheme, but it also severely restricts the information and error
rates. For instance, when the alphabet is binary, the error rate must be less
than 1/4 for unique decoding to be possible (unless the blocks are exponentially
longer than the messages).

One way to recover from a higher error rate is to relax the task of decoder,
allowing it to output a short list of messages which contains the intended one.
To tolerate adversarial channels with high error rates, list decoding seems to be
the best one can do — but under a more “realistic” model of an adversarial
channel, is it possible to uniquely decode under high error rates?

Computationally Bounded Channels. In 1994, Lipton [9] put forward the notion
of a computationally bounded channel, which is essentially a Hamming channel
restricted to feasible computation. That is, the channel still introduces errors
adversarially (always subject to a given error rate), but must do so in time
polynomial in the block length.

We posit that natural processes can be implemented by efficient computation,
so all real-world channels are, in fact, computationally bounded. We therefore
have confidence that results in this model will be as meaningful and applicable
as classical codes. Indeed, the nature of the model is such that if some mali-
cious (or natural!) process is capable of causing incorrect decoding, then that
process can be efficiently harnessed to break standard hardness assumptions. In
contrast to coding schemes which are only guaranteed to work against chan-
nels that are modelled by very specific, limited probabilistic processes, results in
this model apply universally to any channel which can be modelled by efficient
computation.

Remarkably, under standard cryptographic assumptions and assuming that
sender and receiver share secret randomness, Gopalan, Lipton, and Ding [3]
proved that for such a bounded channel, it is possible to decode correctly from
higher error rates. Unfortunately, their result requires the communicating parties
to share a secret key which is unknown to the channel.

More significantly, though the bounded-channel model was first envisioned
over a decade ago, nobody has yet shown an essential use of this assumption
to yield any unique benefits over an unbounded channel. That is, previous con-
structions still work when the channel is computationally unbounded, as long
as the sender and receiver share some secret randomness. The bounded-channel
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assumption is used to reduce the amount of shared randomness that is needed,
but not to eliminate it altogether. This computational assumption is thus an ad-
ditional one, and does not supplant the assumption of secret randomness shared
between the sender and receiver.

Our goal is to provide a general method for optimal error correction, exploit-
ing the bounded-channel assumption in an essential way.

1.1 Our Contributions

Our Setting. We work in a very simple cryptographic setting: we assume that a
one-way function exists (the “minimal” cryptographic assumption) and that the
sender has a public key known to the receiver (and, perhaps, to the channel as
well).

The sender (but not the receiver) keeps a small amount of state information,
which he uses when encoding messages. Because the sender keeps state, our
constructions are actually dynamic coding schemes, in which the same message
results in a different encoding each time it is sent.

Our Results. Our setting yields great benefits in error correction for both binary
and large alphabets. Namely,

1. For binary alphabets, we construct positive-rate dynamic coding schemes
which are uniquely decodable from a 1/2 − γ error rate for any constant
γ > 0.
Classically, a 1/4−γ error rate is the best possible for unique decoding (and
positive information rate). We stress that in any reasonable model, decoding
of any kind (even list decoding) is impossible under an error rate of 1/2.
Therefore this result is optimal in a very strong sense, and matches the best
possible error rates in the weaker Shannon model.

2. For large alphabets, we construct dynamic coding schemes which are uniquely
decodable from a 1−√R error rate for any information rate R > 0.
The 1 − √R error rate is actually a consequence of known list decoding
algorithms, and not imposed by our technique. Note that when R < 1/4,
we can uniquely decode from error rates much greater than 1/2, which is
impossible in the Hamming model.

To achieve these results, we actually prove a very general reduction, namely,

If one-way functions exist, (dynamic) unique decoding from e errors in
the bounded-channel model reduces to efficient (static) list decoding from
e errors in the Hamming model (with no asymptotic loss in information
rate).

We obtain results 1 and 2 above by applying this reduction to the classical
Guruswami-Sudan [7] and Reed-Solomon codes.
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Optimality of Our Model. There are three defining characteristics of our model:
(1) the sender is stateful (the amount of state required is minimal; either a single
counter value or a local clock would suffice) while the receiver is stateless, (2) the
sender keeps a secret key which is unknown to the channel, and (3) the channel
is assumed to be computationally bounded.

We show that our model is qualitatively optimal: relaxing any of these three
requirements makes the task of unique decoding under high error rates impossi-
ble. Thus our construction can be seen as the “best possible” use of the bounded-
channel assumption for error correction. See Section 4.3 for details.

