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Abstract. In this paper we introduce a new embedding technique to
linearly project labeled data samples into a new space where the per-
formance of a Nearest Neighbor classifier is improved. The approach is
based on considering a large set of simple discriminant projections and
finding the subset with higher classification performance. In order to im-
plement the feature selection process we propose the use of the adaboost
algorithm. The performance of this technique is tested in a multiclass
classification problem related to the production of cork stoppers for wine
bottles.

1 Introduction

One of the most common steps when designing a classifier system is to transform
the original data representation to a new representation that is built by com-
bining the original data features. This is called the feature extraction process.
We can use different criteria to build this process. One of such criteria is the
level of compactness that we get with the new input data representation, that
leads to different dimensionality reduction techniques. In our case we focus in a
different kind of criterium: discriminability. In this case the feature extraction
process takes into account class membership of the input data to learn invariant
data features that increase the classification ratios of the system.

Our objective is to find an embedding from the original data representation
space to a new one that is specially designed to increase the performance of the
nearest neighbor classification rule. We have not made assumptions on the data
distribution, and we don’t force our projection to be orthogonal [2]. The only
assumption we impose is that our embedding must be based on a set of simple
1D projections, which can complement each other to achieve better classification
results. We have made use of Adaboost algorithm [9] as a natural way to select
feature extractors, and the coefficients that can rank the importance of each
projection.

1.1 Discriminant Analysis

Discriminant analysis is a feature extraction tool based on a criterion J and two
square matrices Sb and Sw. These matrices generally represent the scatter of

A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 312–319, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Discriminant Projections Embedding for Nearest Neighbor Classification 313

sample vectors between different classes for Sb, and within a class for Sw. The
most frequently used criterion is to choose J = trace(S−1

w Sb).
It can be seen that, maximization of J is equivalent to finding the D × M

linear transformation W such that

Ŵ = arg max
W T SwW=I

trace(W T SbW ) (1)

where I is the identity matrix. It can be proven that, given N samples of D
dimensional data X and discriminant space dimensionality M , there is general
method to solve the optimization problem given in equation (1) [5].

1.2 Fisher Discriminant Analysis

The most widely spread approach for discriminant analysis is the one that makes
use of only up to second order statistics of the data. This was done in a classic
paper by Fisher [1], and it is called Fisher Discriminant Analysis (FDA). In FDA
the within class scatter matrix is usually computed as a weighted sum of the
class-conditional sample covariance matrices where the weights are given by the
class prior probabilities,

Sw =
K∑

k=1

P (Ck)Σk (2)

where Σk is the class-conditional covariance matrix, estimated from the sample
set. On the other side, the most common way of defining the between class-
scatter matrix is as,

Sb =
K∑

k=1

P (Ck)(µk − µ0)(µk − µ0)T (3)

where µk is the class-conditional sample mean and µ0 is the unconditional
(global) sample mean. Many other less spread out forms, always based on sample
means and class-conditional covariance matrices are also available for these two
scatter matrices [5]. The two main drawbacks of FLD are: Gaussian assumption
over the class distribution of the data samples; and the dimensionality of the
subspaces obtained is limited by the number of classes.

1.3 Nonparametric Discriminant Analysis

In [3] Fukunaga and Mantock present a linear and nonparametric method for
discriminant analysis in an attempt to overcome the limitations present in (FDA)
[1], and name the technique Nonparametric Discriminant Analysis (NDA).

In NDA we define a between-class matrix as the scatter matrix obtained from
vectors locally pointing to another class. This is done as follows: Given a norm
‖‖ in the metric space where the samples are defined, the extraclass nearest
neighbor for a sample x ∈ Ck is defined as

xE = {x′ ∈ Ck/‖x′ − x‖ ≤ ‖z − x‖, ∀z ∈ Ck} (4)
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where Ck notes the complement set of Ck. In the same fashion we can define
the intraclass nearest neighbor as

xI = {x′ ∈ Ck/‖x′ − x‖ ≤ ‖z − x‖, ∀z ∈ Ck} (5)

Both definitions (4) and (5) can be extended to the K nearest neighbors case by
defining xE and xI as the mean of the K nearest extra or intra-class samples.
From these neighbors or neighbor averages, the extraclass differences are defined
as ∆E = x−xE and the intraclass differences as ∆I = x−xI. Notice that ∆E

points locally to the nearest class (or classes) that does not contain the sample.
The nonparametric between-class scatter matrix is then defined as

Sb =
1
N

N∑

n=1

wn(∆E
n )(∆E

n )T (6)

where ∆E
n is the extraclass distance for sample xn, wn a sample weight defined

as

wn =
min{‖∆E‖α

, ‖∆I‖α}
‖∆E‖α + ‖∆I‖α (7)

and α is a control parameter between zero and infinity. The within-class scatter
matrix is defined in the same way as FDA (eq.2).

