
H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 232–253, 2004. 
© IFIP International Federation for Information Processing 2004 

An Ontology-Based Publish/Subscribe System* 

Jinling Wang1,2, Beihong Jin1, and Jing Li1 

1 Institute of Software, Chinese Academy of Sciences, Beijing, China 
{jlwang,jbh,lij}@otcaix.iscas.ac.cn 

2 Graduate School of the Chinese Academy of Sciences, Beijing, China 

Abstract. Expressiveness and matching efficiency are two key design goals of 
publish/subscribe systems. In this paper, we introduce the Semantic Web tech-
nologies into the publish/subscribe system and propose an ontology-based pub-
lish/subscribe (OPS) system. The system can make use of the semantic of 
events to match events with subscriptions, and can support events with complex 
data structure (such as graph structure). An efficient matching algorithm is 
proposed for the OPS system, which can match events with subscriptions in a 
speed much higher than conventional graph matching algorithms. Therefore, the 
main contribution of our work is that it greatly improves the expressiveness of 
the publish/subscribe system without the sacrifice of matching efficiency. 

1  Introduction 

Publish/subscribe (pub/sub) is a loosely coupled communication paradigm for distrib-
uted computing environments. In the pub/sub systems, publishers publish information 
to event brokers in the form of events, subscribers subscribe to a particular category 
of events within the system, and event brokers ensures the timely delivery of pub-
lished events to all interested subscribers. The advantage of pub/sub paradigm is that 
publishers and subscribers are full decoupled in time, space and flow [1], so it is well 
suitable for the large-scale and highly dynamic distributed systems. 

In different distributed systems, the information exchanged between participants 
differs greatly in formats and semantics. If the pub/sub system is to become a general 
infrastructure for distributed computing and support different applications, it should 
have strong expressiveness, i.e.: 

− It should support events in different formats and semantics; 
− It should provide a powerful subscription language, so that information consumers 

can easily express their interest in certain events. 

For each published event, the pub/sub system should match it with subscriptions to 
find out the interested subscribers. A large-scale distributed system may have millions 
of subscribers, and events may be published frequently. Therefore, the efficiency of 
the matching algorithm significantly affects the performance and scalability of a 
pub/sub system. 

                                                           
*  This work was supported by the National Grand Fundamental Research 973 Program of 

China under Grant No. 2002CB312005; the National Hi-Tech Research and Development 
863 Program of China under Grant No. 2001AA113010; and the National Natural Science 
Foundation of China under Grant No. 60173023. 



An Ontology-Based Publish/Subscribe System      233 

There is a close relation between the expressiveness and the efficiency of matching 
algorithm for a pub/sub system. Generally speaking, the more expressive a pub/sub 
system is, the more difficult it is to design an efficient matching algorithm, and vice 
versa. On the one hand, the pub/sub system should have strong expressiveness to 
support more applications; on the other hand, the system should keep a high matching 
efficiency to ensure the scalability of the system. Therefore, expressiveness and scal-
ability are two key goals of a pub/sub system that needs trade-off [2]. 

Although much work has been done on the research of pub/sub systems, there are 
still some problems in the expressiveness of existing pub/sub systems, such as: 

1. The existing systems mainly use the structural information of events to match 
them with subscriptions, and they generally have no sense of the semantic of 
events. If the pub/sub system could match events with subscriptions based on both 
the semantic and the structure of events, it would be more intelligent and could 
better serve the distributed applications. 

2. The existing systems can only support events with relational data structure (such 
as “attribute=value” pairs) or tree data structure (such as XML), but some distrib-
uted systems may require events to have more complex format (such as graph 
structure). Furthermore, events from different publishers may be in different for-
mats. Therefore, a unified mechanism is needed to process events with different 
formats at the same time. 

To solve the above problems, we introduce the Semantic Web technologies into the 
pub/sub system and propose an Ontology-based Publish/Subscribe (OPS) system. In 
the OPS system, the domain concepts involved in all events are integrated together to 
form a concept model, and the system matches events with subscriptions both seman-
tically and syntactically. Inside the OPS system, each event is represented as a Re-
source Description Framework (RDF) [3] graph, which is a kind of directed labeled 
graph. As Tim Berners-Lee has stated [4], data in almost any form can be broken 
down into a representation as a directed labeled graph, and then be represented as 
RDF graph. Therefore, the OPS can support events in almost any complex format. 
When an event is published, it is firstly converted into a RDF graph before further 
processing. For subscribers, the received events are always in RDF format. 

In the OPS system, subscriptions are represented as graph patterns, so the matching 
algorithm is in fact a kind of graph matching algorithm. Based on the characteristic of 
the RDF graph and a few constraints on the graphs and graph patterns, we designed a 
highly efficient matching algorithm for the OPS system. Experimental results show 
that under the same environment and workload, the matching time of our algorithm is 
much lower than existing graph matching algorithms. While there are 10,000 graph 
patterns in the system, the matching time for an input graph is just 1-2 seconds. 

The remainder of the paper is organized as follows. In Section 2, we discuss related 
work. In Section 3, we introduce the data model of the OPS system. In Section 4, we 
introduce the subscription language supported by the OPS system. In Section 5, we 
give the matching algorithm. In Section 6, we present and analyze the experimental 
results. Finally, in Section 7, we conclude the paper with a summary. 

2  Related Work 

Pub/sub systems are generally divided into two categories: subject-based and con-
tent-based. In subject-based systems (such as IBM MQSeries [5]), each event belongs 



234      Jinling Wang, Beihong Jin, and Jing Li 

to one of a fixed set of subjects (also called topics, channels, or groups). Publishers 
are required to label each event with a subject name; subscribers subscribe to all 
events under a particular subject. In content-based systems, each subscriber defines a 
subscription according to the internal structure of events; all events that meet the 
constraints of the subscription will be sent to the subscriber. The content-based sys-
tems are more expressive and flexible than the subject-based pub/sub systems; they 
enable subscribers to express their interests in a finer level of granularity. 

Existing content-based pub/sub systems can be further divided into two sub-cate-
gories: Map-based and XML-based. In Map-based systems, each event is a set of 
“attribute=value” pairs, and subscriptions are usually conjunctions of simple predi-
cates on data attributes, which are called flat patterns. Known prototype systems in-
clude SIENA [6], Gryphon [7], JEDI [8], etc. In XML-based pub/sub systems, each 
event is an XML document, and subscriptions are usually XPath expression or its 
variations, which contain not only constraints on the structure of the XML documents 
but also constraints on certain elements and attributes. Such subscriptions are called 
tree patterns. Known prototype systems include XFilter [9], XTrie [10], WebFilter 
[11], etc.  

Our OPS system differs from the existing content-based pub/sub systems in the fol-
lowing ways: 

1. Most existing systems are not aware of the semantic of events, whereas the OPS 
system can match events with subscriptions based on both the semantic and the 
structure of events. 

2. Events in the OPS system are represented as graphs rather than “attribute=value” 
pairs or XML, so the system can support events with more complex formats. 