Overview of the Construction. Starting with any static code, we specify a cryp-
tographic sieving procedure, which only certain “authentic” codewords will pass.
Authentic words are hard for the adversary to compute (even after seeing other
authentic codewords), but easy for the sender to generate and for the recipient
to sieve out.

Upon receiving a corrupted word, the recipient first list decodes it. Of course,
list decoding only provides a set of candidate codewords. In order to uniquely
decode, the recipient next uses the cryptographic sieve to filter out only the
authentic word(s). Provided that the number of errors is suitably limited, the
intended codeword is guaranteed to appear in the decoded list and pass the sieve.
However, it may not be alone: though the bounded channel cannot produce any
new authentic codewords, it may be able to cause prior ones to appear in the
decoded list. This is where the sender’s state comes into play: dynamic encoding
allows the receiver to choose the “freshest” word that passes the sieve, resulting
(with overwhelming probability) in correct, unique decoding.

2 Related Work

We wish to contrast our results with several other models and techniques for
tolerating high error rates.

2.1 List Decoding

One of the best-known methods of decoding beyond classical limits under ad-
versarial error is known as list decoding. In list decoding, a received word is not
decoded to a unique message, but rather to a short list of possible messages. If
the number of errors is within the list-decoding radius, the original message will
appear in the list.

There exist codes with rate approaching the Shannon capacity of the chan-
nel and yielding constant-size lists (cf. [5]); however, no efficient list decoding
algorithms are known for such codes. Still, many popular codes have efficient list-
decoding algorithms that can decode significantly beyond the half-the-distance
bound.

The obvious drawback of list decoding is that one typically desires to know
the unique message that was sent, rather than a list of possible messages. The
works presented below, as well as our cryptographic sieve, use list decoding as a
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tool to extend the decoding radius, then employ additional assumptions in order
to identify the correct, unique message in the list.

2.2 List Decoding with Side Information

Guruswami [4] achieves unique decoding under high error rates for binary al-
phabets. However, he makes two strong assumptions: first, the communicating
parties must share a side channel which is noise-free, and must use it every time
a message is sent. (Note that the side channel does not trivialize the problem,
because it is only used to send strings that are much shorter than the messages.)
Second, the adversary must not know what is sent over the side channel when
introducing errors in the main channel; this imposes either a privacy or timing
constraint on the side-channel communication.

2.3 Code Scrambling Using Shared Randomness

The code-scrambling method of Gopalan, Lipton, and Ding [3] assumes that
the communicating parties share some secret random (or pseudorandom) data.
The randomness is used to “scramble” codewords, which reduces adversarial
noise to (random) Shannon noise. Under such a random-error model, and for
certain properly-chosen codes, maximum-likelihood decoding yields the correct
word with high probability.

Code scrambling and our cryptographic sieve are both based on the minimal
cryptographic assumption of the existence of one-way functions.1 But our underly-
ing model compares favorably to that of code scrambling in some important ways:

Cryptographic Setup. The code-scrambling method requires a random secret key
to be shared between the communicating parties and kept secret from the chan-
nel. Such a setup requires either the parties to meet in advance (which may be
unrealistic), or some interactive protocol to establish the private key (in addi-
tion, such a protocol would have to deal with the noisy channel that separates
the two parties!).

In contrast, our cryptographic sieve works in the public key setting: we only
require the sender to have a single public key that is known to the recipient.
In fact, our results hold even when the channel possesses all the information
available to the receiver, and is potentially even more computationally powerful
than the receiver. Previous results certainly do not allow the channel to be this
powerful.

Local State. In reality, two communicating parties usually send and receive many
messages over time. Using a classical (static) code, this is no problem: each
message is simply encoded and decoded on its own, with no implications for

1 The two employ different cryptographic primitives, both of which are implied by one-
way functions. Gopalan et al use a pseudorandom generator, while our solution uses
an existentially unforgeable signature scheme [2, 10].
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correctness. However, when shared randomness and state are introduced, one
must be more careful.

