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Abstract. A new approach to attack A5/1 is proposed. The proposed
attack is a refinement of a previous attack by Ekdahl and Johansson.
We make two important observations that lead to a new attack with
improved performance.

1 Introduction

The security of GSM conversation is based on usage of the A5 family of stream
ciphers. Many hundred million customers in Europe are protected from the over-
the-air piracy by the stronger version in this family, the A5/1 stream cipher.
Other customers on other markets use the weaker version A5/2. The approximate
design of A5/1 was leaked in 1994, and in 1999 the exact design of both A5/1
and A5/2 was discovered by Briceno [1]. As the result, a lot of investigations of
the A5 stream ciphers were done.

The first analysis of the A5/1 cipher resulted in “Guess-and-Determine” type
of attacks [2]. Then a time-memory trade-off attack was proposed by Biryukov,
Shamir, and Wagner [3], which in some cases can break A5/1 in seconds. Unfortu-
nately, it needs to use a huge precomputational time and about 4×73Gb of hard
memory. The attack complexity grows exponentially depending on the length of
the LFSRs in the design of the cipher. Another attack was presented by Biham
and Dunkelman [4]. Their attack breaks the cipher within 239.91 A5/1 clocking
assuming 220.8 bits of keystream available. This attack has expensive assymp-
totic behaviour. In 2002, Krause, [5] presented a general attack on LFSR-based
stream ciphers, called BDD-based cryptanalysis. This attack requires compu-
tation complexity of nO(1)2an, a < 1 polynomial time operations, where a is a
constant depending on the cipher and n is the combined shift registers length.
For A5/1, the attack achieves a = 0.6403, so the complexity is again exponential
in the shift registers length.

A completely different way to attack A5/1 was proposed by Ekdahl and
Johansson in 2001 [6]. The attack needs a few minutes for computations, and
2-5 minutes of conversation (plaintext). The idea behind the attack came from
correlation attacks. This is the only attack for which the complexity does not
grow exponentially with the shift register length.

Finally, very recently Barkan, Biham and Keller [7] investigated the usage of
the A5 ciphers in GSM. They demonstrated an active attack where a false base
station can intercept a conversation and perform a man in the middle attack.
By asking for usage of the weak A5/2 algorithm in the conversation with the
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base station and then breaking it, the false base station finds the session key
which is also used in the A5/1 protected conversation with the mobile unit. In
[7] the authors also propose the passive memory-time trade-off ciphertext only
attack. As one of the examples, if 5 minutes of conversation is available, then the
attack needs one year of precomputations with 140 computers working together,
22×200GBs hard discs. Then the attack can be done in time 228 by one PC.
Obviously, the authors did not try to implement the attack and the complexity
was just estimated.

In this paper a new approach to attack the A5/1 stream cipher is proposed.
We consider the Ekdahl-Johansson attack as the basis, and apply several new
improvements. As the result, the new attack now needs only less then 1 minute
of computations, and a few seconds of known conversation. It does not need any
notable precomputation time, and needs reasonable space of operation memory.

For the case of a ciphertext-only attack on A5/1, we use the fact that some
redundancy is part of the plaintext. There are at least two kinds of redundancy
that are explicit and may be used in an attack where only ciphertext is available.
The first kind is the fact that coding is done before encryption, which results
in linear relationships in the plaintext since the parity check symbols are also
encrypted. This observation was used in [7]. The second kind of redundancy is
the fact that during silence, a special frame including a large number of zeros is
sent [8]. Silence occurs very often, but unfortunately these frames used for silence
are transmitted less frequently, one to initialise a period of silence and then two
each second. The attack that we propose can be considered in a ciphertext-only
scenario, in which case we use this redundancy during silence to get some known
outputs from the cipher.

Although several of the previous attacks are sufficient to break A5/1 in a
known plaintext attack, we believe that further progress is very important. The
A5/1 stream cipher is perhaps the most used cipher in the world, and from the
wireless communication channel interception of the communication is very easy.
Mobile base stations are not expensive to buy and they can be used to record
GSM conversations.

The paper is organized as follows. In Section 2 a short description of the cipher
A5/1 is given. The basic Ekdahl-Johansson attack on A5/1 is briefly described
in Section 3. Then, in Section 4, we give new ideas to improve the attack in
general. The details and particulars of the attack simulations are described in
Section 4.2. Then in Section 5 the results of our simulations are presented.

2 Description of A5/1

A GSM conversation between A and B is a sequence of frames, each sent in
about 4.6 milliseconds. Each frame consists of 228 bits – 114 bits of which is the
message from A to B, and the second half bits are representing communication
from B to A. One session is encrypted with a secret session key K. For the jth
frame the running key generator is initialised with mixture of K and the publicly
known frame counter, denoted by Fj . It then generates 228 bits of running key
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for the current frame. The ciphertext is a binary xor of the running key and the
plaintext.

A5/1 consists of 3 LFSRs of lengths 19, 22,
and 23, which are denoted R1, R2, and R3, respec-
tively. The LFSRs are clocked in an irregular fash-
ion. Each of them has one tap-bit, C1, C2, and C3,
respectively. In each step, 2 or 3 LFSRs are clocked,
depending on the current values of the bits C1, C2,
and C3. Thus, the clocking control device imple-

values of clocking
C1 C2 C3 R1 R2 R3

1 ⊕ c c c × √ √
c 1 ⊕ c c

√ × √
c c 1 ⊕ c

√ √ ×
c c c

√ √ √

ments the majority rule, shown in the table on the right. Note, for each step the
probability that an individual LFSR is being clocked is 3/4.

