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Abstract. We present new results in the framework of secure multi-
party computation based on homomorphic threshold cryptosystems. We
introduce the conditional gate as a special type of multiplication gate
that can be realized in a surprisingly simple and efficient way using just
standard homomorphic threshold ElGamal encryption. As addition gates
are essentially for free, the conditional gate not only allows for building
a circuit for any function, but actually yields efficient circuits for a wide
range of tasks.

1 Introduction

Homomorphic threshold cryptosystems provide a basis for secure multiparty
computation in the cryptographic model [FH96, JJ00, CDN01, DN03]. For a given
n-ary function f , one composes a circuit C of elementary gates that given encryp-
tions of x1, . . . , xn on its input wires, produces an encryption of f(x1, . . . , xn) on
its output wire. The elementary gates operate in the same fashion. The wires of
the entire circuit C are all encrypted under the same public key; the correspond-
ing private key is shared among a group of parties. It is customary to distinguish
addition gates and multiplication gates. Addition gates can be evaluated without
having to decrypt any value, taking full advantage of the homomorphic property
of the cryptosystem. Multiplication gates, however, require at least one thresh-
old decryption to succeed even for an honest-but-curious (passive) adversary.
To deal with a malicious (active) adversary, multiplication gates additionally
require the use of zero-knowledge proofs.

While the result of [FH96] covers the case of a passive adversary only, an inter-
esting feature is that it covers both the two-party case (n = 2) and the multiparty
case (n > 2) in a uniform way. The later papers [JJ00, CDN01, DN03] do cover
an active adversary, but only consider the multiparty case. In the present paper,
we are particularly interested in extending the use of homomorphic threshold
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cryptosystems to the two-party case. We observe that solutions based on ho-
momorphic threshold cryptosystems can be used just as well in the two-party
case. To cover fairness, however, an additional protocol is needed that allows two
parties to jointly decrypt the outputs in a gradual fashion. We present such a
protocol by showing how to adapt the decryption step of a homomorphic thresh-
old cryptosystem.

A major advantage of secure multiparty computation based on homomor-
phic threshold cryptosystems is the fact that it results in particularly efficient
solutions, even for active adversaries. The communication complexity, which is
the dominating complexity measure, is O(nk|C|) bits for [JJ00, CDN01, DN03],
where n is the number of parties, k is a security parameter, and |C| is the number
of gates of circuit C. A more detailed look at the performance of these solutions
reveals, however, that there is considerable room for improvement in several
respects.

It is assumed in [JJ00, CDN01, DN03] that the shared key for the homomor-
phic threshold cryptosystem used in the multiparty protocol is already given.
As a consequence, the communication complexity of O(nk|C|) bits does not
include the communication needed for the distributed key generation (DKG)
protocol of the underlying threshold cryptosystem. However, the performance
of the DKG protocol is an issue since we envision a system supporting ad hoc
contacts among a large group of peer users, where any pair of users may de-
cide to engage in a secure two-party computation for a dynamically agreed upon
function. For example, “profile matching” is an application in which two users
jointly test whether some function of their (personal) profiles exceeds a given
threshold, without divulging any further information on their profiles. In this
scenario, it is unreasonable to assume that each pair of users shares a specific
key pair for the underlying threshold cryptosystem. Instead, each time two users
want to perform a two-party computation, they would need to run the DKG
protocol first.

In this respect, an advantage of the Mix and Match approach of [JJ00] is its
applicability to any discrete log setting, whereas [CDN01, DN03] depend criti-
cally on an RSA-like setting (e.g., using Paillier’s cryptosystem). The advantage
is that DKG protocols for discrete log based cryptosystems are efficient and
relatively simple (see [Ped91, GJKR99]). In particular, DKG can be achieved
practically for free in the two-party case. This contrasts sharply with the known
protocols for distributed generation of a shared RSA modulus. Briefly, for the
two-party case (without a helper party), Gilboa [Gil99] reports a communica-
tion complexity of about 42MB (or 29MB for a slightly optimized version) for
generating a shared 1024-bit RSA modulus, while covering passive adversaries
only. And, for the multiparty case, the results of [ACS02] show what is currently
achievable, also covering passive adversaries only.

Interestingly, it is actually possible to combine the benefits of a discrete log
setting and an RSA-like setting, as demonstrated recently in [DJ03]. To this end,
one uses an amalgam of the ElGamal cryptosystem and the Paillier cryptosystem
(such a combination has also been presented in the full version of [CS02]). A
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system supporting ad hoc contacts may then be set up by jointly generating a
single RSA modulus (between as many parties as deemed necessary, e.g., using
a robust version of [ACS02]). A discrete log based DKG protocol will suffice
to generate a shared key between any two users. We do note however that the
security of the resulting system relies on both a discrete log related assumption
and a factoring related assumption, which is undesirable from a theoretical point
of view.

In this paper, we will focus on a solution for which the security depends
on the standard decisional Diffie-Hellman (DDH) assumption. As a consequence
our protocols can be implemented using elliptic curves, for which the security is
assumed to be exponential as a function of the security parameter rather than
sub-exponential (as for RSA, for example). The Mix and Match approach of
[JJ00] is also secure under DDH, but we note that the resulting protocol for
evaluating multiplication gates is—despite its conceptual simplicity—quite inef-
ficient. We will show how to evaluate multiplication gates in a much simpler way,
such that the computational effort decreases by at least one order of magnitude
(that is, a ten-fold speed-up is achieved, see Section 3.3). On the other hand, a
disadvantage of our approach is that, in general, the round complexity is O(nd)
for n parties and circuit depth d = d(C), versus O(n+d) for Mix and Match. For
two-party computation, however, the round complexity is O(d) in both cases,
and more generally for small n the gain in computational efficiency outweighs
the increased round complexity.