The first observation is that in the code-scrambling method, the shared key
(or portion thereof) must only be used one time. If any part is re-used, the
adversary gains information about how the codewords are scrambled, and may
be able to introduce “non-random” errors in the future. Therefore, the code-
scrambling method requires both parties to keep synchronized state. That is,
they must always agree on what fresh portion of their shared (pseudo)random
key should be used for scrambling and unscrambling the next message. If the
parties fall out of sync (say, due to an unexpected transmission or hardware
failure), then future messages will decode incorrectly.2

In contrast, our cryptographic sieve only requires the sender to maintain a
small amount of local state, independent of the recipient (who is stateless). If
a message is dropped or ignored, there is no effect on the correctness of future
messages.3

We also compare our quantitative results with those of Gopalan et al :

Binary Alphabets. For binary alphabets, the code-scrambling method can yield
coding schemes that handle the optimal error rate of ε = 1/2− γ for any γ > 0.
In addition, the information rate is optimal, because it meets the Shannon limit
of 1−H(ε).

Our method also provides unique decoding from a 1/2−γ error rate. We stress
that while our technique yields positive asymptotic information rate, it does not
yet match the Shannon limit, because the information rate is dictated by the un-
derlying efficiently list-decodable code. While list-decodable codes matching the
Shannon limit for any error rate are known to exist, it is not known how to effi-
ciently list decode them. Fortunately, improvements in list decoding techniques
automatically carry over to our construction.

Large Alphabets. Implemented with Reed-Solomon codes (which require large
alphabets), code scrambling allows unique decoding from a min(1−√R, 1−2R)
error rate (where R is the information rate), while classical unique decoding of
RS codes only allows a (1 − R)/2 error rate. Therefore, for R ≥ 1/3 the code-
scrambling method offers no advantage over classical decoding; for R ∈ (1/4, 1/3)
there are some benefits but they are not as pronounced as in the low-rate case.

2 To relax the synchronization requirements, one might imagine sending some “syn-
chronizing information” along with each message. However, the synchronizing in-
formation is also subject to errors, so it must be protected by some encoding, and
also be recoverable separately from the message. (Using a pseudorandom function
for synchronization suffers from a similar problem.) Eliminating the synchrony re-
quirement, while retaining desirable information and error rates, seems to be quite
difficult.

3 Of course, we cannot provide such a guarantee if the channel is allowed to arbitrarily
delay messages and swap their order — however, neither can any scheme that uses
synchronized state.
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In contrast, our method meets or exceeds the asymptotic error correction rate
of the code-scrambling method, at all information rates. In particular, it allows
unique decoding from a 1−√R error rate, for all values of R.

Universality. Because it relies on the randomness of the errors, the analysis of
the code-scrambling method depends essentially upon the properties of Reed-
Solomon codes.4 The authors also point out that a similar analysis can be ap-
plied to certain algebraic-geometry codes, and that experimental simulations
using expander codes have shown positive results. However, each application of
code scrambling to a new family of codes requires a new analysis (and yields,
potentially, a new set of workable parameters).

Our construction, instead, is fully general: it uses an efficient list-decoding
algorithm as a black-box, and requires no other special properties of the code.
It reduces unique decoding against a bounded adversary to list decoding against
an unbounded adversary, and retains all the asymptotic parameters of the code.

2.4 Private Codes

In a recent independent work, Langberg [8] describes “private codes” in which
the sender and recipient use a shared secret random key (which is not known to
the channel) to uniquely decode under high error rates.

Langberg assumes a computationally unbounded channel and focuses mainly
on existential (rather than efficiently constructible) results, and on tight bounds
for the length of the secret key. The construction uses certain combinatorial set
systems to define a “secret subcode” Cr of a given static code C, based on the
secret key r. Unique decoding is performed by maximum-likelihood decoding
within Cr. The analysis and security proof of the scheme are somewhat complex
and difficult to penetrate.

Compared to our cryptographic sieving, private codes share two main draw-
backs with code scrambling. Namely,

1. They require secret randomness to be shared between the sender and receiver
and kept secret from the channel. By contrast, in our model the channel is
on “equal footing” with the receiver: it knows everything that is known to
the latter.

2. They require sender and receiver to keep synchronized state. (Else they may
not be able to understand each other whenever multiple messages are sent.)
No such requirement exist in our model, and multiple messages can be safely
sent.

Finally, in our view, we contribute a conceptually cleaner framework and sim-
pler security proof. In retrospect, it is possible to cast private codes as a specific

4 For Lemma 3.2 in Gopalan et al, the maximum distance separability (MDS) property
of Reed-Solomon codes is the key ingredient. The MDS property is true of RS codes
but not true in general.
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construction in our general framework of message authentication and crypto-
graphic sieving.5 (We thank Adam Smith for pointing out this relationship.)