After the initialisation procedure for the LFSRs, 228 bits of running key are
produced, using irregular clocking. In each step one bit of the running key is
calculated as the binary xor of the current output bits from the LFSRs.

The initialisation process uses the session key K and the known frame counter
Fn. First the LFSRs are initialised to zero. They are then clocked 64 times,
ignoring the irregular clocking, and the key bits of K are consecutively xored in
parallel to the feedback of each of the registers. In the second step the LFSRs
are clocked 22 times, ignoring the irregular clocking, and the successive bits of
Fn are again xored in parallel to the feedback of the LFSRs. Let us call the state
of LFSRs at this time the initial state of the frame. In the third step the LFSRs
are clocked 100 times with irregular clocking, but ignoring outputs. Then, the
LFSRs are clocked 228 times with the irregular clocking, producing 228 bits of
the running key. For a more detailed description of A5/1 we refer to [1].
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Fig. 1. The structure of A5/1 cipher
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3 A Short Description of the Ekdahl-Johansson Attack
on A5/1

This attack was proposed in 2002 by Ekdahl and Johansson. The idea behind
the attack came from correlation attacks, and is based on the linearity of the
initialisation procedure. The attack needs a set of m frames (about 20000-50000
in their attack), during one session, i.e., when the session key K is not changed.

For notation purposes, let the key K = (k1, . . . , k64), and the frame counter
Fj = (f1, . . . , f22), where ki, fj ∈ F2, i = 1..64, j = 1..22. Denote by uj

1(l1),
uj

2(l2), and uj
3(l3) the output bits of LFSRs, if they are independently clocked

l1, l2, and l3 times, respectively, after the LFSRs being in the initial state, and
when the current frame is number j. The 228 bits of the running key are then
denoted as vj(101), . . . , vj(100+228), and every vj(t) = uj

1(l1)⊕uj
2(l2)⊕uj

3(l3),
for some unknown l1, l2, l3.

Note, that uj
1(l1) is a linear combination of K and Fj bits, since all operations

before the initial state are linear. I.e., uj
1(l1) can be represented as uj

1(l1) =
X1,l1(Fj) + Y1,l1(K), where X1,l1(Fj) is a known fixed value and Y1,l1(K) =
∑64

i=1 y1,l1,i · ki is a linear function with known coefficients y1,l1,i ∈ F2.
With the same arguments we define

uj
1(l1) = X1,l1(Fj) + Y1,l1(K),

uj
2(l2) = X2,l2(Fj) + Y2,l2(K),

uj
3(l3) = X3,l3(Fj) + Y3,l3(K),

where Xa,la(Fj) and the coefficients ya,la,i ∈ F2, for a = 1, 2, 3, la = 0, 1, . . . , 100+
228, i = 1, . . . , 64 are precomputed and fixed. Let us write

s1(l1) = Y1,l1(K), s2(l2) = Y2,l2(K), s3(l3) = Y3,l3(K). (1)

Our target is to estimate 19 bits from the first LFSR s1(0), . . . , s1(18), 22
bits from the second LFSR s2(0), . . . , s2(21), and 23 bits from the third LFSR
s3(0), . . . , s3(22). These 64 bits map one-to-one to 64 bits of the key K, if the
frame counter Fj is given.

For notation purposes we write E
p
= Ê, when Ê appears to be an estimator

for E, such that Pr{E = Ê} = p, for some probability p. Ê can be derived from
accessible data, or assumed (guessed).

One can think about the data we have access to as a binary table of m frames
in the form ⎛

⎜
⎜
⎜
⎝

v1(101) v1(102) . . . v1(100 + 228)
v2(101) v2(102) . . . v2(100 + 228)

...
vm(101) vm(102) . . . vm(100 + 228)

⎞

⎟
⎟
⎟
⎠

.

The idea behind the attack is to observe that vj(101)
p
= s1(l1) + s2(l2) +

s3(l3) + X1,l1(Fj) + X2,l2(Fj) + X3,l3(Fj) for some p �= 1/2, if l1, l2, l3 are
chosen properly. The probability p = 1

2 + 1
2Pr{(l1, l2, l3) at time t}, where

Pr{(l1, l2, l3) at time t} is the probability that at time 101 the LFSRs were
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regularly clocked exactly l1, l2, l3 times, respectively. The probability that at
time t ∈ {101 . . . 100 + 228}, the LFSRs have been clocked (l1, l2, l3) times is

Pr{(l1, l2, l3) at time t} =

(
t

t−l1

)(
t−(t−l1)

t−l2

)(
t−(t−l1)−(t−l2)

t−l3

)

4t
. (2)

Let us now define the known value Ôj
l1,l2,l3

(t) = vj(t)⊕X1,l1(Fj)⊕X2,l2(Fj)⊕
X3,l3(Fj). Then

Ôj
l1,l2,l3

(t)
p
= s1(l1) ⊕ s2(l2) ⊕ s3(l3). (3)

The case when Ôj
l1,l2,l3

(t) is equal to the value s1(l1) ⊕ s2(l2) ⊕ s3(l3) can
happen only in two ways,
a) The LFSRs are really clocked l1, l2, l3 at time t, happening with probability

Pr{(l1, l2, l3) at time t}. If so, the expression will be true with probability 1.
b) If the condition in a) is not fulfilled, the expression will still be true with

probability 1/2.

This means that the relation (3) is biased (p > 1/2).
From the given frames we can estimate many of the linear combinations

s1(l1)⊕s2(l2)⊕s3(l3) for different triples (l1, l2, l3). But we only need 64 correct
estimates in order to recover the key K uniquely.