The basis of our approach is formed by the conditional gate, a special multipli-
cation gate which we show to be efficiently implementable under DDH. Basically,
a conditional gate allows us to efficiently multiply two encrypted values x and y,
as long as x is restricted to a two-valued domain, e.g., x ∈ {0, 1}. We emphasize
that the value of y is not restricted, e.g., we may have y ∈ Zq, where q is a large
prime. This property can be exploited when designing circuits for specific func-
tions. For example, from the formula (y′

0, y
′
1) = (y0 −x(y0 −y1), y1 +x(y0 −y1)),

with x ∈ {0, 1}, one sees that a conditional swap gate, swapping any two values
in Zq depending on the value of x, can be obtained using a single conditional
gate. We will indicate that, using ElGamal, one cannot expect to achieve a mul-
tiplication gate for which both inputs are unrestricted. Note, however, that the
result of [CDN01] shows that multiplication of two unrestricted values can be
achieved efficiently under a factoring related assumption.

Overview. Throughout the paper we will describe the results in a general set-
ting of n-party computation, n ≥ 2, although we are mainly interested in the
two-party case. In Section 2, we review the basics for homomorphic threshold
ElGamal. In Section 3, we introduce the conditional gate as our elementary mul-
tiplication gate, and we show how it can be used to achieve xor-homomorphic
ElGamal encryption efficiently. In Section 4, we then consider the secure eval-
uation of arbitrary circuits, following [CDN01], which we extend with a new,
non-interactive protocol for achieving private outputs. Furthermore, we propose
an efficient protocol for achieving fairness in the two-party case. In Section 5,
we show that particularly efficient circuits can be built for basic operations such
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as integer comparison, paying special attention to Yao’s well-known millionaires
problem in Section 5.2, for which we obtain a solution requiring 12m exponenti-
ations for m-bit integers. Finally, in Section 6, we conclude with future work and
give an example of a more advanced application which we call ‘profile matching’.

2 Preliminaries on Homomorphic Threshold ElGamal

Discrete Log Setting. Let G = 〈g〉 denote a finite cyclic (multiplicative) group of
prime order q for which the Decision Diffie-Hellman (DDH) problem is assumed
to be infeasible: given gα, gβ , gγ ∈R G, it is infeasible to decide whether αβ ≡ γ
(mod q). This implies that the Diffie-Hellman (DH) problem, which is to compute
gαβ given gα, gβ ∈R G, is infeasible as well. In turn, this implies that the Discrete
Log (DL) problem, which is to compute logg h = α given gα ∈R G, is infeasible.

Homomorphic ElGamal Encryption. For public key h ∈ G, a message m ∈ Zq

is encrypted as a pair (a, b) = (gr, gmhr), with r ∈R Zq. Encryption is addi-
tively homomorphic: given encryptions (a, b), (a′, b′) of messages m, m′, respec-
tively, an encryption of m + m′ is obtained as (a, b) � (a′, b′) = (aa′, bb′) =
(gr+r′

, gm+m′
hr+r′

).
Given the private key α = logg h, decryption of (a, b) = (gr, gmhr) is per-

formed by first calculating b/aα = gm, and then solving for m ∈ Zq. In general,
this is exactly the DL problem, which we assume to be infeasible. The way out
is to require that message m is constrained to a sufficiently small set M ⊆ Zq.1

In this paper, the cardinality of M will be very small, often |M | = 2.
Homomorphic ElGamal encryption is semantically secure assuming the in-

feasibility of the DDH problem. Throughout the paper, we use [[m]] to denote
the set of all ElGamal encryptions of m under some understood public key h,
and, frequently, we also use [[m]] to denote one of its elements. More formally,
using that [[0]] is a subgroup of G×G, [[m]] is the coset of [[0]] in G×G containing
encryption (1, gm). Hence, encryptions (a, b) and (a′, b′) belong to the same coset
iff logg(a/a′) = logh(b/b′). Lifting the operations on the direct product group
G × G to the cosets, we thus have, for x, y ∈ Zq, that [[x]] � [[y]] = [[x + y]], and
[[x]]y = [[xy]], where (a, b)c = (ac, bc) for c ∈ Zq. Hence, [[x]] � [[y]]−1 = [[x − y]].
Addition and subtraction over Zq and multiplication by a publicly known value
in Zq can thus be performed easily on encrypted values. These operations are
deterministic. Another useful consequence is that any encryption in [[x]] can be
transformed into a statistically independent encryption in [[x]] by multiplying it
with a uniformly selected encryption in [[0]]; this is often referred to as “random
re-encryption.”

Pedersen Commitment. Given h′ ∈ G, a Pedersen commitment to m ∈ Zq is a
value b = gmh′r, with r ∈R Zq. The commitment is opened by revealing m and r.

1 For intervals M , the Pollard-λ (“kangaroo”) method runs in O(
√|M |) time using

O(1) storage.
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Pedersen’s scheme is unconditionally hiding and computationally binding, under
the assumption that logg h′ cannot be determined. The commitment scheme
is also additively homomorphic, and we will sometimes use 〈〈m〉〉 to denote a
commitment to message m, where the randomization is suppressed.

Σ-Protocols. We briefly mention a few facts about Σ-protocols. A Σ-protocol
for a relation R = {(v, w)} is a three-move protocol between a prover and a
verifier, where the prover does the first move. Both parties get a value v as
common input, and the prover gets a “witness” w as private input, (v, w) ∈ R.
A Σ-protocol is required to be a proof of knowledge for relation R satisfying
special soundness and special honest-verifier zero-knowledge. See [CDS94] for
details.