3 Preliminaries

3.1 Notation

Messages and words, which are just vectors over some alphabet, are written in
bold: e.g., m,x, r. The concatenation of two vectors x,y is denoted x ◦ y. The
set {1, . . . , n} is denoted by [n]. A negligible function in n is one which vanishes
faster than 1/p(n) for any fixed polynomial p, and is denoted by ν(n).

3.2 Relevant Coding Theory

Basic Concepts. The message is the information to be sent before it is encoded;
it is a vector of k symbols from some finite alphabet Σ (by convention, we define
q = |Σ|; a binary alphabet is one where q = 2). The message is encoded as a
codeword of n symbols from Σ (n is called the block length). The information rate
R of the code is defined as R = k/n; this is a measure of how much meaningful
information is carried by each transmitted symbol.

After passing through the channel, a (potentially corrupted) word is received
and decoded, ideally back to the intended k-symbol message. However, in order
for this to be the case, the number of errors must be suitably limited. The
Hamming distance ∆(x,y) between two words x and y is the number of symbols
that differ between the two; we wish to decode the received word to the message
whose codeword is nearest in Hamming distance.

Definition 1 (Hamming distance). For any x,y ∈ Σn, the Hamming dis-
tance between x and y, denoted ∆(x,y), is the number of positions i in which
xi and yi differ: ∆(x,y) = |{i ∈ [n] : xi �= yi}|.

Definition 2 (Coding scheme, rate). An (n, k)q-coding scheme C = (E, D)
over alphabet Σ is an encoding function E : Σk → Σn and a decoding function
D : Σn → Σk for some positive integers n ≥ k, q = |Σ| ≥ 2. The (relative) rate
or information rate of the scheme, denoted R, is defined as R = k/n. The scheme
tolerates error rate ρ if, for all m ∈ Σk and all r such that ∆(E(m), r) ≤ ρn,
D(r) = m.

List Decoding. Even if the actual error rate exceeds the rate ρ tolerated by a
coding scheme, in some contexts it may be sufficient to decode to a short list

5 One can interpret private codes as using an (information-theoretically secure) secret-
key message authentication code (MAC), rather than a (computationally secure)
digital signature scheme. In this interpretation, the “secret subcode” Cr consists
of encoded message-tag pairs, where the tag is a valid MAC of the message under
secret key r. Maximum-likelihood decoding within Cr can be accomplished by first
list decoding within C, then sieving out the decoded message-tag pairs that are
authentic relative to r.
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of messages containing the intended one. List decoding finds such a list of all
messages which encode to within some distance εn of the received word, where
ε may be significantly greater than ρ.

Definition 3 (List decodability). An (n, k)q coding scheme C = (E, D) over
Σ is (εn, L)-list decodable if, for any r ∈ Σn, there exist � ≤ L distinct messages
m1, . . . ,m� ∈ Σk such that ∆(r, E(mj)) ≤ εn for all j ∈ [�].

Asymptotics. In order to make meaningful asymptotic statements about the rate
of a coding scheme or the efficiency of encoding and (list) decoding, we must
consider infinite families having increasing block lengths.

Definition 4 (Family of coding schemes). An infinite family C of coding
schemes is a set C = {Ci}∞i=1 where Ci = (Ei, Di) is an (ni, ki)qi

coding scheme,
and limi→∞ ni =∞.

The (asymptotic) information rate (often just abbreviated rate) of C, denoted
R(C), is defined to be R(C) = lim infi→∞ ki/ni.

If Ci is an (εini, Li)-list decodable coding scheme, then we say that C is list
decodable under error rate ε(C) = lim infi→∞ εi.

If {Ei} and {Di} (respectively) can be computed by two uniform polynomial-
time algorithms, we say that the coding scheme is efficient.

Definition 5 (List decoding algorithm). If C = {Ci} is a family of (ni, ki)qi

coding schemes Ci = (Ei, Di) over alphabet Σi, and each Ci is (εini, Li)-list
decodable, then an efficient list decoding algorithm for these parameters is a
polynomial-time algorithm LD such that for all i and any r ∈ Σni

i , LD(r) out-
puts all � ≤ Li messages m1, . . . ,m� ∈ Σki

i such that ∆(r, Ei(mj)) ≤ εini for
all j ∈ [�].

Note that LD must run in polynomial time in the size of its input, so in
particular the list size Li must be polynomially related to ni. Many families are
indeed efficiently list decodable for high error rates.

3.3 Relevant Cryptography

We require signature schemes which are existentially unforgeable under chosen
message attack [2]. Such schemes were first shown to exist under a hardness of
factoring assumption, and later under the assumption that one-way functions
exist [10].