To minimise the amount of frames m and perform the estimation with
low probability of error, Ekdahl and Johansson suggested to use the values of
vj(101), . . . , vj(164) for all j for better estimation of s1(l1)⊕s2(l2)⊕s3(l3). They
used the expression

Pr{s1(l1) ⊕ s2(l2) ⊕ s3(l3) = 1, for the frame j} = pj
(l1,l2,l3)

=

=
∑

t∈{101...164}
Pr{(l1, l2, l3) at time t} ·

[
Ôj

l1,l2,l3
(t) = 0

]

+ 1/2 ·
⎛

⎝1 −
∑

t∈{101...164}
Pr{(l1, l2, l3) at time t}

⎞

⎠ .

This probability gives the estimation of the corresponding linear combination
for one frame j. We will increase the possibility to estimate the value of s1(l1)+
s2(l2)+s3(l3) correctly, when m frames (samples) v1(101 . . . 328), . . . , vm(101 . . .
328) are given, as each of them provides some small contribution. By calculating
the likelihood ratio

Λl1,l2,l3 =
m∑

j=1

log2

[
pj
(l1,l2,l3)

1 − pj
(l1,l2,l3)

]

we achieve a likelihood value (estimate) which is taken over all m frames. This
can be turned into a binary estimate by

s1(l1) ⊕ s2(l2) ⊕ s3(l3)
p
=

{
0 if Λl1,l2,l3 ≥ 0
1 if Λl1,l2,l3 < 0 ,

where p > 0.5 depends mainly on m. In [6] the authors finally examine different
strategies for implementing the recovery of the key bits as efficient as possible.
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4 Explaining the New Attack

In this section we describe our discovered improvements in general. Our main
purpose is to reduce the number of frames m, which is needed for the attack.

4.1 Statistical Analysis of m Frames

We mentioned before that we have identified two general ideas for improving the
previous results. The first is the fact that it is beneficial to study the derivative
sequences instead of the sequences themselves. Assume that at time t the LFSRs
are clocked l1, l2, and l3 times, respectively. Then we also assume that at time
t + 1 the third LFSR is not clocked. In this case we have the equalities,

Ôj
l1,l2,l3

(t) = s1(l1) ⊕ s2(l2) ⊕ s3(l3),

Ôj
l1+1,l2+1,l3

(t + 1) = s1(l1 + 1) ⊕ s2(l2 + 1) ⊕ s3(l3).
(4)

Then the probability Pr{Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2+1,l3

(t + 1) = s1(l1) ⊕ s2(l2) ⊕ s1

(l1 + 1) ⊕ s2(l2 + 1)} = 1
4 · Pr{(l1, l2) at time t}, where

Pr{(l1, l2) at time t} =

(
t

t−l1

)(
l1

t−l2

)

23t−(l1+l2)
.

Note, that 1
4 · Pr{(l1, l2) at time t} > Pr{(l1, l2, l3) at time t} so it gives us a

larger bias when estimating the value of linear combinations of si(li)’s. Below is
a comparison of these probabilities.

(l1, l2, l3), t Pr{(l1, l2, l3) at t} · 104 1
4Pr{(l1, l2) at t} · 104

(76, 76, 76), 101 9.7434 22.1207
(79, 79, 79), 105 9.2012 21.2840
(80, 80, 80), 105 6.6388 19.3778
(79, 80, 81), 106 8.3858 20.8899
(82, 82, 82), 109 8.7076 20.5083

The first idea to improve the attack is then to consider two consecutive
expressions (4). Their sum only depends on two LFSRs, and the probability of
the event is higher than before. We also note that we can similarly assume that
LFSR-1 and LFSR-2 are not clocked at some time t. This gives us 3 cases. We
define

1ẑ
j
l2,l3

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1,l2+1,l3+1(t + 1)

p
= s2(l2) ⊕ s3(l3) ⊕ s2(l2 + 1) ⊕ s3(l3 + 1),

2ẑ
j
l1,l3

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2,l3+1(t + 1)

p
= s1(l1) ⊕ s3(l3) ⊕ s1(l1 + 1) ⊕ s3(l3 + 1),

3ẑ
j
l1,l2

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2+1,l3

(t + 1)
p
= s1(l1) ⊕ s2(l2) ⊕ s1(l1 + 1) ⊕ s2(l2 + 1).

(5)
The case when 3ẑ

j
l1,l2

(t) is equal to the value s1(l1) ⊕ s2(l2) ⊕ s1(l1 + 1) ⊕
sj
2(l2 + 1) can happen in two ways,
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a) The first and the second LFSRs are indeed clocked l1, l2 times at time t
occuring with probability Pr{(l1, l2) at time t}, AND at time t+1 the third
LFSR is not clocked, with probability 1/4. The expression is always true in
this case.

b) If the condition in a) is not fulfilled the expression will still be true with
probability 1/2.

The second idea is to consider d consecutive estimators jointly as one d-
dimension estimator. If we look at the sequence of d estimators of the form
3ẑ

j
l1,l2

(t), . . . ,3 ẑj
l1+d−1,l2+d−1(t + d − 1), then we note that they are dependent

on each other. To use this fact we suggest to consider not binary expressions,
but vectors of d bits. Introduce a new d-bits vector, derived from the frame j,

3Ẑj
l1,l2

(t) =

⎛

⎜
⎜
⎜
⎜
⎝

3ẑ
j
l1,l2

(t)

3ẑ
j
l1+1,l2+1(t + 1)

...
3ẑ

j
l1+d−1,l2+d−1(t + d − 1)

⎞

⎟
⎟
⎟
⎟
⎠

(6)

=

⎛

⎜
⎜
⎜
⎝

vj(t) ⊕ vj(t + 1) ⊕ X1,l1(j) ⊕ X2,l2(j) ⊕ X1,l1+1(j) ⊕ X2,l2+1(j)
vj(t + 1) ⊕ vj(t + 2) ⊕ X1,l1+1(j) ⊕ X2,l2+1(j) ⊕ X1,l1+2(j) ⊕ X2,l2+2(j)

...
vj(t + d − 1) ⊕ vj(t + d) ⊕ X1,l1+d−1(j) ⊕ X2,l2+d−1(j) ⊕ X1,l1+d(j) ⊕ X2,l2+d(j)

⎞

⎟
⎟
⎟
⎠

.