We need some well-known instances of Σ-protocols. The simplest case is
Schnorr’s protocol for proving knowledge of a discrete log α, on common input
a = gα, and Okamoto’s variant for proving knowledge of α, β, on common input
a = gαhβ . Another basic case is Chaum-Pedersen’s protocol for proving knowl-
edge of α, on common input (a, b) = (gα, hα), which is a way to prove that
(a, b) ∈ [[0]] without revealing any information on α. Applying OR-composition
[CDS94], these basic protocols can be combined into, for instance, a Σ-protocol
for proving that (a, b) ∈ [[0]]∪[[1]], where the common input is an ElGamal encryp-
tion (a, b). The latter protocol thus proves that the message encrypted (which is
an element of Zq) actually is a “bit”, without divulging any further information
on the message.

For simplicity, we will use the non-interactive versions of these Σ-protocols,
which are obtained via the Fiat-Shamir heuristic, that is, by computing the
challenge as a hash of the first message (and possibly other inputs). The resulting
proofs are known to be secure in the random oracle model; in particular, we will
use that these proofs can be simulated.

Threshold ElGamal Decryption. We use a (t + 1, n)-threshold ElGamal cryp-
tosystem, 0 ≤ t < n, in which encryptions are computed using a common public
key h (as above) while decryptions are done using a joint protocol between
n parties P1, . . . , Pn. Each party Pi holds a share αi ∈ Zq of the private key
α = logg h, where the corresponding value hi = gαi is public. As long as more
than t parties take part, decryption will succeed, whereas t or less parties are
not able to decrypt successfully.

The parties initially obtain their shares αi by running a secure distributed
key generation protocol; see [Ped91, GJKR99] for details. We note that these
protocols are practical (the communication complexity is O(n2k) bits for security
parameter k, where the hidden constant is small). For the two-party case (t = 1,
n = 2), we briefly describe a (non-robust) distributed key generation protocol in
the spirit of [GJKR99]. The protocol consists of two steps. In the first step, party
Pi, i = 1, 2, broadcasts a Pedersen commitment bi = gαih′ri , with αi, ri ∈R Zq

along with a proof of knowledge for αi, ri. In the second step, party Pi, i = 1, 2,
broadcasts ri along with a proof of knowledge of logg hi, where hi = bi/h′ri . The
joint public key is h = h1h2, with private key α = α1+α2. Clearly, this protocol is
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very practical. In many cases, it may even be replaced by the trivial one-round
protocol in which both parties broadcast hi = gαi and a proof of knowledge
of αi. Although the trivial protocol allows one of the parties to influence the
distribution of the public key h slightly, this need not be a problem for the
application in which the key is used; see [GJKR03] for more details.

For decryption of (a, b), party Pi, i = 1, . . . , n, produces a decryption share
di = aαi along with a proof that loga di = logg hi. Assuming w.l.o.g. that parties
P1, . . . , Pt+1 produce correct decryption shares, the message can be recovered
from gm = b/aα, where aα is obtained from d1, . . . , dt+1 by Lagrange interpo-
lation. Assuming homomorphic ElGamal, m ∈ M will hold for some small set
M ; if such m cannot be found decryption fails. Also, if fewer than t + 1 parties
provide a correct decryption share, decryption fails.

For later use in the proof of Theorem 1, we note that the threshold decryption
protocol can be simulated for any input (a, b) ∈ [[m]], provided message m ∈ Zq

is given as well. Assume w.l.o.g. that parties P1, . . . , Pt are corrupted, hence col-
lectively form the adversary. The simulator first extracts the shares α1, . . . , αt

of the adversary, by rewinding the proofs of knowledge based on these shares.
(The parties prove knowledge of their shares during the distributed key gener-
ation protocol.) The simulator then computes aα = b/gm from b and m. The
simulator then computes the correct decryption shares for the corrupted parties
as aα1 , . . . , aαt , which enables the computation of the decryption shares for the
honest parties by Lagrange interpolation on aα, aα1 , . . . , aαt . The corresponding
proofs of correct decryption are simulated for the honest parties. For the cor-
rupted parties, the decryption shares and the proofs of correct decryption are
obtained from the adversary, running it as a black box; possibly some of these
shares are wrong and/or some of the proofs fail, but these values are included
in the output of the simulator anyway. The simulation is then completed by
recovering the message as in the real protocol, possible ending with a decryption
failure. As a result, the simulated transcript is consistent with the view of the
adversary and statistically indistinguishable of real transcripts.

3 Special Multiplication Protocols

The results of the previous section imply that a function f can be evaluated
securely in a multiparty setting if f can be represented as a circuit over Zq con-
sisting only of addition gates and simple multiplication gates. Here, an addition
gate takes encryptions [[x]] and [[y]] as input and produces [[x]] � [[y]] = [[x + y]]
as output, and a simple multiplication gate takes [[x]] as input and produces
[[x]]c = [[cx]] as output, for a publicly known value c ∈ Zq. To be able to handle
any function f , however, we need more general multiplication gates for which
both inputs are encrypted.

In this section, we consider two special multiplication gates. If no restric-
tions are put on x or y, a multiplication gate, taking [[x]] and [[y]] as input and
producing [[xy]] as output efficiently, cannot exist assuming that the DH problem
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is infeasible.2 Therefore, we consider two special multiplication gates, putting
some restrictions on the multiplier x. The first gate requires that the multiplier
x is private, which means that it is known by a single party. The second gate,
referred to as the conditional gate, requires that the multiplier x is from a di-
chotomous (two-valued) domain. As a direct application of the conditional gate,
we also consider xor-homomorphic encryption based on ElGamal encryption.