4 Dynamic Coding Schemes

4.1 The Formal Model

The issues of a bounded adversary, stateful players, and chosen-message attacks
are not captured by the classical coding theory definitions. Here we formally
define a bounded noisy channel and the requirements for the sender and receiver.
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For ease of notation, we provide definitions modeling the channel as a uniform
algorithm; a non-uniform treatment is easily adapted.

A dynamic coding scheme for a family of parameters {(ni, ki, qi)}∞i=1 (with
limi→∞ ni =∞) is a triple of probabilistic polynomial-time algorithms (G, S, R)
such that:

– G(1ki , 1ni) outputs a pair (pk, sk);
– S(m, sk, aux), where sk was produced by G(1ki , 1ni), m is of length ki over

a qi-ary alphabet Σi, and aux is some local state, outputs (x, aux′) where
x ∈ Σni

i , and aux′ is the updated local state that will be provided on the
next invocation of S;

– R(r, pk), where pk was produced by G(1ki , 1ni) and r ∈ Σni
i , outputs some

m′ ∈ Σki
i .

The information rate of such a scheme is lim infi→∞ ki/ni.
An (adversarial) channel C with error rate ε is a probabilistic poly-time

algorithm which interacts with a sender S and receiver R in a chosen-message
attack, which proceeds as follows:

1. G(1ki , 1ni) produces (pk, sk).
2. On input pk to C, the following process is repeated until C terminates:

– On the jth iteration, C chooses a message mj ∈ Σki
i and hands it to the

sender.
– The sender encodes mj using S(mj , sk, auxj), yielding auxj+1 and some

xj ∈ Σni
i , which is given to C.

– C produces a word rj such that ∆(xj , rj) ≤ εni with probability 1−ν(ni),
and hands rj to the recipient.

– The recipient runs R(rj , pk) and outputs a message m′
j .

We say that C succeeds at causing an incorrect decoding if, for any j in the
above experiment, m′

j �= mj . We say that a dynamic code uniquely decodes from
error rate ε if, for any channel C of error rate ε, Pr[C succeeds] ≤ ν(ni), where
the probability is taken over the random choices of G, S, R, and C.
Remark 1. In contrast to many cryptographic definitions of an adversary, our
channel is not allowed to drop or re-order messages. That is, the channel must
deliver a corrupted message before requesting a new message from the sender.

Against a more powerful channel which can drop and re-order messages, we
are still able to construct coding schemes which provide similar guarantees about
message integrity — provided that the receiver also keeps state. (However, the
receiver’s state is independent of the sender’s.) We omit the details in this version
of the paper.

4.2 The Construction

Intuition. The first attempt at a cryptographic sieve is to just sign each message
and send the signature along with it. This obviously doesn’t work because the
signature is also subject to errors. The natural fix is to protect the signature
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in transit by also encoding it, using appropriate parameters. Unfortunately, a
careful analysis (even using list decodable coding schemes for both the message
and signature) shows that this approach yields no improvement in overall rate.

The key insight is that the message and signature should be encoded together,
rather than separately. To communicate a message m, the sender first signs
m, then encodes the message-signature pair. To decode a received word r, the
recipient applies the list decoding algorithm to r, yielding a list of potential
message-signature pairs. If the number of errors is suitably bounded, then the
original pair will appear in the list, and the signature will verify. And by the
unforgeability of the signature scheme, the other pairs will not verify and can
be thrown out. Therefore the original message can be recovered uniquely.

There is one hidden difficulty in the above description: the list may actu-
ally include several pairs that verify, but which correspond to messages sent in
the past.6 This event cannot be used to break the signature scheme, because a
valid forgery must involve a new, unsigned message. Therefore we must find a
way to disambiguate among potentially several valid message-signature pairs in
the list.

The solution is for the sender to maintain a short counter t. The current
value of the counter is appended to each message (and signed along with it), then
incremented. Among all valid message-signature pairs in the decoded list, the
recipient chooses the one with the largest counter. In other words, the recipient
always decodes to the “freshest” message in the list. We note that the recipient
is stateless, while the sender need only maintain the value of the counter.

Indeed, there are only two essential requirements for the counter values: they
must not be reused, and the receiver must be able to recognize the most recent
counter value in a list. Any monotonically increasing sequence satisfies these
requirements; in particular, a timestamp is sufficient. (Note that the sender’s
clock need not be synchronized with any other clock, nor is relative clock drift a
concern.) Our construction may be viewed as confirmation of some conventional
wisdom: one should always date and sign one’s correspondence!