Define the d-dimension vector 3Sl1,l2 (which is unknown for the attacker) as

3Sl1,l2 =

⎛

⎜
⎜
⎜
⎝

s1(l1) + s2(l2) + s1(l1 + 1) + s2(l2 + 1)
s1(l1 + 1) + s2(l2 + 1) + s1(l1 + 2) + s2(l2 + 2)

...
s1(l1 + d − 1) + s2(l2 + d − 1) + s1(l1 + d) + s2(l2 + d)

⎞

⎟
⎟
⎟
⎠

. (7)

Then, from (5) it follows that

3Sl1,l2
p
= 3Ẑj

l1,l2
(t), (8)

with some biased probability p. Note that the symbols are now of alphabet size
2d.

Examining this in more detail, consider d consecutive irregular steps. The
total number of possible scenarios is 4d, since in each step one of four types
of irregular clockings can be chosen, according to the bits C1, C2, C3. If we as-
sume that at time t the first and the second LFSRs are clocked exactly l1, l2
times, then we can classify the bits of the vector 3Ẑj

l1,l2
(t). They can be either

Correct (i.e., the next clocking is the required one so the bit has the same value
as the corresponding bit in the vector 3Sl1,l2), or Random (i.e., the bit can be 0
or 1, with probability 1/2). For each possible pattern {Correct,Random}d we
calculate the corresponding number of scenarios out of 4d possible, by exhaus-
tively trying all the scenarios. For example, when d = 4, we have the following
distribution:
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3Ẑj
l1,l2

(t)
Condition 3ẑ

j
l1,l2 3ẑ

j
l1+1,l2+1 3ẑ

j
l1+2,l2+2 3ẑ

j
l1+3,l2+3 Probability Event

(t) (t + 1) (t + 2) (t + 3)
Assumption Random Random Random Random 1 − P0 ER

is NOT correct
Assumption Correct Correct Correct Correct P0 · 1/28 E0
is correct Random Correct Correct Correct P0 · 1/28 E1

Correct Random Correct Correct P0 · 1/28 E2
Random Random Correct Correct P0 · 1/28 E3
Correct Correct Random Correct P0 · 1/28 E4
Random Correct Random Correct P0 · 1/28 E5
Correct Random Random Correct P0 · 1/28 E6
Random Random Random Correct P0 · 1/28 E7
Correct Correct Correct Random P0 · 3/28 E8
Random Correct Correct Random P0 · 3/28 E9
Correct Random Correct Random P0 · 3/28 E10
Random Random Correct Random P0 · 3/28 E11
Correct Correct Random Random P0 · 11/28 E12
Random Correct Random Random P0 · 11/28 E13
Correct Random Random Random P0 · 43/28 E14
Random Random Random Random P0 · 171/28 E15

where P0 = Pr{(l1, l2) at time t} and
the assumption is that the first two
LFSRs have clocked (l1, l2) at time t.

Let us assume that we have received
the vector 3Ẑj

l1,l2
(t) = (0, 1, 1, 0)T

at time t from the frame j. If
we consider the hypothesis that
3Sl1,l2 = (0, 0, 1, 1), then the error
pattern is Ed = 3Sl1,l2 ⊕ 3Ẑj

l1,l2
(t) =

(0, 1, 0, 1). This error pattern Ed can
be the result of one of the follow-
ing events: ER, E10, E11, E14, E15.
Thus, the conditional probability
Pr{3Sl1,l2 = (0, 0, 1, 1)|3Ẑj

l1,l2
(t) = (0, 1,

1, 0)} = Pr{Ed = (0, 1, 0, 1)} =
Pr{ER}

24 + Pr{E10}
22 + Pr{E11}

23 + Pr{E14}
23 +

Pr{E15}
24 = (1 − P0)/24 + P0 · 275/212.

Continuing in this way, the complete
table for Pr{Ed} can be derived. The

Ed = 3Sl1,l2 ⊕ 3Ẑj
l1,l2

(t)
Ed Pr{Ed}

(0, 0, 0, 0) (1 − P0)/24 + P0 · 431/212

(1, 0, 0, 0) (1 − P0)/24 + P0 · 229/212

(0, 1, 0, 0) (1 − P0)/24 + P0 · 293/212

(1, 1, 0, 0) (1 − P0)/24 + P0 · 183/212

(0, 0, 1, 0) (1 − P0)/24 + P0 · 341/212

(1, 0, 1, 0) (1 − P0)/24 + P0 · 199/212

(0, 1, 1, 0) (1 − P0)/24 + P0 · 263/212

(1, 1, 1, 0) (1 − P0)/24 + P0 · 173/212

(0, 0, 0, 1) (1 − P0)/24 + P0 · 377/212

(1, 0, 0, 1) (1 − P0)/24 + P0 · 211/212

(0, 1, 0, 1) (1 − P0)/24 + P0 · 275/212

(1, 1, 0, 1) (1 − P0)/24 + P0 · 177/212

(0, 0, 1, 1) (1 − P0)/24 + P0 · 323/212

(1, 0, 1, 1) (1 − P0)/24 + P0 · 193/212

(0, 1, 1, 1) (1 − P0)/24 + P0 · 257/212

(1, 1, 1, 1) (1 − P0)/24 + P0 · 171/212

distribution for d = 4 is given as in the
table on the right.
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For each frame j and for each vector (b0, . . . , bd−1)T we calculate