Figure (1) shows the FDA and NDA solutions for two artificial datasets.
For this example a single nearest neighbor was used in the computation of the
between-class scatter matrix and uniform sample weights were considered. Par-
ticularly interesting is the case illustrated in fig. (1.b). Though both within-class
scatter matrices are equal, the bimodality of one of the classes displaces the esti-
mate of the class mean used in the computation of the parametric between-class
scatter matrix. This is the main source of error for FDA.

(a) (b)

Fig. 1. First direction of nonparametric discriminant projection space on two artificial
datasets. Dashed line: FDA direction. Solid line: NDA direction.
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NDA and Nearest Neighbors. Making use of the introduced notation we
can examine the relationship between NN and NDA. Given a training sample x,
the accuracy of the 1-NN rule can be directly computed by examining the ratio
‖∆E‖/‖∆I‖. If this ratio is more than one, x will be correctly classified.

Given a M × D linear transform W , the projected distances are defined
as ∆E,I

W = Wx − WxE,I Notice that this definition does not exactly agree
with the extra and intraclass distances in projection space since, except for the
orthonormal transformation case, we have no warranty on distance preservation.
Equivalence of both definitions is asymptotically true on the number of samples.
By the above remarks it is expected, that optimization of the following objective
function should improve or, at least not downgrade NN performance,

Ŵ = argmax
W

E{‖∆E
W ‖2}

E{‖∆I
W ‖2} (8)

Considering that [5], we have that

E{‖∆E,I
W ‖2} = trace(W T Sb,wW ) (9)

where, in this case, Sb (the between-class scatter matrix) agrees with (6), but
the within-class scatter matrix is now defined in a nonparametric fashion [6],

Sw =
1
N

N∑

n=1

∆I
n∆I

n

T
(10)

The same methodlogy that can be used to solve (1) can also be applied to the
optimization of this objective function (8). This method has showed a good
performance for standard data sets as well as for practical applications [6], but
presents some problems when intraclass (or extraclass) diferences are not nor-
mally distributed around a direction.

2 A New Embedding Technique

In this section we propose the construction of a global discriminant embedding
using discriminant projections that can be seen as the combination of multi-
ple NDA projections. We are interested in a combination of one-dimensional
projections that can yield a strong nearest neighbor classifier.

The main idea can be stated as follows: if we push the NDA approach to its
limits, we can consider that every point xj in the sample has associated its most
discriminant 1D-projection W j , that is, the 1D projection that simultaneously
minimizes the norm of the vectors that point to the nearest neighbor of its class
and to the nearest neighbor of the other class1. Thus, given a learning problem,
1 Observe that this concept can be easily defined to a m-class setting by considering

the m − 1 nearest neighbors in its class and the nearest neighbor in each one of the
other classes.
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we can get as much 1-D NDA projections as examples we have in the learning set.
Our hypothesis is that a careful selection of a subset of these 1D-projections can
define an embedding (where each new dimension is defined by a 1D projection)
of the original data that outperforms the other discriminant methods when using
the nearest neighbour classifier.

Our scheme takes benefit of a very known algorithm in machine learning,
Adaboost ([8]), for selecting the best 1D NDA projections. The use of boosting
in our scheme is specially justified, because our 1D projections perform always as
weak classifiers (In fact, see figure 3, these classifiers have a similar performace
to the nearest neighbor classifier in the original space), and we can exploit the
sample weight actualization intrinsic in the boosting scheme to focus the selection
of the next feature axis to the examples that are more difficult to classify.

Let xk be a data point, xi its nearest neighbor of the same class and xe its
nearest neighbor of the other class (xk, xi, xe ∈ X). We will define the vectors
u and v which point to xi and xe from xk. We need to find a linear projection
f(x) : X → R that minimizes the distance between the point f(xk) to the points
of its same class, and maximizes the distance to the points of the other class. In
the case we are dealing with the projection matrix will be a simple vector that
can be computed using simple vector operations.