3. Subscriptions in the OPS system are graph patterns, which are more expressive 
than flat patterns and tree patterns. 

In recent years, there are also some works on the research of semantic matching for 
pub/sub systems, such as S-ToPSS [12] and CREAM [13]. Our work differs from 
their works in that events are represented as RDF graphs and subscriptions are repre-
sented as graph patterns. Furthermore, our work is focused on designing an efficient 
matching algorithm for the system, while the matching efficiency issues are seldom 
touched in their works. 

On the other hand, there have been a lot of algorithms for graph matching by the 
graph theory community. In this community, graph matching is divided into two 
types: exact matching and approximate matching; the matching problem in the OPS 
system belongs to the first one. The exact graph-matching problem is in fact the sub-
graph isomorphism problem. The classical algorithms for subgraph isomorphism are 
based on backtracking in a search tree, and using refinement procedures to prevent the 
search tree from growing unnecessarily large. Common refinement procedures in-
clude Ullman algorithm [14], forward checking [15], graph partition [16], etc. These 
algorithms can only work on the matching of one input graph and one graph pattern at 
a time. In [17, 18, 19], algorithms were proposed for applications where an input 
graph should be matched with a database of graph patterns. In the algorithms pro-
posed in [17, 18], all graph patterns are organized into a hierarchical index structure, 
and the system traverses the hierarchical structure to find the matched graph patterns 
for a given input graph. However, these algorithms cannot find all matched graph 
patterns for an input graph. In the algorithm proposed in [19], every graph pattern is 
continuously decomposed into sub-graphs, until each sub-graph contains only one 



An Ontology-Based Publish/Subscribe System      235 

vertex. On the arrival of an input graph, the system first matches it with the smallest 
sub-graphs, and then assembles the matched sub-graphs into larger sub-graphs; finally 
get all matched graph patterns. But the algorithm can only support a database of tens 
or hundreds of graph patterns, and cannot serve the large-scale pub/sub systems where 
there are thousands or millions of subscriptions. 

Compared with existing graph matching algorithms, the algorithm in the OPS sys-
tem makes use of the characteristic of the RDF graph and adds a few constraints on 
the graphs and graph patterns, so it can achieve a matching efficiency much higher 
than existing ones. Furthermore, conventional graph matching algorithms are mainly 
focus on the matching efficiency when there are numerous vertexes and edges in 
graphs, while our algorithms are mainly focus on the matching efficiency when there 
are numerous graph patterns that need to be matched. 

3  Data Model 

In the OPS system, we use RDF and DAML+OIL [20] in the Semantic Web to de-
scribe the data model. The data model consists of following two parts: 

1. Event model, which specifies the organization of data inside events. It is described 
with RDF. 

2. Concept model, which specifies the concepts involved in the events, the relations 
between them, and the constraints on them. It is described with DAML+OIL. 

Since RDF and DAML+OIL are mainly used to represent information on the Web, 
they use URI as the identifiers of different entities. However, an event-based system 
mainly cares about the events that are being exchanged, which usually don’t have a 
URI. Therefore, when we represent events with RDF, they (and most entities inside 
them) are represented as blank nodes (nodes without URI). According to the RDF 
specification, a blank node can be assigned an identifier prefixed with “_:”. 

For the sake of clarification, we call nodes in a graph as vertexes and call nodes in 
a tree as nodes in the remainder of the paper. 

3.1  Event Model 

Inside the OPS system, each event is represented as a RDF graph. RDF is a way to 
represent fact using the (subject, property, object) triples. Each triple is called a 
statement, in which subject and property are URI, and object can be URI or literals. 
RDF data can be represented as a directed labeled graph, in which vertexes represent 
subjects and objects of statements, and arcs represent properties of statements. We 
call the RDF graph of an event as an event graph. 

For example, in a pub/sub style Internet auction system, suppose Jinling Wang 
wants to sell an IBM Desktop PC at the price of $450, and the PC contains a 40G-size 
hard disk that was also produced by IBM, then the corresponding event graph is 
shown in Figure 1. For the sake of simplicity, we omit the “daml:Thing” vertex, the 
“rdf:Literal” vertex, and the arcs pointing to them in the Figure. 

In the OPS system, we add the following restrictions on event graphs: 

1. There is one and only one vertex in the graph that is called the home vertex, which 
describes the global information about the event (such as the type and the creation 
time of the event). We specify that the identifier of the home vertex is “_:H”. 



236      Jinling Wang, Beihong Jin, and Jing Li 

2. There are paths from the home vertex to any other vertexes in the RDF graph. 
3. Each vertex in the graph is a typed vertex, i.e., the graph specifies the class of each 

vertex. The publisher can specify multiple classes for a vertex, meaning that the 
entity simultaneously belongs to multiple classes. 

3.2  Concept Model 

The OPS system uses ontologies to represent the concept model of events, which 
describe not only the structural information but also the semantic information of 
events. 

Ontology can be considered as a specification of a conceptualization [21]. It de-
scribes the concepts in a domain, the relations between them and the constraints on 
them. In the area of the Semantic Web technologies, one of the most influential on-
tology languages is DAML+OIL, which is used in the OPS system.  

In the OPS system, the concept model of events is composed of the following three 
parts: 

1. The description of classes and their hierarchical structure. An entity can belong to 
multiple classes. A class can have multiple parent classes, but the sub-
class-relations between classes must be acyclic (although there is no such restric-
tion in DAML+OIL). For example, a part of the hierarchical structure of classes 
in an Internet auction system is shown in Figure 2(a). 

 In this paper, we use two symbol  and  to represent the containing relations 
between two concepts. X  Y means X contains Y, and X  Y means X is con-
tained by Y. The  and  relations are both reflexive and transitive. 

 For two class A and B, predicate “A rdfs:subClassOf B” can be represented as “A 
 B”. 

 Suppose A is the class specified in a subscription and B is the class of an entity in 
an event, A can match with B if A is the ancestor of B. For example, in the Internet 
auction system, if someone is interested in all computer-selling events with price 

DesktopPC
rdf:type

seller
Jinling Wang

123456789

name

cellPhoneNumber

450
price

currency

rdf:value

manufacture

40

Hard-Disk

size

rdf:valueunits

MoneyValue

rdf:type

Customer

DiskInformation

QualifiedValue

rdf:type

rdf:type

rdf:type

IBM

Company
rdf:type

name

manufacture

units:giga

units:dollar

_:H

Selling

rdf:type

target

Fig. 1. An example of event graph. 



An Ontology-Based Publish/Subscribe System      237 

lower than $400, he can use the Computer class to define his subscription, and all 
computer-selling events (no matter selling Desktop PCs or Notebook PCs) with 
price lower than $400 will be sent to him. However, most existing content-based 
pub/sub systems can just support the hierarchy of event types, but cannot support 
the class hierarchy for entities inside the events. 

2. The description of properties and their hierarchical structure. A property can have 
multiple parent properties, and the sub-property-relations between properties must 
be acyclic. For example, a part of the hierarchical structure of properties in an 
Internet auction system is shown in Figure 2(b). 

 For two properties p1 and p2, predicate “p1 rdfs:subPropertyOf p2” can be repre-
sented as “p1  p2”. 