Pr{3Sl1,l2 = (b0, . . . , bd−1)T in jth frame} = 3p
j
l1,l2

(b0, . . . , bd−1)

=
∑

t∈{101...164}
Pr{(l1, l2) at time t} · Pr{Ed = 3Ẑj

l1,l2
(t) ⊕ (b0, . . . , bd−1)T }

+
1
2

⎛

⎝1 −
∑

t∈{101...164}
Pr{(l1, l2) at time t}

⎞

⎠ .

(9)

All the m frames give us a more precise estimation:

Pr{3Sl1,l2 = (b0, . . . , bd−1)T } = 3pl1,l2(b0, . . . , bd−1)

=
m∏

j=1
3p

j
l1,l2

(b0, . . . , bd−1) = 2
∑m

j=1 log2 (3pj
l1,l2

(b0,...,bd−1)).
(10)

In this formula the last two values should both be divided by a factor equal
to their sum over all possible values of (b0, . . . , bd−1). This factor has been
left out because we are really interested in the relative values of the proba-
bilities for different values of (b0, . . . , bd−1). To simplify numerical calculations,
3pl1,l2(b0, . . . , bd−1) can be normalised through division by any constant.

We have just found the way how to calculate the probability Pr{3Sl1,l2 =
(b0, . . . , bd−1)T }, for every d-dimension value (b0, . . . , bd−1)T . In a similar fash-
ion, based on the equation (5), we can derive the d-dimension vectors 1Ẑj

l2,l3
(t)

and 2Ẑj
l1,l3

(t), and then define the vectors 1Sl2,l3 and 2Sl1,l3 . The formulas to cal-
culate Pr{1Sl2,l3 = (b0, . . . , bd−1)T } and Pr{2Sl1,l3 = (b0, . . . , bd−1)T } are similar
to equations (9) and (10).

Finally, we have a set of h tables like Pr{rSli,lj = (b0, . . . , bd−1)}. If we
“guess” the key K̂, then in each such distribution table one row (probability)
can be selected, corresponding to K̂. The measure of likelihood acceptance of K̂
is the product of the selected probabilities through all the h tables.

Our task is then to select a set of “guessed” keys K̂ with maximum probabil-
ities, and then perform a test whether the real key K can be one of the selected.
More details depend on the exact structure of simulations, which we discuss in
the next section.

4.2 Creating Candidate Tables of s(l)-Sequences

In the previous subsection we have found how to create a distribution table
for d-dimension random variables rSli,lj . If we have h such distributions, then
a “guessed” key K̂ is measured by its probability, as described above. We are
now faced with the problem of how to select the most likely K̂’s in an efficient
way. For this purpose we partly use the idea that was introduced in the Ekdahl-
Johansson attack, but in a modified way. In this section we show the technical
details of searching for the best K̂’s, and focus on computation aspects.
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The idea is that first we choose some interval I1 = [I1,a . . . I1,b] and then we
construct h1 distribution tables for 3Sl1,l2 , where l1, l2 ∈ I1. I.e., the number of
distribution tables will be h1 = (I1,b − I1,a + 1)2, and the number of s1(l)’s and
s2(l)’s that are involved in the linear expressions for 3Sl1,l2 is 2·(I1,b−I1,a+1+d),
see formula (7).

Let us consider some choice of values for s1(I1,a), . . . , s1(I1,b+d), s2(I1,a), . . . ,
s2(I1,b +d) to be a pair of vectors (S1,I1 ,S2,I1) (note, the vector of interest ends
with I1,b + d, rather then I1,b + d − 1; the reason can be seen from (7), where
l1, l2 ∈ I1), i.e.,

(s1(I1,a), . . . , s1(I1,b + d), s2(I1,a), . . . , s2(I1,b + d))
p
= (S1,I1 ,S2,I1). (11)

The measure of the choice is the probability mass defined as
∏

l1,l2∈I1

Pr{3Sl1,l2 |(S1,I1 ,S2,I1)}. (12)

Now, by exhaustive search the most likely r pairs (S1,I1 ,S2,I1) form a set
3TI1 = {(S1,I1 , S2,I1)}. The size of the exhaustive search is 22·(I1,b−I1,a+1+d).
In a similar way we can perform the same exhaustive search to create the sets
1TI1 = {(S2,I1 ,S3,I1)} and 2TI1 = {(S1,I1 , S3,I1)}, each containing the r most
likely candidates.

To understand better how the exhaustive search for 3TI1 is done, one can
think of the matrix multiplication:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 . . . 0 0 . . . 0 0 0 . . . 0 0 1 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 . . . 0 0 0 . . . 0 0 0 0 0 0 . . . 1 1 0 . . . 0 0 0 . . . 0 0
1 1 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 1 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 . . . 0 0 0 . . . 0 0 0 0 0 0 . . . 0 1 1 . . . 0 0 0 . . . 0 0
...

...
0 0 0 . . . 0 0 . . . 1 1 0 . . . 0 0 0 0 0 0 . . . 0 0 0 . . . 1 1 0 . . . 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . 0 0 0 . . . 1 1 0 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1(Ia)
...

s1(Ib + d)
s2(Ia)

...
s2(Ib + d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3ZIa,Ia

3ZIa,Ia+1

...