The Formal Construction. Let C denote some family C = {Ci} of (ni, ki)qi ,
(ei, Li) list decodable coding schemes that has an efficient encoding procedure
E and an efficient list decoding procedure LD for parameters (ei, Li). Note that
the efficiency constraints imply that ni grows polynomially with ki (in fact, we
are most interested in the case where this growth is linear), and that the decoded
list sizes are polynomial in ni.

Also assume we are given some signature scheme (Gen,Sig,Ver) which is
existentially unforgeable under an adaptive chosen-message attack. Recall that
the key generator Gen requires a security parameter k′; for simplicity we assume
wlog that the corresponding signature length is k′. We require the signature size
to be small relative to the message size, therefore when using code Ci we use a
security parameters of, say, k′

i =
√

ki.

6 This can happen if two prior message-signature pairs map to two codewords sepa-
rated by, say, the minimum distance of the code.
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Additionally, the sender S maintains a state variable t, which is a counter
initialized to 0. This counter will also appended to the message, so again we want
it to be short. When using code Ci, we append the value of the counter using
k′

i =
√

ki symbols in some canonical way; this provides for q
k′

i
i unique counters,

which is super-polynomial in ni.
We now describe the dynamic coding scheme. The codes will have message

lengths of ki − 2k′
i = ki − 2

√
ki and corresponding block lengths of ni. The

algorithms are as follows:
– G(1ki , 1ni): let k′

i =
√

ki. Compute and output (pk, sk)← Gen(1k′
i).

– S(m, sk, aux = t): compute σ ← Sigsk(m ◦ t). Output (E(m ◦ t ◦ σ),
aux′ = t + 1).

– R(r, pk): list decode r: (m1 ◦ t1 ◦ σ1), . . . , (m� ◦ t� ◦ σ�) ← LD(r). Consider
all pairs (mi, ti) such that Verpk(mi ◦ ti, σi) = 1 and ti = maxj tj . If at
least one such mi exists and are all the same message, output that message.
Otherwise, output ⊥.

Theorem 1. Assuming one-way functions exist, the above dynamic code
(G, S, R) uniquely decodes from error rate ε(C) and has information rate R(C).

Proof. Clearly the rate of the scheme is R(C), because lim infi→∞(ki−2
√

ki)/ni

= lim infi→∞ ki/ni = R(C).
Now suppose for contradiction there exists a channel C with error rate ε that

causes R to incorrectly decode some message with probability 1/p(ni) for some
polynomial p(·) and for infinitely many ni. We will use C to construct a forger
F for the signature scheme. F will receive message requests from C and use
its signing oracle to simulate the sender, then pass authentic codewords to the
channel. The channel will produce corrupted words, and the forger will simulate
the recipient on them. If decoding is incorrect at any point (which is detectable),
the incorrect output can be used to construct a forgery. We now proceed more
formally.

First note that for infinitely many ni, C makes fewer than q
k′

i
i queries, and

the counter values are all distinct. From now on, we consider only those ni. Now
FO(pk) works as follows: let ki = (k′

i)
2, and ni be the block length corresponding

to ki, and t ← 0. Run C(pk). When C requests a message m to be sent, query
σ ← O(m◦ t), and return w = E(m, t, σ) to the channel. Receive r (a corrupted
version of w) from the channel, where ∆(r,w) ≤ εni (except with probability
ν(ni)), and list decode: (m1 ◦ t1 ◦ σ1), . . . , (m� ◦ t� ◦ σ�)← LD(r), where � ≤ Li.
By assumption on C, (m ◦ t ◦ σ) appears in the list (except with probability
ν(ni)). If there exists some mi such that Verpk(mi ◦ ti, σi) = 1 and ti > t, or
such that mi �= m and ti = t, then output (mi ◦ ti, σi) as a forgery. Otherwise,
increment t and repeat with the next message chosen by C, until it aborts.

Note that R decodes incorrectly if and only if some σi is a valid signature
of mi ◦ ti, and either ti > t, or ti = t and mi �= m (because all counters in
the experiment are unique). In the first case, O was never queried on mi ◦ ti,
because ti is too large. In the second case, O was never queried on mi◦ti because
only m �= mi was queried with counter t = ti. Therefore (mi ◦ ti, σi) constitutes
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a forgery. The success probability of FO on security parameter k′
i is negligibly

smaller than p(ni) (the success probability of C on block lengths of size ni),
and by assumption ni grows polynomially with ki = (k′

i)
2. This contradicts the

unforgeability of the signature scheme, as desired.