 Suppose p1 is the property specified in a subscription and p2 is the property ap-
pearing in an event, p1 can match with p2 if p1 is the ancestor of p2. For example, 
if there is a subscription “telephoneNumber=123456789” and an event that con-
tains “cellPhoneNumber= 123456789”, then the event can match with the sub-
scription. 

Contact 
Information

Telephone 
number

Postal 
Address

Home phone 
number

Cell phone 
number

Product

Computer Digital Product

Desktop PC Notebook 
PC

Book

E-Book MP3
 

 (a) The hierarchical structure of classes (b) The hierarchical structure of properties 

Fig. 2. A part of classes and properties in an online auction system. 

3. Meta-statement. We called the triple (subject-class, property, object-class) as a 
meta-statement. It specifies the allowed properties for a given class (sub-
ject-class), and the classes (object-class) that the values of these properties belong 
to. 

 For example, an Internet auction system may have the following meta-statements: 
  (Selling, seller, Customer) 
  (Selling, target, Product) 
  (Product, manufacture, Company) 
  (Customer, name, xsd:string) 
  … 
 There is also a hierarchical structure for the meta-statements. For two 

meta-statement ms1=(sc1, p1, oc1) and ms2=(sc2, p2, oc2), we say ms2 is the ances-
tor of ms1 (denoted as ms1  ms2) if the following predicate is held:  

(sc1  sc2) ∧ (p1  p2) ∧ (oc1  oc2) 

 It means that if a statement satisfies the type constraints of ms1, it also satisfies the 
type constraints of ms2.  



238      Jinling Wang, Beihong Jin, and Jing Li 

Fig. 3. Anexample of subscrition graph. 

4  Subscription Language 

Since events are represented as RDF graphs in the OPS system, the subscription is in 
fact a graph pattern built on the RDF graph syntax, which specifies the shape of the 
graph as well as the constraints on some vertexes and arcs in the graph. Based on a 
number of RDF query languages such as SquishQL [22], RDQL [23] and RQL [24], 
we design a subscription language for the OPS system. 

In the OPS system, a subscription is the conjunction of a number of statement pat-
terns; each statement pattern specifies a statement in event graphs. The format of a 
statement pattern is as follows: 

(subject, object, meta-statement, [ filter_func(object) ] ) 
The subject and object in the statement pattern specify the subject and object of a 

statement in the event graph. They can be variables or specific values, and variables 
can match with any values. The variable names always begin with “?”, such as ?1 
and ?2. 

The meta-statement in the statement pattern specifies the type constraints of state-
ments. Suppose the meta-statement in a statement pattern is (sc, sp, oc) and there is a 
statement S=(s, p, o), the following predicates must be held if S matches the statement 
pattern: 

s  rdf:type  sc 
p  rdfs:subPropertyOf  sp 
o  rdf:type  oc 

When the object in a statement pattern is a variable and the class of the object is lit-
eral, the statement pattern can include a filter function filter_func(object), which is a 
boolean expression used to further confine the value of object. Supported operations 
in the filter function include the relational operations such as >, <, = and the regular 
expression operations. 

For example, in the Internet auction system, if someone is interested in all com-
puter-selling events with price lower than $400, he can define the following subscrip-
tion: 

(_:H, ?1, (Selling, target, Computer)) 
(_:H, ?2, (Selling, price, MoneyValue)) 
(?2, units:dollar, (MoneyValue, currency, daml:Thing)) 
(?2, ?3, (MoneyValue, rdf:value, xsd:decimal),?3<400.00) 

Inside the OPS system, each 
subscription is represented as a 
graph (called subscription graph), 
in which each vertex corresponds 
to a vertex in the event graph and 
each arc corresponds to an arc in 
the event graph. For example, the 
preceding subscription can be 
represented as a graph shown in 
Figure 3.  

Each vertex in the subscription 
graph has a label (id, class, 



An Ontology-Based Publish/Subscribe System      239 

[filter_func(id)]), in which id is the subject or object in statement patterns, class is the 
class of id, and filter_func(id) is the filter function on the value of id if id is a variable 
and the class of id is literal. Each vertex has a unique id in the graph. 

The label on the arc in the subscription graph is the property name, which forms a 
meta-statement together with the class of the starting vertex and the class of the end 
vertex. Each arc plus its starting vertex and ending vertex forms a statement pattern. 

In the OPS system, we add the following restrictions on a subscription: 

1. There is at least one statement pattern in which the subject is “_:H”. We call the 
vertex with id=“_:H” in the subscription graph as the home vertex of the subscrip-
tion graph. 

2. There are paths from the home vertex to any other vertexes in the subscription 
graph. 

5  Matching Algorithm 

The key points of our algorithm are as follows: 

1) Each subscription is decomposed into a set of statement patterns, which are the 
basic units of matching; 

2) The index structure of statement patterns is built on the basis of the concept 
model; 

3) Statement patterns with same contents are matched only once; 
4) The decomposition of subscription is gradually performed to avoid the creation of 

unnecessary statement patterns; 
5) The event graph and subscription graphs are all traversed in broad-first order to 

form BFS trees, the matching of two BFS trees resulting in an AND-OR tree. 

5.1  Formal Definition of the Matching Problem 

Suppose there is an arc aG in a graph G. We use function SV(aG) to denote the starting 
vertex of the arc, function EV(aG) to denote the ending vertex of the arc, and function 
label(aG) to denote the label of the arc. 

Suppose the ith vertex of an event graph EG is vi
EG. We denote the id of the vertex 

as idi
EG and the set of classes of the vertex as classesi

EG. 
Suppose the ith vertex of a subscription graph SG is vi

SG. We denote the id of the 
vertex as idi

SG, the class of the vertex as classi
SG, and the filter function of the vertex 

as filter_funci
SG. If the vertex does not have a filter function, then filter_funci

SG al-
ways returns true. 

We use function isVariable(id) to denote the predicate “id is a variable”. 
Since the id of each vertex is unique in subscription graphs and event graphs, we 

do not strictly distinguish a vertex and its id in the following discussion. 

Definition 1. An event graph EG matches a subscription graph SG if and only if the 
following conditions are held: 

1) For each vertex vi
SG in SG, there is a corresponding vertex vj

EG in EG, and  



240      Jinling Wang, Beihong Jin, and Jing Li 

∃c: c ∈ classesj
EG ∧ (c  classi

SG) ∧ ( idi
SG=idj

EG ∨ isVariable(idi
SG) ) ∧  

filter_funci
SG(idj

EG) 

We denote the mapping between vi
SG and vj

EG as vi
SG↔vj

EG. 
2) For two vertexes vi

SG, vj
SG in SG and two vertexes vx

EG, vy
EG in EG: 

vi
SG↔vx

EG ∧ vj
SG↔vy

EG ∧ vi
SG≠vj

SG ⇒ vx
EG≠vy

EG 

3) For each arc ai
SG in SG, there is a corresponding arc aj

EG in EG, and 

SV(ai
SG)↔SV(aj

EG) ∧ EV(ai
SG)↔EV(aj

EG) ∧ (label(aj
EG)  label(ai

SG)) 

We denote the mapping between ai
SG and aj

EG as ai
SG↔aj

EG. 