3ZIb,Ib

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where for every “guessed” vector (S1,I1 ,S2,I1) (exhaustive search) the set of
vectors 3Sl1,l2

p
= 3Zl1b,l2 is determined uniquely by the matrix multiplication.

We can then calculate the value of our choice by formula (12). After that, the
most likely r pairs are selected and stored in the list (or table) 3TI1 .

Recall that to recover the key K uniquely, we need to have 64 bits: 19 bits of
s1(l)’s, 22 bits of s2(l)’s, and 23 bits of s3(l)’s. It means that for d = 4 it might
be enough to have only one interval I1 of size 19. When we try to reduce the
number of frames m needed for the attack, then there are two reasons for why
this simple scenario is not working:
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a) to create one likelihood table 3TI1 the exhaustive search will be of size
22·(19+4) = 246 – this is practically impossible;

b) when the number of frames m is reduced, then the number of candidates r
must be increased significantly, so that the correct pairs are present in the
tables 1TI1 , 2TI1 , and 3TI1 . Otherwise, the joint intersection of these sets
will not give us the correct triple (S1,I1 ,S2,I1 ,S3,I1).

To overcome these problems, we could take I1 of a short size, and introduce
one more interval, I2 = [I2,a . . . I2,b], and then we construct two kinds of tables
∗TI1 and ∗TI2 each of size r. We need to take I2 such that it intersects I1, other-
wise the intersection would be r2, and, hence, r cannot be large. Now in a similar
way we can create the sets 1TI2 = {(S2,I2 ,S3,I2)}, 2TI2 = {(S1,I2 ,S3,I2)}, and
3TI2 = {(S1,I2 ,S2,I2)}, each containing the r most likely pairs, the measure of
which is calculated similar to the formula (12). Due to the intersection

Si,I1×Si,I2 =

{
Si,I1∪I2 , if the end of Si,I1 corresponds to the beginning of Si,I2

∅, otherwise

the intersection of these two sets is

3TI1∪I2 = 3TI1 ∩ 3TI2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(S1,I1∪I2 ,S2,I1∪I2) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(S1,I1 ,S2,I1) ∈ 3TI1

(S1,I2 ,S2,I2) ∈ 3TI2

S1,I1 × S1,I2 �= ∅
S2,I1 × S2,I2 �= ∅

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The larger the intersection of the intervals I1 and I2, the smaller the inter-
section set, i.e. |3TI1∪I2 | � |3TI1 | · |3TI2 | = r2. Let us call this type of intersec-
tions as horizontal intersection. Similar horizontal intersections are 1TI1∪I2 and
2TI1∪I2 .

By vertical intersection we call the intersections of the form:

1,2TIi
= 1TIi

∩ 2TIi
=

{

(S1,Ii ,S2,Ii ,S3,Ii) :

{
(S2,Ii

,S3,Ii
) ∈ 1TIi

(S1,Ii ,S3,Ii) ∈ 2TIi

}

,

and 2,3TIi
, 1,3TIi

are defined in a similar way. One more triple vertical intersec-
tion is defined as

1,2,3TIi = 1TIi ∩2TIi ∩3TIi =

⎧
⎪⎨

⎪⎩
(S1,Ii ,S2,Ii ,S3,Ii) :

⎧
⎪⎨

⎪⎩

(S2,Ii ,S3,Ii) ∈ 1TIi

(S1,Ii
,S3,Ii

) ∈ 2TIi

(S1,Ii
,S2,Ii

) ∈ 3TIi

⎫
⎪⎬

⎪⎭
.

4.3 Design of Intervals

Let us take one interval I ′
1 = [87 . . . 97]. Two extreme situations are when

(l1, l2) = (87, 87) and (l1, l2) = (97, 97). In each frame j there are only 228
bits are accessible vj(101), . . . , vj(100 + 228). In Figure 2 we see that the prob-
ability Pr{(l1, l2) at time t} for this interval gets its maximum value on around
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t ≈ (116 . . . 129). Hence, the bits around v(116) . . . v(129) give us the most infor-
mation about the d-dimension vectors, when l1, l2 ∈ I1. We can also say that for
this interval the informative bits are around v(105) . . . v(145), because for any
other v’s the probability is almost 0.
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0.008

0.009

0.01
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1
,l

2
)

at
ti

m
e

t}

Fig. 2. The density of Pr{(l1, l2) at time t} when (l1, l2) = (87, 87) and (l1, l2) =
(97, 97)

Let us now consider three more intervals I ′
2 = [63 . . . 73], I ′

3 = [165 . . . 175],
and I ′

4 = [231 . . . 241]. In Figure 3 the bounded densities for each interval are
shown. The interval I ′

2 is moved to the left below t < 101, where the valuable v’s
are unaccessible for us. It means that this choice is not appropriate. On the other
hand, the interval I ′

4 is moved to the right and very close to the right border of
accessible v’s. This interval can be considered as the last appropriate interval.
Also note that as the interval is moved to the righ the amplitute decreases, i.e.
the error probability of the random variables estimation is higher.