3.1 Multiplication with a Private Multiplier

We present a multiplication protocol where the multiplier x is a private input
rather than a shared input. That is, the value of x is known by a single party
P . No restriction is put on the multiplicand y. Multiplication with a private
multiplier occurs as a subprotocol in the protocol for the conditional gate and
in other protocols further on in the paper.

Given encryptions [[x]] = (a, b) = (gr, gxhr) and [[y]] = (c, d), where party
P knows r, x, party P computes on its own a randomized encryption [[xy]] =
(e, f) = (gs, hs) � [[y]]x, with s ∈R Zq, using the homomorphic properties. Party
P then broadcasts [[xy]] along with a proof showing that this is the correct output,
which means that it proves knowledge of witnesses r, s, x ∈ Zq satisfying a = gr,
b = gxhr, e = gscx, f = hsdx.

For later use, we need to be able to simulate the above protocol. The simulator
gets as input [[x]] and [[y]], and a correct output encryption [[xy]], but it does
not know x. As a result, the simulator only needs to add a simulated proof of
knowledge. The simulated transcript is statistically indistinguishable from a real
transcript.

Below, we will also use a variation of the above protocol, where the private
multiplier x is multiplied with several multiplicands yi at the same time. Fur-
thermore, we note that often a slight optimization is possible by using a Pedersen
commitment 〈〈x〉〉 = gxh′r instead of an ElGamal encryption [[x]] = (gr, gxhr) for
the multiplier.

3.2 Conditional Gate

Next, we consider a multiplication gate for which the multiplier x is from a
dichotomous (two-valued) domain, whereas the multiplicand y is unrestricted.
We call it the conditional gate, and show how to implement it by an efficient
protocol, using just homomorphic threshold ElGamal. We will formulate the
conditional gate for the dichotomous domain {−1, 1}.3

2 Given gx, gy we form encryptions [[x]], [[y]] and feed these into the multiplication gate.
The gate would return an encryption [[xy]], which would give gxy upon decryption.

3 Domain {0, 1} or any other domain {a, b}, a �= b, can be used instead, as these
domains can be transformed into each other by linear transformations: x �→ a′ +
(b′ − a′)(x − a)/(b − a) maps {a, b} to {a′, b′}. These transformations can be applied
directly to homomorphic encryptions, transforming [[x]] with x ∈ {a, b} into [[x′]] with
x′ ∈ {a′, b′}.
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Let [[x]], [[y]] denote encryptions, with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq. The
following protocol enables parties P1, . . . , Pn, n ≥ 2, to compute an encryption
[[xy]] securely. For simplicity, we assume that these parties also share the private
key of the (t + 1, n)-threshold scheme [[·]], where t < n. The protocol consists of
two phases.

1. Let x0 = x and y0 = y. For i = 1, . . . , n, party Pi in turn takes [[xi−1]] and
[[yi−1]] as input, and broadcasts a commitment 〈〈si〉〉, with si ∈R {−1, 1}.
Then Pi applies the private-multiplier multiplication protocol to multiplier
〈〈si〉〉 and multiplicands [[xi−1]] and [[yi−1]], yielding random encryptions [[xi]]
and [[yi]], where xi = sixi−1 and yi = siyi−1. If Pi fails to complete this step
successfully it is discarded immediately.

2. The parties jointly decrypt [[xn]] to obtain xn. If decryption fails because
the number of correct shares is insufficient, the entire protocol is aborted. If
decryption fails because xn 	∈ {−1, 1}, each party Pi is required to broadcast
a proof that si ∈ {−1, 1}. Parties failing to do so are discarded, and the
protocol is restarted (starting again at phase 1). Given xn and [[yn]], an
encryption [[xnyn]] is computed publicly.

The output of the protocol is [[xnyn]]. Clearly, if all parties are honest, xnyn =
(
∏n

i=1 si)2xy = xy.
Any party may disrupt the protocol for at most one run of phase 1 by picking

a value si outside the range {−1, 1}. Note that we do not need to require that
each si is in {−1, 1} in phase 1. For instance, parties P1 and P2 may cheat by
setting s1 = 2 and s2 = 1/2. Since s1s2 = 1, this type of “cheating” will go
unnoticed in phase 2 if all other parties are honest. However, the security of the
protocol is not affected by such “cheating.” For t < n/2, the protocol is robust,
allowing up to t failing parties in total (as the threshold decryption step tolerates
up to t failing parties). For n/2 ≤ t < n, the protocol is not robust, but we will
see from Theorem 1 below that the adversary does not get an advantage in this
case.

The protocol requires a single threshold decryption only. Since xn ∈ {−1, 1} is
required to hold, decryption is feasible for the homomorphic ElGamal encryption
scheme. As the value of xn is statistically independent of x, the value of xn does
not reveal any information on x. This is stated in the following theorem, which
holds for up to t < n corrupting parties.

Theorem 1. On input [[x]], [[y]] with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq, the above
protocol produces [[xy]], without leaking any additional information on x and y.

Proof. The soundness of the proofs in phase 1 of the protocol ensures that xn =
x

∏n
i=1 si and yn = y

∏n
i=1 si Since it is checked in phase 2 that xn ∈ {−1, 1}, it

follows from x ∈ {−1, 1} that
∏n

i=1 si ∈ {−1, 1} as well. Therefore, xnyn = xy.
To argue that no additional information on x and y is leaked we present the

following simulation of the protocol. The simulation takes as input encryptions
[[x]], [[y]], and [[xy]]. Given this information, the simulator is able to generate a
complete transcript for the protocol, for which the distribution is exactly the
same as in real executions of the protocol. If [[xy]] is not available, it may be
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replaced by a random encryption in [[0]], as done in [CDN01–Theorem 1]. Since
the simulator below does not use the shares of the honest parties to simulate
decryptions, the simulated transcripts will be indistinguishable (under DDH)
from real transcripts for any adversary controlling up to t parties.