5.2  Index Structure 

Based on the hierarchical structure of classes, the hierarchical structure of properties 
and the user-defined meta-statements in the concept model, we can figure out all valid 
meta-statements in the system. We store all these valid meta-statements in an array 
(called Extended Meta-Statement array, abbreviated as EMS array), which is the basis 
of the index structure of the OPS system. The items in the EMS array are sorted in 
alphabetical order, so that the binary-search algorithm can be used when we look up 
an item. 

Each item in the EMS array contains two lists: the ancestor list and the wait-
ing-pattern list. The ancestor list records the sequence numbers of all ancestors of the 
meta-statement. The waiting-pattern list includes the corresponding statement patterns 
that are waiting for matching. In the initial state, the waiting-pattern lists just include 
the statement patterns with subject=“_:H”. For example, suppose a system just con-
tains one subscription as shown in Figure 4(a), the initial state of the EMS array can 
be shown in Figure 4(b). The first list of each item in Figure 4(b) is the ancestor list 
(drawn in real lines), and the second list of each item is the waiting-pattern list (drawn 
in broken lines). Nil means the null pointer. 

 

_:H, H

?1, A ?3,C

?4, C

p1 p2

?2, B

p3
p4

3 (B, p5, C)

4 (C, p6, C)

2 (A, p4, C)

1 (A, p3, B)

5 _:H, ?1, EMS(5)

_:H, ?3, EMS(6)6

(H, p1, A)

p5

p6

(H, p2, C)

nil

nil

nil nil

nil

nil

5

54

7

7

7 ...  
 (a) A subscription (b) The initial state of the EMS array 

Fig. 4. A subscription and the initial state of the EMS array. 

For the sake of simplicity, in Figure 4 and the following examples, we use capital 
letters (such as A, B) to denote classes, pi (such as p1, p2) to denote properties except 
“rdf:type”, and EMS(i) to denote the meta-statement in the ith item of the EMS array. 



An Ontology-Based Publish/Subscribe System      241 

5.3  Traversal of RDF Graphs 

When an event arrives, the OPS system will traverse the event graph from the home 
vertex in a breadth-first order, so that every arc with label≠“rdf:type” is traversed 
once and only once. For each traversed arc, the system will generate one or several 
triples with the following format: 

(subject, object, meta-statement) 

We call the triples as typed-statements, in which subject is the identifier of the 
starting vertex of the arc, object is the identifier of the ending vertex of the arc, and 
meta-statement is the corresponding meta-statement of the statement. The rule for 
creating meta-statements for a given statement is as follows: suppose the statement is 
(s, p, o) and the created meta-statement is (ts, tp, to), then ts is the class of s specified 
in the event graph, tp equals p, and to is the class of o specified in the event graph. 
One statement can generate multiple typed-statements. 

The traversal of an event graph results in a tree structure, in which all nodes except 
the root node are typed-statements. We call the tree as the BFS tree of the event. For 
example, Figure 5(a) shows an event graph, and Figure 5(b) shows the corresponding 
BFS tree. 

_:H

_:a _:c

_:b _:d

H

C

A

B

p1

rdf:type

p6

p5

p4

p4p3

p2

rdf:type

rdf:type

rdf:type

rdf:type

_:H,_:a,
EMS(5)

_:H,_:c,
EMS(6)

_:a, _:b,
EMS(1)

_:a, _:c,
EMS(2)

_:a, _:d,
EMS(2)

_:c, _:d,
EMS(4)

_:b, _:d,
EMS(3)  

 (a) An event graph (b) The BFS tree of the event 

Fig. 5. The RDF graph and the BFS tree of an event. 

5.4  Matching Process and the Matching Tree 

For each generated typed-statement during the traversal of the event graph, the OPS 
system will find the corresponding item in the EMS array according to its 
meta-statement, and matches it with the waiting-pattern list of the item. After that, the 
system will find all ancestors of the meta-statement (according to the ancestor list of 
the item), and then matches the typed-statement with the waiting-pattern lists of those 
ancestors. 

For a statement pattern sp=(s1, o1, ms1, filter_func1) and a typed-statement ts=(s2, 
o2, ms2), the necessary and sufficient condition for sp matching with ts is as follows: 

(s1=s2 ∨ isVariable(s1) ) ∧ ( o1=o2 ∨ isVariable(o1) ) ∧ (ms1  ms2) ∧ filter_func1(o2) 

The matching results in the mapping of two pairs of vertexes: s1↔s2 and o1↔o2. 



242      Jinling Wang, Beihong Jin, and Jing Li 

Fig. 6. An example of matching tree. 

For example, the typed-statement (_:H, _:a, EMS(5)) in Figure 5(b) can match with 
the statement pattern (_:H, ?1, EMS(5)) in Figure 4(a) with vertex pairs 
{“_:H”↔“_:H”, ?1↔“_:a”}. To accept these vertex pairs, other statement patterns 
should also be matched, such as (_:a, ?2, EMS(1)) and (_:a, ?4, EMS(2)). Therefore, 
the matching process of a subscription and an event is actually the process of trying 
and evaluating different mapping solutions between the vertexes of the two graphs. 

Now we study the matching process of a single subscription and an event. At the 
beginning, all statement patterns with subject=“_:H” have already been put into the 
waiting-pattern lists in the EMS array. For each typed-statement in the event, the 
system will match it with the statement patterns in the corresponding waiting-pattern 
lists in the EMS array. For each matched statement pattern, a partial mapping solution 
is created, which records all vertex pairs resulting from the current matching and 
previous matchings. Suppose a statement pattern sp=(s1, o1, ms1, filter_func1) has 
matched with a typed-statement ts=(s2, o2, ms2), the system will act as follows: 

1) If o1 is not in the current path from the home vertex to s1 in the subscription graph, 
the system will find out all statement patterns in the subscription graph with sub-
ject=o1, and then create new statement patterns based on them, in which variables 
are replaced with the specific values according to the known vertex pairs. We call 
these new statement patterns as derived statement patterns. All derived statement 
patterns will be put into the waiting-pattern lists to wait for matching. 

2) If o1 is already in the current path from the home vertex to s1 in the subscription 
graph, the system will not create any new derived statement patterns. 

The matching state of a subscription can be represented as a tree structure (called 
matching tree), as shown in Figure 6. The matching process of a subscription can then 
be regarded as the process of creation and verification of the matching tree. 

Figure 6 shows the matching state of 
the event in Figure 5(a) and the subscrip-
tion in Figure 4(a). In the figure, the circle 
node represents a partial mapping 
solution, and the rectangle node 
represents a statement pattern. The root 
node is a circle node with vertex pair 
“_:H”↔“_:H” (we use symbol “=” to 
represent “↔” in the figure), and the 
children of the root node are statement 
patterns with subject=“_:H” in the sub-
scription graph. A circle node can have 
multiple rectangle nodes as its children, 
meaning the derived statement patterns of 
the partial mapping solution. Only after 
all its children being successfully 
matched, can a circle node be accepted as 
successful. A rectangle node can also 
have multiple circle nodes as its children, 
meaning the multiple matching solutions 
for the same statement pattern. As long as 
any one of its children succeeds, the 



An Ontology-Based Publish/Subscribe System      243 

rectangle node also succeeds. Therefore, the circle node implies the “and” relation of 
its children and the rectangle node implies the “or” relation of its children, so the 
whole matching tree is actually an AND-OR tree. 