In our simulations we decided to choose the size of each interval to be 11.
Independently of the parameter d ≥ 1 in each table 3TIi

we store only the pairs
(S1,Ii

,S2,Ii
) of vectors each of size 12 bits only. The schematical structure of

intervals is depicted below in Figure 4.
Two neighbour intervals intersect in 6 positions, whereas the last d − 1 posi-

tions are assumed to be badly estimated (tail bits). I.e., any horizontal intersec-
tion of two tables 3TIi

and 3TIi+1 will be done by 12 bits (6 bits are s1(Ii+1),
. . . , s1(Ii+1 + 5), and similar 6 bits are s2(Ii+1), . . . , s2(Ii+1 + 5)). Also note
that any vertical intersection will be done in 12 bits also. The choice of this
structure of the intervals allowed us to introduce several efficient strategies to
intersect the tables.
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I′
1 = [87 . . . 97]

I′
2 = [63 . . . 73]

I′
3 = [165 . . . 175]

I′
4 = [231 . . . 241]

Fig. 3. The bounded densities for I′
1 = [87 . . . 97], I′

2 = [63 . . . 73], I′
3 = [165 . . . 175],

and I′
4 = [231 . . . 241]

+d=4Size=11

6 intersection bits

s69s70s71s72s73s74s75s76s77s78s79s80s81s82s83s84s85s86s87s88s89s90s91s92s93s94s95s96

I0 ⇒

I1 ⇒

I2 ⇒

. . .

...

Fig. 4. The structure of intervals used in simulations

Since the size of each interval is 11, it means that the number of distribution
tables of ∗Sli,lj -random variables is 112 = 121. When d = 4, the number of
variables involved in ∗Sli,lj ’s is 2 · (11 + 4) = 30. Hence, to create one ∗TIi-set
of the r most likelihood pairs, we need to perform an exhaustive search of size
230. The number of such sets ∗TIi

is 9 (3 intervals times 3 cases for ’*’).
In our simulations we have considered 28 intervals:

{
I0 = [69 . . . 79]
Ik = 6 · k + I0 for k = 1, 2, . . . , 27.

(13)

So, the last interval is I27 = [231 . . . 241] (see also Figure 3 ). When for a chosen
interval Ii we estimate the probability Pr{3Sl1,l2 = (b0, . . . , bd−1)T } with the
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formula (9), then we only need to look through the bits vj that are valuable for
Ii. Let us set the “window” of valuable bits to be of size 64, then, for example,
for the interval I1 on the Figure 3 the “window” is t1 = [101 . . . 164], for I3 ⇒
t3 = [203 . . . 266], and for I4 ⇒ t4 = [266 . . . 329]. Actually, the “window” can
be less, but 64 bits completely cover the most valueable v’s for any interval Ii.

The likelihood sets ∗TIi
, each containing r pairs, can be presented in the

following table:

I0 I1 . . . I27

Case 1 1TI0 =
(S2,I0 ,S3,I0)

1TI1 =
(S2,I1 ,S3,I1)

1TI27 =
(S2,I27 ,S3,I27)

Case 2 2TI0 =
(S1,I0 ,S2,I0)

2TI1 =
(S1,I1 ,S2,I1)

2TI27 =
(S1,I27 ,S2,I27)

Case 3 3TI0 =
(S1,I0 ,S2,I0)

3TI1 =
(S1,I1 ,S2,I1)

3TI27 =
(S1,I27 ,S2,I27)

The time complexity to form these data is O(3 ·28 · (112 ·2d ·m ·64+222+2d)).
This is because there are 84 sets ∗Ti; to create each set requires 112 distribution
tables of size 2d; to calculate each value in the table requires m · 64 operations;
and the exhaustive search complexity for each set is 222+2d.

4.4 Strategies for Intersection of the Tables ∗TIi

When the first part of the attack is done, the second part is just intersection of
the sets until we get the set of triples 1,2,3T∗ of appropriate size. Here are several
strategies that we can follow to achieve our goal:

I. Intersection of 9 tables, large r. Try all triples of intervals (Ik, Ik+1, Ik+2),
for k = 0, 1, . . . , 25. The intersection of 9 tables gives us the
table 1,2,3TIk∪Ik+1∪Ik+2 of triples (S1,Ik∪Ik+1∪Ik+2 ,S2,Ik∪Ik+1∪Ik+2 ,
S3,Ik∪Ik+1∪Ik+2). Each S contains 24 bits, but we need only 19, 22, and
23 bits for LFSR-1, LFSR-2, and LFSR-3, respectively. We can do first
vertical intersections and get 1,2,3TIi

, and then perform horizontal inter-
section. Since any of the intersections is done by 12 bits, the number of
the most likely pairs in ∗TIi

can be quite large. For this strategy we can
safely use r ≈ 50000;

II. Intersection of 6 tables, medium r. The same as Strategy I, but for each
interval one table is discarded. We just assume that the discarded tables
do not contain the correct pairs. Then perform the intersection of the
remaining 6 tables. The number of assumptions is 33. The parameter r is
about r ≈ 30000.

III. Intersection of 4 tables, small r. Try all pairs of intervals (Ik, Ik+2), for
all k = 0, 1, . . . , 25. We assume also that one of the tables ∗TIk

and one
of ∗TIk+2 do not contain the correct pair. The number of assumptions is
32. For the remaining 4 tables we perform the intersection. Note, there is
no horizontal intersection, but only 2 vertical intersections, one for Ik and
one for Ik+2. Due to this the critical value for the parameter r is about
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r ≈ 10000. The appropriate choice of the intersection scheme made this
strategy work.

IV. Intersection of 4 tables, small r, version 2. The same as Strategy III,
but the pairs of intervals (Ik1 , Ik2) can be so that k1 = 0, 1, . . . , 25, and
k2 = k1 + 2, . . . , 28. Unfortunately, it can happen that some outputs from
LFSR’s in the second interval Ik2 will be a linear combination of s(l)’s from
Ik1 . For LFSR-1, the size of which is 19, it is not very critical because we
achieve 24 bits of information. It means that even if 5 bits will depend
on others, we still have a full rank in translation from s(l)’s to 19 bits of
the key K. It is more critical for LFSR-3, which is of length 23. Anyway,
if the system will not be of full rank, then some bits we can just guess.
That makes this strategy work in general (implementation is then more
complicated).