Assume that parties P1, . . . , Pt are corrupted, hence collectively form the ad-
versary (the simulator is easily adapted for other sets of corrupted parties). The
simulator lets the adversary run phase 1 of the protocol for parties P1, . . . , Pt,
each time rewinding the proofs of knowledge used in the private-multiplier mul-
tiplication protocol to extract the values s1, . . . , st; if a party fails to provide a
correct proof it is discarded. Subsequently, the simulator runs phase 1 for parties
Pt+1, . . . , Pn−1 as in the real protocol, leaving [[xn−1]], with xn−1 = s1 · · · sn−1x,
as intermediate encryption. For party Pn, however, the simulator picks s′

n ∈R

{−S, S}, where S =
∏t

i=1 si, and it computes a commitment 〈〈s′
nxn−1〉〉 and an

encryption [[s′
nxy]], from [[xn−1]] and [[xy]], respectively. Writing sn = s′

nxn−1, the
simulator then simulates the private multiplier multiplication protocol for mul-
tiplier 〈〈sn〉〉 and multiplicands [[xn−1]], [[yn−1]] and outputs [[s′

n]], [[s′
nxy]], which

are the correct outputs since s′
n = snxn−1 and s′

nxy = s′
nxn−1yn−1 = snyn−1.

The output of phase 1 consists of encryptions [[s′
n]] and [[s′

nxy]]. By construc-
tion, the simulator is able to perform the decryption in phase 2 itself, producing
s′

n ∈ {−S, S} as output. The simulator for the threshold decryption protocol
is used for encryption [[s′

n]] using s′
n as an additional input (see Section 2). If

decryption fails due to an insufficient number of correct decryption shares, the
simulation stops, as in the real protocol. If S 	∈ {−1, 1}, decryption fails and a
proof that si ∈ {−1, 1} is generated for each party Pi, by letting the adversary
do this for parties P1, . . . , Pt (of which at least one fails), running the real pro-
tocol for parties Pt+1, . . . , Pn−1, and using a simulation for Pn. After discarding
the failing parties among P1, . . . , Pt, the simulation is continued by simulating
another run of phase 1.

Finally, the simulator computes the encryption [[s′
ns′

nxy]] = [[xy]], which is
clearly the correct output. �

If the total number of parties is large compared to the total number of condi-
tional gates to be evaluated, an alternative way to guarantee robustness is to let
the parties use encryptions [[si]] instead of commitments 〈〈si〉〉 in phase 1. Again,
if xn 	∈ {−1, 1} in phase 2, all parties are required to prove that si ∈ {−1, 1}.
Failing parties are discarded and their si values are decrypted to correct the
value of xn.

The performance of the protocol is as follows (analyzing the case that no
party is cheating). The performance is determined by the communication com-
plexity (in bits) and the round complexity. In phase 1 each party applies the
private-multiplier multiplication protocol, broadcasting about 10 values. For de-
cryption each party broadcasts 3 values at the most. Hence, the communication
complexity is O(nk) where the hidden constant is very small. In general, the
round complexity is O(n), which is high, but in case of two-party computation
it is O(1). Also, when many conditional gates are to be evaluated in parallel,
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one may take advantage of the fact that the order in which parties P1, . . . , Pn

execute phase 1 of the conditional gate protocol can be chosen arbitrarily.

3.3 XOR-Homomorphic ElGamal Encryption

As a direct application of the conditional gate, we obtain an xor-homomorphic
ElGamal encryption scheme. (The converse problem of constructing (Zq, +)-
homomorphic schemes, q > 2, from xor-homomorphic schemes, such as the
Goldwasser-Micali cryptosystem [GM84], is considered in [KMO01].)

Given [[x]], [[y]] with x, y ∈ {0, 1}, [[x ⊕ y]] is computed as follows, using one
threshold decryption (cf. footnote 2):

1. Publicly convert [[x]] to [[x′]] with x′ = 2x − 1 ∈ {−1, 1}.
2. Apply the conditional gate to [[x′]] and [[y]] to obtain [[x′y]].
3. Publicly compute [[x − x′y]], which is equal to [[x ⊕ y]].

The work per party is very limited, about 13 exponentiations for each con-
ditional gate. In contrast, the Mix and Match approach of [JJ00] would require
each party to mix the 4 rows of a truth table for x ⊕ y in a verifiable way (Mix
step, requiring 24 exponentiations for blinding the entries and, say, 6 × 12 ex-
ponentiations for the correctness proof, using the efficient protocol of [Gro03]),
and perform on average 4 plaintext equality tests to find [[x ⊕ y]] given [[x]] and
[[y]] (Match step, requiring 4 × 7 exponentiations). Hence, the conditional gate
provides approximately a ten-fold improvement, counting exponentations.

4 Circuit Evaluation

In this section, we briefly describe a protocol for evaluating a given circuit com-
posed of elementary gates. Recall that our elementary gates operate over Zq,
except that the first input of a conditional gate is required to belong to a two-
valued domain. It is clear that these elementary gates suffice to emulate any
Boolean circuit. Specifically, any operator on two bits x, y ∈ {0, 1} ⊆ Zq can
be expressed uniquely as a polynomial of the form a0 + a1x + a2y + a3xy with
coefficients in Zq. Hence, any binary operator can be expressed using at most
one conditional gate.