During the matching process, the system may generate multiple statement patterns 
with same contents. If the system put all these statement patterns into the wait-
ing-pattern lists, a typed-statement would match with identical statement patterns for 
multiple times, which is undesirable. To avoid this phenomenon, a straightforward 
idea is to let a statement pattern be shared by multiple matching trees. However, since 
different statement patterns imply different path information in matching trees, it is 
very difficult for a statement pattern to be shared by multiple matching trees. To solve 
this problem, we use an approach similar to the Observer design pattern [25]. When 
the system put a statement pattern (suppose it to be A) into a waiting-pattern list, it 
first examine whether there is an existing statement pattern with the same contents in 
the list. If there exists such a statement pattern (suppose it to be B), then A will not be 
put into the list, but be registered to B. In the future, whenever B successfully matches 
with a typed-statement, it will notify all the statement patterns that have been regis-
tered to it. In this way, statement patterns with same contents will be matched only 
once. 

5.5  Verification of Matching Trees 

After the traversal of an event graph, the OPS system has created the matching trees 
for all subscriptions. Then the system will judge from the matching trees whether a 
subscription is successfully matched. We call the process as the verification of the 
matching trees. The OPS system uses two methods to verify the matching trees: Boo-
lean Expression Based Verification (BEBV) and State Based Partial Verification 
(SBPV). 

In the BEBV method, each leaf node in a matching tree is given a boolean expres-
sion, and the system calculates the expression for the root node to judge the result of 
matching. The calculation rules are as follows: 

1) If a leaf node is circle node with vertex pairs {v1
SG↔vx1

EG, v2
SG↔vx2

EG, …, 

vk
SG↔vxk

EG}, its boolean expression is (v1
SG↔vx1

EG) ∧ (v2
SG↔vx2

EG) ∧ … ∧ 

(vk
SG↔vxk

EG). 
2) If a leaf node is rectangle node, its expression is false. 
3) The expression of a non-leaf circle node is the conjunction of the expressions for 

its children, and the expression of a non-leaf rectangle node is the disjunction of 
the expressions for its children. 

4) For any vertex vi
SG in the subscription graph and two vertex vx

EG and vy
EG in the 

event graph: 

(vi
SG↔vx

EG) ∧ (vi
SG↔vy

EG) ∧ (vx
EG≠vy

EG) = false. 

It means that one vertex in the subscription graph cannot simultaneously maps to 
two different vertexes in the event graph. 

5) For any vertex vx
EG in the event graph and two vertex vi

SG and vj
SG in the subscrip-

tion graph: 

(vi
SG↔vx

EG) ∧ (vj
SG↔vx

EG) ∧ (vi
SG≠vj

SG) = false. 



244      Jinling Wang, Beihong Jin, and Jing Li 

 

Fig. 7. The backtrack process of the SBPV method. 

It means that one vertex in the event graph cannot simultaneously maps to two dif-
ferent vertexes in the subscription graph. 

According to the above rules we can calculate the boolean expression of the root 
node for all matching trees. If the expression of the root node in a matching tree is 
false, then the matching fails. Otherwise the matching is successful. 

However, it would be very inefficient if the system calculates boolean expressions 
for every matching tree. To improve the matching efficiency, we design another veri-
fication method – SBPV method, which can check out most unmatched subscriptions 
with very low cost, but cannot tell whether a subscription is successfully matched. 
Only after a subscription has passed the SBPV check should it perform the 
time-consuming BEBV check. 

In the SBPV method, each node in the matching trees has two possible states: un-
checked and checked. The checked state means that the node has passed the SBPV 
check, and the unchecked state means that the node has not passed the check. The 
initial state of every node is unchecked. For a rectangle node, its state turns to checked 
as long as the state of one of its children turns to checked. For a circle node, its state 
turns to checked only after the states of all its children turn to checked. 

In the SBPV method, each circle node has an unCheckedChildren field, recording 
the number of its children whose states are unchecked. 

During the creation of a matching tree, when a partial mapping solution cannot 
create new statement patterns as its children, the system begins to backtrack on the 
matching tree. The backtracking procedure is as follows: 
1) Set the state of the current node as checked. 
2) If the current node is a circle node: 

a) If the current node is the root node, the procedure finishes. 
b) If the current node is not the root node, examine whether the state of its parent 

is checked. If it is already 
checked, the procedure 
finishes, otherwise set the 
parent node of the current 
node as the current node and 
execute the procedure 
recursively. 

3) If the current node is a rectangle 
node, subtract 1 from the value 
of unCheckedChildren field of 
its parent node. If the value 
turns to 0, set the parent node as 
the current node and execute the 
procedure recursively, other-
wise the procedure finishes. 

The backtracking procedure of 
the SBPV check is shown in Fig-
ure 7. There is a label id(state, 
unCheckedChildren) besides each 
circle node and a label id(state) 
besides each rectangle node. In the 
labels, id means the identifier of the 



An Ontology-Based Publish/Subscribe System      245 

node, and the state field has two possible values: c and u, meaning checked and un-
checked respectively. The broken lines in Figure 7 show the backtracking process. 
When node I cannot create new statement patterns, The states of node I, H, G, E are 
set to checked, and the value of the unCheckedChildren field in node D turns to 1 
from 2. 

When the SBPV check finishes, if the state of the root node in a matching tree is 
unchecked, then the subscription cannot match with the event. Since the SBPV check 
can be performed simultaneously with the creation of the matching tree, the system 
just needs to do the BEBV check for the matching trees in which the state of the root 
node is checked after the traversal of an event graph. Therefore, the performance of 
the system can be greatly improved. 

5.6  Correctness Proof of the Algorithm 

In the following discussion, we call the expression of a node in the matching tree 
calculated with the BEBV method as the BEBV expression of the node, and the state 
of a node in the matching tree calculated with the SBPV method as the SBPV state of 
the node. 

When the BEBV expression of the root node in a matching tree is not false, we can 
cut some unnecessary branches out from the tree to create a reduced matching tree. 
The rules for creating a reduced matching tree are as follows: 

1) Transform the BEBV expressions of all nodes into the simplest disjunctive normal 
form, i.e., the disjunction of non-false conjunction expressions. 