V. Heuristic procedure, r is dynamic. Can be introduced in the following way:
If in some step for some intersection T′ ∩T′′ we get ∅, or a very small set,
then increase the value r for T′ and T′′ selectively, until their intersection
give us a set of size at least r0, for some threshold value. Thus, we can
start creating the sets ∗TIi with a small value of r, and then increase it
selectively, when necessary.

So, here is a wide choice to choose a strategy. In our simulations we have
tried several of them.

5 Simulation Results

The attack can basically be divided into three steps,

1) Statistical analysis of m frames,
2) Decoding process and generating the tables ∗TIi

,
3) Intersection of the tables and check estimated keys K̂.

For the first two steps we present the actual time. The attack was imple-
mented on Pentium-4, CPU 2.4GHz, 256Mb RAM, OS Windows XP Pro SP1.

1st step/ 2nd step m=2000 m=5000 m=10000
d=1 11 sec/ 18 sec 26 sec / 18 sec 58 sec / 18 sec
d=2 14 sec/ 8 min 32 sec / 8 min 72 sec / 8 min
d=4 40 sec/ 7 hrs 94 sec / 7 hrs 190 sec / 7 hrs

The measure of “goodness” of the attack can be expressed in terms of the
number of frames m needed and its success rate. The attack was successfully
implemented on a usual PC-computer, and it performs the attack from several
seconds to several minutes, depending on the choice of strategy, and parameters
m, d, and r.

Success rate of the attack depends on the choice of the design parameters d
and r, and the strategy that is used. For some values of m and d here we present
in Figure 5 the plots for the probabilities:

Pr{ the correct vector is in ∗TIi , for given parameter r}.
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When the tables are constructed, in the intersection process it is very impor-
tant that the correct pair is present in the corresponding table. Otherwise, the
intersection will never give us a correct key.

In Figure 5 we show the real estimated success rates for different strategies,
with different number of frames m and the attack design parameter d. In Fig-
ure 5 (upper left) consider the curve corresponding to d = 1 and to Strategy I,
when m = 10000 frames. For r = 15000 we have the success rate of the attack
around 58%, whereas for Strategies II-IV the success rate is almost 100%.
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Fig. 5. Strategies comparison for m = 10000 (top left), m = 5000 (top right), and m =
2000 (down left). The effect of d on the success rate on the example when m = 10000
and Strategy I is applied (down right)

From the plots below the Strategy IV looks the most attractive. In this strat-
egy we need to intersect only 4 tables, but the disadvantage is that there is no
horizontal intersection. And then after two vertical intersections we need to try
all possible combinations of elements in two tables. One more disadvantage is
that we could get some equation dependencies between two intervals, so then
the actual time complexity will grow. On the contrary, strategy III looks the
next the most attractive, and there are no problems with intervals. Since there
are no horizontal intersections in these strategies, this forces us to reduce the
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parameter r significantly. The critical value of this parameter is rcr = 10000,
and the optimal is ropt = 2000 from the computational and memory points of
view. Strategy II avoids such problems mostly because of the presence of vertical
intersections, which are intersecting on 12 bits.

A practical solution to overcome the time-memory problems related to inter-
sections of the tables can be the use of the Heuristic Strategy V, combined with
one of the previous strategies. The idea of Heuristic is to control the size of the
intersection. If the size is likely to be increased by some threshold criteria, then
try to increase the initial parameter r until the limit is reached, or solution is
found. Heuristic can also control the size of the tables independently, and this
will give the best performance of the attack.

Dramatic advantage of use the proper design parameter d is seen in the same
Figure 5. To make the advantage clearer, the bottom right subplot shows how
much we gain when d is 1, 2, and 4. When r = 15000, the change of the parameter
d from d = 1 to d = 2 significantly increases the success rate from 58% to 70%.
These simulations were done for m = 10000 frames, and with the application of
Strategy I.

Finally, we show the advantage of our attack in comparison with the previous
Ekdahl-Johansson attack in the following two tables:

Success Rate/ Ekdahl-Johansson Attack (2002)
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

Configuration 30000 50000 70000
(2m30s) (3m45s) (5m20s)

3 Intervals of size 7 0.02/(1min) 0.13/(2min) 0.49/(3min)
3 Intervals of size 8 0.02/(2min) 0.20/(3min) 0.57/(4min)
2 Intervals of size 9 0.03/(3min) 0.33/(4min) 0.76/(5min)

Success Rate/ Our Proposed Attack
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

Configuration 2000 5000 10000
(9sec) (43sec) (46sec)

St.I, d=2, r=10K 0.01/(8min) 0.05/(8min) 0.60/(8min)
St.II, d=1, r=5K 0.01/(29sec) 0.15/(44sec) 0.93/(76sec)
St.III, d=2, r=5K 0.02/(8min) 0.40/(8min) 0.99/(8min)
St.IV, d=2, r=5K 0.05/(10min) 0.85/(10min) 0.9999(10min)

6 Conclusions

We have demonstrated how two new ideas provide improved performance for
a correlation attack against A5/1. In simulation we get a high success rate for
only 2000-5000 frames, using very little computation. But there is still deviation
in performance depending on the strategies we choose, which means that there
may very well be further improvements to come if we can find the best attack
strategies. Another interesting topic is to examine how small m can be made if
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we allow a substantial increase in attack complexity. If m can be decreased a bit
further, ciphertext only attack may be practically possible, as discussed briefly
in the introduction of the paper.
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