The protocol operates in much the same manner as the protocol for circuit
evaluation of, for instance, [CDN01]. For convenience, we assume that the parties
P1, . . . , Pn evaluating the circuit are exactly the same as the parties for which
the (t + 1, n)-threshold cryptosystem has been set-up, where t < n. The circuit
is then evaluated in three phases:

1. The parties encrypt their inputs using the homomorphic cryptosystem [[·]],
and the parties are required to provide a proof of knowledge for their inputs,
and possibly that the inputs belong to a dichotomous domain.

2. The parties then jointly evaluate the circuit gate-by-gate. Conditional gates
at the same depth of the circuit are evaluated in parallel.

3. Finally, the parties jointly decrypt the outputs of the circuit.
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As described in the previous section, parties failing at some stage in the
protocol are discarded immediately. As long as no more than t < n/2 parties
fail in total, the protocol will complete and all parties will learn the output. The
case of n/2 ≤ t < n will be discussed below.

The formal security analysis of [CDN01] can be adapted to show that our
protocol is secure against a static, active adversary corrupting at most t < n
parties, assuming the intractability of the DDH problem. This follows from the
fact that we are able to simulate the multiplication protocols of Section 3 in
a statistically indistinguishable manner, provided that the simulator for these
protocols is given encryptions of the correct output values. We thus achieve the
same level of security as [CDN01]. The important difference is that [CDN01]
incorporates a general multiplication gate, for which they need an RSA-like
cryptosystem such as Paillier’s cryptosystem to get an efficient multiplication
protocol, while we incorporate a restricted multiplication gate, for which we have
presented an efficient multiplication protocol using the ElGamal cryptosystem.

4.1 Private Outputs

In this section, we propose a new non-interactive protocol for achieving private
outputs in the context of secure multiparty computation based on homomorphic
threshold cryptosystems. Previous methods require the receiving parties to per-
form some blinding step, as part of the decryption protocol. For our method, it
suffices to know the public keys of the receiving parties.

We need a different method than [CDN01] to deal with private outputs any-
way, since their method would require us to decrypt an ElGamal encryption of
a random message in Zq. Suppose [[m]] is an encryption of a private output for
party Pj , that is, output m is intended for party Pj only. Briefly, the method of
[CDN01] is to let party Pj first blind encryption [[m]] by multiplying it with a
random encryption [[r]] for some r ∈R Zq. The encryption [[m+ r]] is then jointly
decrypted, resulting in the value m′ = m + r, from which (only) party Pj is
able to compute m = m′ − r. This method critically depends on the ability to
decrypt arbitrary messages. Using an RSA-like cryptosystem, such as Paillier’s
cryptosystem, this is no problem. Using ElGamal encryption, however, we can-
not decrypt [[m + r]] (see Section 2). A first way out is to adapt the ElGamal
decryption step to output gm+r instead of m+ r; the receiving party may divide
this value by gr to obtain gm from which m may be determined, assuming m is
from a small set.

We note however that in general it is undesirable that interaction with the
receiving parties is required to produce private outputs. Therefore, we present
a protocol for which no interaction with the receiving party is required. The
protocol runs as follows. Let (a, b) ∈ [[m]] be an output intended for party Pj

and let hj = gαj denote Pj ’s public key. Recall from Section 2 that threshold
decryption requires each party Pi to produce the value aαi along with a proof
of correctness. We modify this step as follows, by releasing aαi encrypted under
Pj ’s public key and adapting the proof of correctness accordingly:
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1. Each party Pi outputs an encryption (ci, di) = (gri , hri
j aαi) with ri ∈R Zq

along with a proof that it knows ri, αi satisfying

hi = gαi , ci = gri , di = hri
j aαi .

2. For decryption, party Pj first uses Lagrange coefficients λi to compute the
following product for a set of t + 1 valid shares (ci, di):

∏
i

(ci, di)λi = (g
∑

i λiri , h
∑

i λiri

j a
∑

i λiαi).

Then Pj decrypts this product using its private key αj to obtain a
∑

i λiαi =
aα. Party Pj then proceeds to recover gm = b/aα, from which it finds m
assuming that m belongs to a relatively small, known subset of Zq.

The protocol requires only a small amount of additional work compared to
the basic protocol for decrypting public outputs, where each party Pi outputs
aαi along with a proof of correctness (cf. step 1), from which anyone is then able
to recover a

∑
i λiαi = aα using t + 1 valid shares (cf. step 2).

4.2 Fairness

Recall that t denotes the maximum number of corrupted parties tolerated by the
circuit evaluation protocol. For t < n/2, that is, the case of a dishonest minority,
the protocol achieves robustness. We now extend the protocol to handle the
two-party case t = 1, n = 2 (which is a special case of a dishonest majority,
n/2 ≤ t < n).

For the two-party case we give up on robustness, since one cannot prevent
one of the parties from quitting the protocol prematurely. If a party chooses to
do so, however, it should not gain any advantage from it. If a protocol achieves
this property, the protocol is said to be fair.

An important observation for the above circuit evaluation protocol is that
neither party gains any advantage from quitting the protocol in phase 1 or
phase 2 of the protocol. In particular, consider the case that party P2, say,
chooses to quit during the threshold decryption step of a conditional gate, for
which party P1 has already produced its decryption share. In that case, only
P2 learns the decrypted value xn, but this value cannot possibly give P2 an
advantage, as follows from the simulation in the proof of Theorem 1.

Therefore, to achieve fairness, we only need to protect the decryption of
the output values. For this purpose, we will apply a protocol similar to that
of [BST01]. In [BST01], however, the protocol steps for achieving fairness are
intertwined with the original protocol steps, while in our protocol the additional
steps for achieving fairness are strictly limited to the decryption of the output
values.