2) Cut some branches off from the tree layer by layer from top to bottom: 
a) For the root node, randomly select one of the disjuncts from the disjunction as 

its new expression, and delete other disjuncts. 
b) For any non-leaf circle node (including the root node): Let the new expression 

is P, and P must be a conjunction expression. Suppose the node has n children 
and the expression of the kth child is px1

k ∨ px2
k ∨ … ∨ pxm

k, in which pxi
k 

(i=1..m) is a conjunction expression. Each child must has a disjunct (suppose it 
to be pxk

k for the kth child), so that px1
1∧px2

2∧…∧pxn
n=P. Therefore, we can set 

these disjuncts as the new expressions for the children; i.e., the new expression 
of the kth child is pxk

k. 
c) For any rectangle node: Since the expression of its parent is not false, the ex-

pression of itself is not false too, so it must be a non-leaf node. Let the new ex-
pression is P, and P must be a conjunction expression. Suppose the node has n 
children and the expression of the kth child is px1

k ∨ px2
k ∨ … ∨ pxm

k, in which 
pxi

k (i=1..m) is a conjunction expression. P must be equal to a conjunction ex-
pression in one of its children, supposing P= pxk

k. Then we can keep this child 
and delete all other children and the corresponding sub-trees. The new expres-
sion of the remaining child is set to pxk

k. 

Obviously, the reduced matching tree has the following features: 

1) It is still an AND-OR tree; 
2) Each rectangle node has only one child; 
3) All leaf nodes are circle nodes; 
4) The expression of every node is a non-false conjunction expression. 



246      Jinling Wang, Beihong Jin, and Jing Li 

Lemma 1. For each statement pattern spSG in the subscription graph SG, there is a 
rectangle node spT in the reduced matching tree T, so that spT equals spSG or spT is the 
derived pattern of spSG. 

Proof. Suppose there is a statement pattern spi
SG=(si, oi, msi, filter_funci) in SG. There 

must be at least one acyclic path sp1
SG

°sp2
SG

°…°spi
SG from the home vertex to si in 

SG, in which each item is a statement pattern. The subject of sp1
SG is the home vertex. 

We can use the mathematical induction to prove spi
SG has a corresponding rectangle 

node in T. 

1) The statement pattern sp1
SG is put into the matching tree as the child of the root 

node at the beginning of the matching process. When we cut branches from the 
matching tree to form a reduced matching tree, we will not delete the children of 
the root node, so sp1

SG is also in the reduced matching tree T. 
2) For 2 ≤ k ≤ i, suppose spk-1

SG has a corresponding rectangle node in T, and let it be 
spk-1

T. Suppose the object of spk-1
SG is vk

SG. Since vk
SG is not in the path of 

sp1
SG

°sp2
SG

°…°spi
SG, the object of spk-1

T is also vk
SG. The node spk-1

T must have a 
child (let it be pmk) in T, i.e., it can match with a typed-statement in the event 
graph and form a partial mapping solution. Since vk

SG is not in the path of 
sp1

SG
°sp2

SG
°…°spi

SG, the system should create derived patterns for all statement 
patterns with subject=vk

SG in SG and put them into the waiting-pattern lists. Since 
the subject of spk

SG is vk
SG, it must have a derived pattern (let it be spk

T) in the 
matching tree as the child of pmk. Since pmk is in T, so are all its children (includ-

ing spk
T). Therefore, spk

SG also has a corresponding rectangle node in T.  

Lemma 2. For each vertex vi
SG in the subscription graph SG, there is at least one leaf 

node in the reduced matching tree T that includes the mapping from vi
SG to a vertex in 

the event graph. 

Proof. For the home vertex of SG, its mapping pair exists in every leaf nodes of T. 
For any other vertex vi

SG in SG, since there is at least one path from the home vertex 
to vi

SG, there is at least one statement pattern spi
SG with object= vi

SG. From Lemma 1 
we can know there is a corresponding rectangle node (let it be spi

T) for spi
SG in T. The 

node spi
T must have a child (let it be pmi), i.e., it can match with a typed-statement in 

the event graph and form a partial mapping solution, so pmi include a mapping pair 
from vi

SG to a vertex in the event graph. The mapping pair must exist in all leaf nodes 

that are descendants of pmi.  

Lemma 3. If the expression of a node in the reduced matching tree includes a vertex 
pair, then the expressions of all its ancestor nodes also include the vertex pair. 

Proof. Suppose there is a node ni in the reduced matching tree, the expression of 

which include a vertex pair vi
SG↔vj

EG. There are two possible cases: 
1) Node ni is a circle node. Since ni is the only child of its parent, the expression of 

its parent is equal to the expression of ni, which certainly includes vi
SG↔vj

EG. 



An Ontology-Based Publish/Subscribe System      247 

2) Node ni is a rectangle node. The expression of its parent is the conjunction of the 
expressions of ni and its siblings, and all these expressions are non-false conjunc-

tion expressions, so the expression of the parent node must include vi
SG↔vj

EG. 

Therefore, the expression of the parent node of ni must include vi
SG↔vj

EG. By re-
peating the process recursively, we can know that all ancestors of ni include 

vi
SG↔vj

EG.  

Lemma 4. The expression of the root node in the reduced matching tree includes the 
mapping pairs for all vertexes in the subscription graph. 

Proof. From Lemma 2 we know that for each vertex in the subscription graph, there is 
at least one leaf node in the reduced matching tree that includes the mapping pair for 
it. According to Lemma 3, we can know that the expression of the root node includes 
the mapping pairs of all vertexes in the subscription graph.  

Lemma 5. Suppose the BEBV expression of the root node in a matching tree is not 
false. It cannot become false if we add sub-trees under any rectangle node of the tree. 

Proof. Suppose we add a sub-tree under a rectangle node na in the matching tree, and 
the root of the sub-tree is nb. Suppose the expression of nb is Pb, and the original ex-

pression of na is Pa. After the addition of nb, the expression of na becomes Pa ∨ Pb. 
Now we will prove that for any node nk in a matching tree, when its expression 

changes from Pk to Pk ∨ Px, the expression its parent np changes from Pp to Pp ∨ Py, in 
which Px and Py are boolean expressions. Suppose the node np has m children n1, …, 
nk, …, nm (k ≤ m). 
1) Suppose nk is a rectangle node. Then np is a circle node, and the original expression 

of np is: 

Pp = P1 ∧ … ∧ Pk ∧ … ∧ Pm 
The new expression of np is: 

Pp′ = P1 ∧ … ∧ (Pk ∨ Px) ∧ … ∧ Pm 

= P1 ∧ … ∧ Pk ∧ … ∧ Pm ∨ P1 ∧ … ∧ Px ∧ … ∧ Pm 

= Pp ∨ P1 ∧ … ∧ Px ∧ … ∧ Pm 

= Pp ∨ Py  (Let Py = P1 ∧ … ∧ Px ∧ … ∧ Pm) 

2) Suppose nk is a circle node. Then np is a rectangle node, and the original expression 
of np is: 

Pp = P1 ∨ … ∨ Pk ∨ … ∨ Pm 

The new expression of np is: 

Pp′ = P1 ∨ … ∨ (Pk ∨ Px) ∨ … ∨ Pm 

= P1 ∨ … ∨ Pk ∨ … ∨ Pm ∨ Px 

=Pp ∨ Px 



248      Jinling Wang, Beihong Jin, and Jing Li 

We can calculate the expressions of the ancestors of na from bottom to top until the 
root node. Suppose the original expression of the root node is Pr, then the new ex-

pression of the root node is Pr′=Pr ∨ Py. Since Pr is not false, Pr′ is not false too.  