Remark 2. A similar construction works in the private-key setting, in which the
sender and recipient share a private key that is unknown to the channel. Instead
of signing each message, the sender uses a message authentication code (MAC)
that is existentially unforgeable under chosen-message attack.7 We stress that
the receiver remains stateless in this modified scheme. The only difference in the
proof is that the forger cannot detect a successful forgery, but instead chooses
a random element of the decoded list during a random query by the channel.
This alters the concrete security analysis of the scheme, but still leads to a
non-negligible chance of forgery.

Corollary 1. Assuming one-way functions exist, there exist binary dynamic
coding schemes with error rate 1/2 − γ for any γ > 0 and positive asymptotic
information rate.

Proof. Apply Theorem 1 to the concatenated codes of Guruswami and Sudan [7].
The Reed-Solomon concatenated codes are efficiently encodable, have asymptotic
rate Ω(γ8), and can be efficiently list decoded under error rate 1/2− γ, for any
constant γ > 0. The algebraic-geometry concatenated codes also have efficient
algorithms and asymptotic rate Ω(γ6 log 1/γ).

Alternatively, one may use the efficiently list-decodable codes of Guruswami
et al [5], which have asymptotic rate Ω(γ4) for error rate 1/2− γ.

Corollary 2. Assuming one-way functions exist, there exist large-alphabet dy-
namic coding schemes with error rate 1−√R for any information rate R > 0.

Proof. Apply Theorem 1 to Reed-Solomon codes. These codes are efficiently
encodable and list decodable under error rate 1 − √R using the Guruswami-
Sudan algorithm [6].

4.3 Optimality of the Model

In our model, the sender keeps a secret key and maintains some local state
between each encoding, and the channel is computationally bounded. Proposi-
tions 1, 2, and 3 establish that these features are essential : under several natrual
relaxations of the model, decoding from high error rates is impossible.

The following well-known lemma will be useful in our proofs:

Lemma 1 (Plotkin bound). For any 2n + 1 strings x1, . . . ,x2n+1 ∈ {0, 1}n,
there exist i, j such that i �= j and ∆(xi,xj) < n/2.

7 Such a MAC can be constructed using a pseudorandom function family, which exists
if and only if one-way functions exist [1].
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Proposition 1. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where both the sender and receiver are stateless.

If qi = 2 and 2ki ≥ 2ni +1 for infinitely many i, an adversarial channel with
any error rate > 1/4 can cause incorrect decoding with probability non-negligible
in ni.

For any values of qi, an adversarial channel with any error rate > 1/2 can
cause incorrect decoding with probability non-negligible in ni.

These results hold even if the sender and receiver are randomized and have
secret or public keys, and the channel is polynomially bounded.

Proof. We first prove the result for binary alphabets (i.e., qi = 2). (We assume
2ki ≥ 2ni + 1 simply to guarantee that at least 2n + 1 distinct messages can be
sent.)

For any n and x,x′ ∈ {0, 1}n, if ∆(x,x′) < n/2, define M(x,x′) to be some
canonical r such that ∆(x, r) < �n/4� and ∆(r,x′) ≤ �n/4�. Note that M is
easily computable. We now describe a channel C which will cause an incorrect
decoding with non-negligible probability.
C chooses two distinct messages m,m′ at random and queries the sender on

m, yielding x ∈ {0, 1}n, then passes it to the receiver without error. C then
queries the sender on m′, yielding x′ ∈ {0, 1}n. If ∆(x,x′) < n/2, C sends either
M(x,x′) or M(x′,x) to the recipient, each with probability 1/2 (this requires
introducing at most �n/4� errors to x′). Otherwise, C sends x′ uncorrupted.

Conditioned on ∆(x,x′) < n/2, the receiver’s view of the second message is
distributed identically to its view in a world where m′ is queried first and m
is queried second. (This relies on the statelessness of both sender and receiver.)
Therefore, C will cause incorrect decoding with probability at least 1/2.

It remains to bound Pr[∆(x,x′) < n/2]. Consider a thought experiment in
which the channel additionally queries 2n− 1 more distinct random messages be-
fore querying m and m′. By the Plotkin bound, the encodings of some two mes-
sages will have Hamming distance less than n/2. Since all messages are random
and each encoding is independent (due to the sender’s statelessness), Pr[∆(x,x′) <
n/2] ≥ 1/

(2n+1
2

)
= Ω(1/n2). This completes the proof for binary alphabets.