Let an encryption (a, b) be given. Recall that (2, 2)-threshold decryption,
requires party Pi to provide di = aαi , i = 1, 2, along with a proof that this value
is correct w.r.t. the public key hi = gαi of party Pi. Instead of directly revealing
this value, we will release it gradually using the following protocol, where k is a
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security parameter, k < log2 q, and h ∈ 〈g〉 denotes an additional generator for
which logg h is unknown to parties P1, P2:

1. For i = 1, 2, party Pi chooses εij ∈R {0, 1}, αij ∈R Zq for j = 0, . . . , k − 1
subject to the condition that αi =

∑k−1
j=0 αij2j . Party Pi then broadcasts

the values dij = aαij hεij , j = 0, . . . , k − 1 along with a proof that each
εij ∈ {0, 1} and a proof that

∏k−1
j=0 d2j

ij = aαihε, where αi = logg hi, for some
value ε.

2. Set j = k − 1. Parties P1, P2 repeatedly execute the following step. For
i = 1, 2, party Pi broadcasts values αij , εij . If these values verify correctly
against dij , the value of j is decremented and the step is repeated if j > 0.

3. Once j = 0 both parties release εi0 along with a proof of knowledge for a
witness αi0 satisfying di0h

−εi0 = aαi0 .
4. Both parties are able to recover the missing value aαi , as follows:

aαi = di0h
−εi0a

∑k−1
j=1 αij2j

.

At each stage of the protocol, either party is at most one bit ahead of the
other party. If one sets k = 80, for instance, it is clearly infeasible for both parties
to compute the missing value aαi at step 1, as it requires a search over 2k possible
values for εi,k−1, . . . , εi0. At each later step, the search space is reduced in size
by a factor of two.

The protocol does not leak any information on αi beyond what is implied
by the output values aαi . The protocol can be run in parallel for decrypting
multiple outputs at the same time, and the protocol can be combined easily
with our protocol for private outputs presented above.

The above protocol achieves a basic level of fairness. In [Pin03] a strengthened
notion of fairness for two-party computation is considered, which also addresses
the case where one party may be considerably more powerful than the other
party; the timed commitments used to resolve this problem, however, critically
depend on the hardness of factoring. (The recent paper [GMY04b] describes a
way to cover fairness in a universally composable way, for static adversaries. In
particular, the result of [CDN01] is extended to cover fairness as well, using a
factoring related assumption to achieve timed commitments.) Apart from this
difference, the result of [Pin03] is comparable to our result. The difference is
that [Pin03] is based on Yao’s garbled circuit approach, while our approach is
based on homomorphic threshold cryptosystems. In both cases, however, the
changes to make the protocol fair are limited to the output stage, where some
form of gradual release is used in combination with a method to ensure that
commitments opened during gradual release indeed contain the correct output
of the computation.

5 Relational and Arithmetic Operators

In this section we apply our set of elementary gates over Zq to obtain efficient
circuits for basic operations such as integer comparison and integer addition. In
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most cases, the inputs are required to be given by their binary representations.
We consider the general case, in which the circuits operate on encrypted inputs,
producing encrypted outputs, such that they can be used as building blocks in
constructing circuits for more elaborate functions, either in a two-party setting
or in a general multiparty setting.

5.1 sgn(x − y)

Below, we present an efficient protocol for comparing two (non-negative) in-
teger values x and y. The inputs are given as sequences of encrypted bits,
[[xm−1]], . . . , [[x0]] and [[ym−1]], . . . , [[y0]], with x =

∑m−1
i=0 xi2i, y =

∑m−1
i=0 yi2i.

The output of the protocol consists of an encryption [[sgn(x − y)]], where sgn
denotes the signum function:

sgn z =

⎧⎨
⎩

−1, z < 0,
0, z = 0,
1, z > 0.

Using that x2
i = xi and y2

i = yi for xi, yi ∈ {0, 1}, the general strat-
egy is now to examine the unique multilinear polynomial p over Zq satisfying
p(x0, . . . , xm−1, y0, . . . , ym−1) = sgn(x − y) for all x, y, 0 ≤ x, y < 2m. The
problem that remains is to find an efficient circuit (or, equivalently, an oblivious
evaluation order) for the polynomial p.

As a first step, we consider the evaluation p = s0 with

sm−1 = 0, si−1 = si + (1 − s2
i )(xi − yi).

Clearly, this results in the correct output value. However, we cannot evaluate
the term s2

i by means of a conditional gate since si is three-valued
(si ∈ {−1, 0, 1}). This is easily resolved by introducing an auxiliary binary
sequence vi, with vi = 1 − s2

i :

sm−1 = 0, si−1 = si + vi(xi − yi),
vm−1 = 1, vi−1 = vi − vi(xi − yi)2.

Now, it is easy to draw up a circuit using 3m − 2 conditional gates (using
that sm−1 = 0 and vm−1 = 1 are publicly known values, hence need not be
encrypted).

We note that the bits may also be traversed in the opposite direction, starting
at the least significant bit. This results in the following sequence, with s′

m as
output:

s′
0 = 0, s′

i+1 = (1 − (xi − yi)2)s′
i + xi − yi.

This method only needs 2m − 2 conditional gates: per iteration, one condi-
tional gate to compute xiyi and one to subsequently compute (1 − (xi − yi)2)s′

i

with 1− (xi − yi)2 as dichotomous multiplier. Here we take full advantage of the
fact that the conditional gate does not put any constraints on the multiplicand:
whereas a Boolean circuit for sgn(x − y) requires all intermediate values to be
binary, our circuit uses non-binary intermediate values, such as the ternary s′

i’s.
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5.2 x > y

The output of x > y consists of one bit only, which is set to 1 if x > y and to 0
otherwise. Starting at the least significant bit, the output is given by tm, where

t0 = 0, ti+1 = (1 − (xi − yi)2)ti + xi(1 − yi).