Theorem 1. For any subscription S and event e in the OPS system, suppose the re-
sulting matching tree is MT, and the BEBV expression of the root node in MT is Proot, 
then: 

(Proot ≠ false) ⇔ (e matches S) 

Proof. We first prove (Proot ≠ false) ⇒ (e matches S). 
1) Since the expression of the root node of the matching tree is not false, we can cre-

ate a reduced matching tree based on it. From Lemma 4 we know that the expres-
sion of the root node of the reduced matching tree includes the mapping pairs for 
all vertexes in the subscription graph, so we can get the vertex mappings from the 
subscription graph to the event graph. 

2) Suppose there is a statement pattern spi
SG=(si, oi, msi, filter_funci) for arc ai

SG in 
the subscription graph. According to Lemma 1, it must have a corresponding rec-
tangle node (let it be spi

T) in the reduced matching tree, and spi
T has a child (let it 

be pmi). Suppose pmi is the result of the matching between spi
T and a 

typed-statement tsj=(sj, oj, msj) in the event graph, then pmi must includes the ver-

tex pairs {si↔sj, oi↔oj}. According to Lemma 3, the vertex pairs are consistent 
with the mapping solution in the root node of the reduced matching tree. Suppose 
the arc for tsj in the event graph is aj

EG, then we can get an arc mapping from ai
SG 

to aj
EG. In this way, we can get all arc mappings from the subscription graph to the 

event graph. 

According to Definition 1, we can conclude that the event matches with the sub-
scription. 

Now we prove ( e matches S) ⇒ (Proot ≠ false). 
Suppose there is a known mapping from the vertexes and arcs of the subscription 

graph to those of the event graph. Since the event graph is traversed in a breadth-first 
order, after the traversing of the first-layer type-statement in the BFS tree of the event, 
there is at least one circle node under every first-layer rectangle node in the matching 
tree, in which the vertex pairs are consistent with the known vertex mapping. We keep 
these circle nodes and delete all other circle nodes (and their corresponding sub-trees) 
in this layer. 

The remaining circle nodes may have created new rectangle nodes (the sec-
ond-layer rectangle nodes) in the matching tree. Since there is a know mapping from 
the arcs of the subscription graph to those of the event graph, after the traversing of 
the second-layer typed-statement in the BFS tree of the event, every second-layer 
rectangle node in the matching tree can match with at least one typed-statement and 
form a circle node, in which the vertex pairs are consistent with the known vertex 
mapping. We keep these circle nodes and delete all other circle nodes (and their cor-
responding sub-trees) in this layer. 

According to the above rules we can cut some branches out from the matching tree 
from top to bottom, and the resulting tree is a reduced matching tree. The expression 
of the root node of the reduced matching tree is the known vertex mapping solution, 



An Ontology-Based Publish/Subscribe System      249 

which is certainly not false. Then we can add the deleted sub-trees into the reduced 
matching tree and return it to the original matching tree. According to Lemma 5, the 
expression of the root node of the resulting matching tree is also not false.  

Lemma 6. The SBPV state of every node in the reduced matching tree is checked. 

Proof. We can use the mathematical induction to prove it. Suppose the depth of the 
reduced matching tree is n. 

1) The nodes in layer n of the tree are all leaf nodes. As all leaf nodes in the reduced 
matching tree are circle nodes, the state of the nodes are checked. 

2) For 1 ≤ i < n, suppose the states of nodes in layer i+1 are all checked. For the leaf 
nodes in layer i, since they are circle nodes, their state are checked. For the 
non-leaf nodes in layer i, since the states of all of their children are checked, their 
states are also checked. Therefore, the state of every node in layer i is checked.  

Lemma 7. If we add sub-trees under any rectangle node of the reduced matching tree, 
the SBPV state of the root node will not become unchecked. 

Proof. Suppose we add a sub-tree under a rectangle node ni in the reduced matching 
tree, and the root of the sub-tree is nj. Since ni already has a child whose state is 
checked, the state of ni remains checked no matter what the state of nj is, so the state 

of all ancestor nodes (including the root node) of ni also remain checked.  

Theorem 2. For any subscription S and event e in the OPS system, suppose the re-
sulting matching tree is MT, and the SBPV state of the root node in MT is Stateroot, 
then: 

(Stateroot = unchecked) ⇒ ( e doesn’t match S) 

Proof. We can prove its inverse and negative proposition, i.e., (e matches S) ⇒ 
(Stateroot = checked). 

If an event can match with a subscription, we can know from Theorem 1 that the 
BEBV expression of the root node in the matching tree is not false, so we can build a 
reduced matching tree based on the matching tree. According to Lemma 6, the state of 
the root node in the reduced matching tree is checked. Then we can add the deleted 
sub-trees into the reduced matching tree and return it to the original matching tree. 
According to Lemma 7, the state of the root node in the resulting matching tree is also 
checked.  

6  Experimental Evaluation 

In this section we evaluate the performance of the OPS system with a variety of 
simulated workloads. The prototype system was implemented in Java, and the per-
formance tests discussed below were performed on a common Notebook PC with an 
Intel Pentium IV CPU at 1.6GHz and 512MB RAM running Windows 2000 Sever 
and JDK 1.4.1. 

To demonstrate the efficiency of our algorithm, we also implemented a recently 
proposed graph-matching algorithm in [19], and compared the performance of the two 
algorithms under the same environment and workloads. For the sake of simplicity, we 



250      Jinling Wang, Beihong Jin, and Jing Li 

call our algorithm as the OPS algorithm and their algorithm as the Decomposition 
algorithm in the follows. 

Suppose the concept model contains C numbers of classes and P numbers of prop-
erties. There are no sub-class relations among classes and no sub-property relations 
among properties. In the following experiments, the value of P is fixed to be 10, and 
each class has exactly 2 properties. 

Suppose there are S numbers of subscriptions in the system. Every subscription has 
10 vertexes and 11 arcs. The id of the home vertex was “_:H”, and the id of all other 
vertexes were variables. The class of every vertex was randomly selected from the 
total classes, and there were no filter functions in any vertexes. 

Every generated event had 50 blank nodes, and there were 55 arcs among the blank 
nodes. 

We define a parameter matching rate, meaning the ratio of matched subscriptions 
to total subscriptions for a given event. The value of matching rate considerably af-
fects the performance of graph matching algorithms. 

Figure 8(a) shows the matching times of the OPS algorithm under different num-
bers of subscriptions. In the experiments, the value of C is 10, and the value of S var-
ies from 500 to 10,000. The resulting matching rates are always around 3%. From the 
figure we can see that the matching time is just 1.2 seconds when the number of sub-
scriptions is 10,000. 

Figure 8(b) shows the comparison of the matching times of the two algorithms. In 
the experiments, the value of C is 10, and the value of S varies from 1 to 20. From the 
figure we can see the OPS algorithm is much faster in event matching than the De-
composition algorithm. When the there are just 20 subscriptions, the matching time of 
the Decomposition algorithm reaches 500ms, while the matching time of the OPS 
algorithm is merely 1ms. Therefore, the conventional graph matching algorithms are 
not suitable for the pub/sub systems where there are large numbers of subscriptions. 