For the large-alphabet case, we apply a similar (but simpler) argument. Since
all pairs of codewords of length n are within Hamming distance n for any al-
phabet, an adversarial channel with any error rate > 1/2 can cause incorrect
decoding with probability 1/2.

Proposition 2. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where all the sender’s inputs are known to the channel.

If qi = 2 and 2ki ≥ 2ni + 1 for infinitely many i, an adversarial channel
with any error rate > 1/4 can cause incorrect decoding with probability at least
Ω(1/n).

For any values of qi, an adversarial channel with any error rate > 1/2 can
cause incorrect decoding with probability at least 1/2.

These results hold even if the sender and receiver are randomized and stateful,
the receiver has secret inputs, and the channel is polynomially bounded.
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Proof. Because the sender is a polynomial-time algorithm with only public in-
puts, it can be “simulated” by the channel. That is, the channel C can simply
use the encoding function as a subroutine. Thus, instead of making queries to
the sender, C can simply simulate the process, encoding messages itself. This dif-
ference is essential: since the sender is not actually encoding these messages, his
internal state remains unchanged. The channel can thus simulate the execution
of the sender on a variety of inputs with the same internal state.

Once again we start with the binary case. As in the proof of Proposition 1,
for any n and x,x′ ∈ {0, 1}n, if ∆(x,x′) < n/2, define M(x,x′) to be some
canonical r such that ∆(x, r) < �n/4� and ∆(r,x′) ≤ �n/4�. We now describe
an adversarial channel that can cause incorrect decoding:

The channel first makes a real query to the sender on a random message m1
and receives x1, its encoding. For block length n, the channel then simulates the
encoding 2n more random, distinct messages m2, . . . ,m2n+1. (If the sender is
stateful, the channel encodes with the sender’s state at the time m1 was encoded.)
Denote the encoding of mi as xi. By the Plotkin bound, there exist xi,xj such
that i �= j and ∆(xi,xj) < n/2. By symmetry and without loss of generality,
Pr[i = 1] >= 2/(2n + 1). In the event that i = 1, the channel corrupts x1 in the
following way: it sends M(x1,xj) with probability 1/2, and M(xj ,x1) otherwise.

Conditioned on i = 1, the recipient’s view is distributed identically to the case
where the roles of x1 and xj are switched, and xj was the real query. Therefore
the recipient will decode incorrectly with probability Ω(1/n).

For large alphabets, a similar argument works with only one simulated mes-
sage encoding.

Proposition 3. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where and receiver is stateless and has only public inputs.

If qi = 2 and 2ki ≥ 2ni + 1 for infinitely many i, a computationally un-
bounded adversarial channel with any error rate > 1/4 can cause incorrect de-
coding with probability at least 1/2.

For any values of qi, a computationally unbounded adversarial channel with
any error rate > 1/2 can cause incorrect decoding with probability at least 1/2.

These results hold even if the sender and receiver are randomized, and the
sender has a public key.

Proof. We again start with the case of binary alphabets. Note that because
the receiver is stateless, its output distribution on a given word r is always the
same, regardless of what transmissions have preceded r. We now describe an
unbounded adversarial channel that can cause incorrect decoding:

For block length n, the channel will make up to 2n + 1 arbitrary distinct
message queries m1, . . . ,m2n+1. Denote the sender’s encoding of mi as xi. When
receiving xj , the channel exhaustively searches all r such that ∆(xj , r) ≤ �n/4�.
Because the receiver is stateless and only has public inputs, the unbounded
channel can compute the receiver’s output distribution for word r. There are
two cases: (1) if for some r the receiver would fail to output mj with probability
≥ 1/2, the channel corrupts xj as r, sends it to the receiver, and halts; (2)
otherwise, the channel sends xj uncorrupted and makes the next query.
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We now need only argue that the case (1) eventually occurs for some query.
By the Plotkin bound, for some j there exists i < j and an r such that ∆(xi, r) ≤
�n/4� and ∆(r,xj) < n/4. Suppose that for queries 1, . . . , j − 1, case (1) did
not occur. Then by this assumption, on input r the receiver outputs mi with
probability ≥ 1/2. Therefore r is close enough to xj but fails to decode to mj

with probability at least 1/2, and we are done.
For large alphabets, a similar argument works with only two distinct message

queries.
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