This method requires 2m−1 conditional gates. (For comparison we note that
the best known circuit using only logical gates requires 5m binary gates, e.g. us-
ing the circuit for Biggerk(X, Y ) of [KO02]. Similarly, for computing Max(X, Y )
given Biggerk(X, Y ), 2m additional gates are required in [KO02], while we can
compute the bits of z = max(x, y) by setting zi = yi − tm(xi + yi), using only
m additional conditional gates.)

We now specialize this solution for x > y to obtain a solution for Yao’s basic
millionaires problem [Yao82]. In this case, the protocol is run by two parties, pro-
viding x and y respectively as private inputs. This allows for a much more efficient
solution, as the conditional gates can all be replaced by the private-multiplier
gates of Section 3.1. The private-multiplier gates can be even optimized slightly
by using Pedersen commitments instead of ElGamal encryptions, and using that
the multipliers are binary.

The total computational cost of our solution to Yao’s millionaires problem,
including the cost of the distributed key generation and the decryption of the
result, is dominated by the cost of about 2m private-multiplier gates (computing
[[yiti]] and [[xi(ti −2yiti −yi)]] as intermediate values), which require 6 exponenti-
ations each, hence 12m exponentiations in total (starting at the least significant
bit). To the best of our knowledge, this is the most efficient solution to date.
Here, we cover the malicious case (unlike many other papers on the millionaires
problem, that only deal with the semi-honest case, e.g., [Fis01, NN01, IG03]), but
we do not cover fairness. We also note that we do not need an auxiliary trusted
party, as in [Cac99], although that paper achieves fairness as well at a relatively
low cost. Finally, while most other solutions rely on an RSA-like assumption,
our solution is secure under the standard DDH assumption. This is also true
for the solution of [KO02], but their solution is much less efficient because their
circuits are evaluated using the expensive Mix and Match gates of [JJ00].

5.3 x = y

For testing equality of x and y, the following sequence can be used, where the
output um = 0 iff x = y:

u0 = 0, ui+1 = (1 − (xi − yi)2)ui + (xi − yi)2.

The order in which the bits are processed is actually irrelevant. This method
requires 2m − 1 conditional gates, returning the output bit in encrypted form.

The socialist millionaires problem, a variant introduced by [JY96], is to eval-
uate x = y for a two-party setting, where x, y ∈ Zq are the respective pri-
vate inputs, and the output may be public. The currently best solution is due
to [BST01], using only O(1) exponentiations, hence without using the binary
representations of x and y. We obtain a solution in a similar vein as follows. The
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parties broadcast [[x]] and [[y]], resp., and jointly form [[r]], where r ∈R Zq and
neither of the parties knows r. Using the private multiplier gate, the parties then
compute [[(x − y)r]], which is jointly decrypted to obtain g(x−y)r (rather than
obtaining (x − y)r). If g(x−y)r = 1, then w.v.h.p. x = y, otherwise x 	= y.

5.4 x + y and x ∗ y

Given [[x]], [[y]], one obtains [[x + y]] directly using the homomorphic property.
A nice application of the conditional gate is that [[xy]] can also be computed
efficiently, if we assume that x is given in binary form.

Given [[xm−1]], . . . , [[x0]] and [[y]], where y ∈ Zq, one computes [[xy]] using that
xy =

∑m−1
i=0 xi(y2i). This method requires only m conditional gates, whereas a

standard Boolean circuit would require O(m2) bit multiplications.

6 Concluding Remarks

We envision a practical system supporting ad hoc contacts among a large group
of peer users. Since efficient DKG protocols for (2, 2)-threshold ElGamal are
easily achieved, our results show that any pair of users is able to engage in a two-
party computation for evaluating some dynamically agreed upon function. For
example, the circuits of the previous section lead to solutions for tasks of practical
interest, such as profile matching, allowing two users with profiles (length m bit
vectors) x and y, resp., to evaluate ∆(x, y) > T , where ∆(x, y) =

∑m
i=1 xiyi is

an example similarity measure and T is a threshold.
Further research is required for a full comparison with some recent approaches

to secure (two-party) computation. For instance, an interesting approach is pre-
sented in [GMY04a], which is based on committed oblivious transfer instead of
homomorphic threshold encryption. The amount of work per gate is comparable
to the work for a conditional gate, but the hidden constants for their approach
are larger than in our case. This is partly due to the fact that their solution
is designed to be universally composable, but remains true if their solution is
‘downgraded’ to a protocol for static adversaries; per gate, one party uses 5 bit
commitments and proves a number of relations for these commitments, followed
by a

(4
1

)
oblivious transfer. For a full comparison with [GMY04a], our solution

needs to be ‘upgraded’ to a universally composable one, e.g., following the ap-
proach of [DN03]. This would provide an interesting alternative, as the extension
of [GMY04a] to the multiparty case requires each pair of parties to run their ba-
sic two-party protocol for each multiplication gate, while with our approach the
parties run a single joint protocol for each conditional gate.

A well-known alternative to the gate-by-gate approach, is Yao’s garbled cir-
cuit approach for two-party computation. The Fairplay system is designed to
evaluate the practical merits of the garbled circuit approach, including some op-
timizations that will pay off for sufficiently large circuits [MNPS04]. We expect
a trade-off showing that the garbled circuit approach is best for large circuits
whereas a gate-by-gate approach is best for small circuits, or rather circuits for
which the number of inputs is proportional to the total number of gates.
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