Figure 8(c) shows the matching times of the OPS algorithm under different num-
bers of classes. In the experiments, the value of S is 1,000, and the value of C varies 
from 2 to 20. From the figure we can see that the matching time decreases dramati-
cally from 2500ms to about 50ms. We believe the real reason is the changing of the 
matching rate, i.e., the matching rate decreases greatly when the number of classes 
increases, which leads to the decrease of matching time. Figure 8(d) shows the same 
experimental results, in which the x-axis represents the matching rate rather than the 
number of classes. From the figure we can see that the matching time is almost linear 
in the value of matching rate. 

Now we evaluate the space usage of the OPS algorithm. In the OPS algorithm, the 
space is mainly used in the creation of matching trees for subscriptions. Figure 8(e) 
shows the average number of nodes in each matching tree under different numbers of 
subscriptions. In the experiments, the value of C is 10, and the number of subscrip-
tions varies from 500 to 10,000. From the figure we can see that the average number 
of nodes in each matching tree is always around 5. Therefore, the space usage in the 
OPS algorithm is linear in the number of subscriptions. 

Figure 8(f) shows the average number of nodes in each matching tree under differ-
ent values of matching rates. In the experiments, the value of S is 1,000, and the value 
of C decreases from 20 to 2, so the matching rate increases from 1.3% to 23.8%. From 
the figure we can see that the average number of nodes in each matching tree in-
creases just a little while the matching rate increases a great deal. Therefore, the space 
usage in the OPS algorithm is sub-linear in the value of matching rate. 



An Ontology-Based Publish/Subscribe System      251 

 

Fig. 8. The experimental results. 

7  Conclusions 

In this paper, we described the data model, subscription language and matching algo-
rithm of an ontology-based publish/subscribe system. Through the combination of the 
publish/subscriber technologies and the Semantic Web technologies, the system can 
make use of the semantic of events to match events with subscriptions, and can sup-
port events with complex data structure (such as graph structure). Furthermore, we 
design a highly efficient matching algorithm for the OPS system, which can match 
RDF graphs with graph patterns in a speed much higher than the conventional graph 
matching algorithms. Therefore, the main contribution of our work is that it greatly 
improves the expressiveness of the pub/sub system and at the same time it keeps a 
high matching efficiency. 



252      Jinling Wang, Beihong Jin, and Jing Li 

References 

1. P. Th. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35(2) (2003) 114-131 

2. Antonio Carzaniga, David S. Rosenblum, and Alexander L: Wolf. Achieving scalability 
and expressiveness in an Internet-scale event notification service. In 19th ACM Sympo-
sium on Principles of Distributed Computing. (2000) 

3. O. Lassila and R. R. Swick: Resource Description Framework (RDF) Model and Syntax 
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (1999) 

4. T. Berners-Lee: Using XML for Data.   
http://www.w3.org/DesignIssues/XML-Semantics.html. (2001) 

5. IBM: Internet Application Development with MQSeries and Java. Vervante Corporate Pub-
lishing (1997) 

6. Carzaniga, D. S. Rosenblum, and A. L. Wolf: Design and evaluation of a wide-area event 
notication service. ACM Trans. on Computer Systems 19(3) (2001) 332-383 

7. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra: Matching 
events in a content-based subscription system. In: Proceedings of the Eighteenth ACM 
Symposium on Principles of Distributed Computing (1999) 53-61 

8. G. Cugola, E. D. Nitto, and A. Fuggetta: The JEDI event-based infrastructure and its appli-
cation to the development of the OPSS WFMS. IEEE Trans. on Software Engineering 
27(9) (2001) 827-850 

9. M. Altinel and M. J. Franklin: Efficient Filtering of XML Documents for Selective 
Dissemination of Information. In: Proceedings of 26th International Conference on Very 
Large Data Bases. (2000) 53-64 

10. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi: Efficient Filtering of XML Docu-
ments with XPath Expressions. The VLDB Journal 11(4) (2002) 354-379 

11. J. Pereira, F. Fabret, F. Llirbat, H.-A. Jacobsen, and D. Shasha: WebFilter: A High 
Throughput XML-based Publish and Subscribe System. In: Proceedings of 27th Interna-
tional Conference on Very Large Data Bases. (2001) 723-724 

12. M. Petrovic, I. Burcea, and H.-A. Jacobsen: S-ToPSS: Semantic Toronto Publish/Subscribe 
System. In: Proceedings of 29th International Conference on Very Large Data Bases. 
(2003) 1101-1104 

13. M. Cilia, C. Bornhoevd, and A. P. Buchmann: CREAM: An Infrastructure for Distributed, 
Heterogeneous Event-based Applications. In: Proceedings of the International Conference 
on Cooperative Information Systems. (2003) 482-502 

14. J. R. Ullmann: An Algorithm for Subgraph Isomorphism. Journal of the ACM 23(1) (1976) 
31-42 

15. R.M. Haralick and G.L. Elliot: Increasing Tree Search Efficiency for Constraint Satisfac-
tion Problems. Artificial Intelligence 14 (1980) 263-313 

16. R.E. Blake: Partitioning Graph Matching with Constraints. Pattern Recognition 27(3) 
(1994) 439-446 

17. H. Sossa and R. Horaud: Model Indexing: The Graph-Hashing Approach. In: Proceedings 
of IEEE Conference on Computer Vision and Pattern Recognition. (1992) 811-814 

18. K. Sengupta and K.L. Boyer: Organizing Large Structural Modelbases. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 17( 4) (1995) 

19. B. T. Messmer and H. Bunke: Efficient Subgraph Isomorphism Detection: A Decomposi-
tion Approach. IEEE Trans. on Knowledge and Data Engineering 12(2) (2000) 307-323 

20. F. V. Harmelen, P. F. Patel-Schneider and I. Horrocks: Reference description of the 
DAML+OIL (March 2001) ontology markup language.   
http://www.daml.org/2001/03/reference. (2001) 

21. T. R. Gruber: A translation approach to portable ontologies. Knowledge Acquisition 5(2) 
(1993) 199-220 



An Ontology-Based Publish/Subscribe System      253 

22. L. Miller, A. Seaborne, and A. Reggiori: Three Implementations of SquishQL, a simple 
RDF Query Language. In: Proceedings of the First International Semantic Web Confer-
ence. (2002) 423-435 

23. HP Labs: RDQL: RDF Data Query Language. http://www.hpl.hp.com/semweb/rdql.htm  
24. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl: RQL: A 

Declarative Query Language for RDF, In: Proceedings of the Eleventh International World 
Wide Web Conference. (2002) 592-603 

25. E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design pattern, elements of reusable ob-
ject-oriented software. Addison-Wesley (1994) 


	1 Introduction
	2 Related Work
	3 Data Model
	3.1 Event Model
	3.2 Concept Model

	4 Subscription Language
	5 Matching Algorithm
	5.1 Formal Definition of the Matching Problem
	5.2 Index Structure
	5.3 Traversal of RDF Graphs
	5.4 Matching Process and the Matching Tree
	5.5 Verification of Matching Trees
	5.6 Correctness Proof of the Algorithm

	6 Experimental Evaluation
	7 Conclusions
	References