2.1 AdaBoost

We have followed a boosting implementation similar to the one proposed by
Viola et al. [7]. Given a training set of n points x1...n belonging to k different
classes (n

k points for each class), the algorithm performs as follows:

1. First we define a set of weights W 1...n (each weight assigned to one vector).
The weights are initialized to 1

n . We also build the set of partial classifiers
as 1D projections as defined above, so each sample xi generates a projection
to a 1D dimensional space.

2. Then a fixed number of boosting steps are generated. At each boosting step s:
– The whole set of classifiers is tested using the training points W 1...n.

We project each data point in the 1D space generated by each feature
extraction and classify it according to it’s nearest neighbor. For each
different projection, we evaluate its classification error as:

Errorj =
n∑

i=1

Ws,i · li,j (11)

where li,j is set to 0 if the point xi has been correctly classified by the
classifier j and to 1 otherwise. Finally we select the classifier c with
minimum Error1..n

– Using the classification results of the classifier c, the set of weights W is
actualized as:

W s+1,i = W s,i · β1−li,c (12)
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where
β =

Errorc

1 − Errorc
(13)

– The coefficient αs corresponding to the classifier at the step s is com-
puted as:

α = log
1
β

(14)

– Finally the weights are normalized, W s+1,i = W s,i
∑ n

j W s,j .
3. The output of the algorithm is a projection matrix, where we place at each

column is the 1-D projection corresponding to the best classifier at the step
s of the Adaboost algorithm. In addition the α1,...,s coefficients can be used
to rank the importance of the features extracted for each 1-D projection.

3 Application and Results

Cork inspection is the least automated task in the production cycle of the cork
stopper. Due to the inspection difficulty of the natural cork material and the
high production rates even the most experienced quality inspection operators
frequently make mistakes. In addition, human inspection leads to a lack of ob-
jectivity and uniform rules applied by different people at different time. As a
result, there is a urgent need to modernize the cork industry in this direction.
In this paper, we consider a real industrial computer vision application of clas-
sification of natural (cork) products.

During its production, cork stoppers must be classified in five different classes
that correspond to different quality groups (see fig. 2). When human operators
perform this classification on-line, they rely on a set of visual characteristics that
are far from being objective and that present a large variation among different
operators. In order to develop an automatic system, a large set of carefully clas-
sified stoppers have been selected (more than one thousand examples per class).
Next, we have got an image from every stopper that represents its surface, and
this image has been segmented using a fixed threshold. Cork stopper classifi-
cation will be based on a set of visual features that are related to the blobs
resulting from this segmentation.

We have extracted from the image of each stopper a set of global as well
local features [10]. Global features are: the total number of blobs, the total
area of blobs, the mean of grey-level appearance of blobs, the average blob area,
the average blob elongation, the average blob compactness, and the average blob
roughness. Local stopper features refer to the first and second largest blobs of the
cor stopper and particularly: area, length, width, perimeter, convex perimeter,
compactness, roughness, elongation, average blob grey-level, and position with
respect to the centre of the stopper. Following this strategy we defined a set of
43 features for every cork stopper.

Next, we have used this learning set for constructing a discriminant embed-
ding as described in the last section. Figure (3) shows the result of the learning
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Fig. 2. Surfaces of cork stoppers of 5 quality groups ordered from best to worst quality
(from left to right).

Fig. 3. Results: the horizontal line (solid line) represents the performance of a 9-nearest
neighbor classifier in the original space, the + line represents the performace of every
individual 1D classifier that is computed at every step of the algorithm, the x line
corresponds to classifier that would be produced by the Adaboost combination, the
♦ line represents the NDA performance for different dimensionalities, and finally, the
• line represents the performance of the nearest neighbor classifier in the embedding
space.

method. Results have been computed with a 10-fold cross-validation, using a
data set of 1000 samples per class. As can been seen, classifiying a stopper using
the nearest neighbor in the embedded space shows the best performance when
compared to the other methods: nearest neighbor in the original space, NDA
of different dimensions, Adaboost classifier stopped at different iteration steps,
and the set of 1D classifiers that are computed at every step of the Adaboost
algorithm.The embedding approach converges, with respect to dimension, to a
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90 per cent of correct classification, while all the other methods are all under or
around 80 per cent.

4 Conclusions

We have presented a new method for learning a linear embedding for labeled
data that is specially designed to be used with the nearest neighbor classifier.
Every embedding dimension is defined by a linear projection that corresponds
to the optimal projection of a given point. This projection is selected in a sound
way by using the Adaboost algorithm. We have shown the performance of this
method in a real industrial application: the quality classification of cork stoppers.
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