
Middleware and Web Services
for the Collaborative Information Portal

of NASA’s Mars Exploration Rovers Mission

Elias Sinderson1, Vish Magapu2, and Ronald Mak3

1 Computer Sciences Corporation
NASA Ames Research Center, M/S 269-3

Moffett Field, California 94035
esinderson@mail.arc.nasa.gov

2 Science Applications International Corporation
NASA Ames Research Center, M/S 269-3

Moffett Field, California 94035
vmagapu@mail.arc.nasa.gov

3 Research Institute for Advanced Computer Science
NASA Ames Research Center, M/S 269-3

Moffett Field, California 94035
rmak@mail.arc.nasa.gov

Abstract. We describe the design and deployment of the middleware
for the Collaborative Information Portal (CIP), a mission critical J2EE
application developed for NASA’s 2003 Mars Exploration Rover mission.
CIP enabled mission personnel to access data and images sent back from
Mars, staff and event schedules, broadcast messages and clocks displaying
various Earth and Mars time zones. We developed the CIP middleware
in less than two years time using cutting-edge technologies, including
EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed
and implemented as a collection of independent, hot-deployable web ser-
vices, providing secure access to back end file systems and databases.
This service-oriented approach to developing an integrated system is an
example of cutting edge middleware design. Throughout the middleware
we enabled crosscutting capabilities such as runtime service configura-
tion, security, logging and remote monitoring. This paper presents our
approach to mitigating the challenges we faced, concluding with a short
review of the lessons we learned from this project and noting some of the
things we would do differently and why.

1 Introduction

The 2003 Mars Exploration Rover (MER) mission was the latest in a series
of science missions to the planet Mars. The primary goal was to search for ir-
refutable evidence of liquid water existing on the surface in the Martian past.
The mission was composed of two redundant (dual launch, dual lander) mo-
bile science platforms, or rovers, outfitted with a variety of instruments. NASA

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 1–17, 2004.
c© IFIP International Federation for Information Processing 2004



2 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 1. Artists rendition of a MER mobile science platform (rover)

launched two spacecraft carrying these rovers in June 2003, and in January 2004
they landed safely on Mars. After landing the rovers at two separate locations,
they proceeded to take numerous images of their surroundings and collect data
from the Martian rocks and soil. Intermittently throughout each Martian day, or
sol, the rovers transmitted their data back to Earth where it was collaboratively
analyzed and activities were planned for the next sol. This analysis and planning
cycle had to be completed in time for the next set of command sequences to be
uplinked as the sun is rising on Mars.

The MER Collaborative Information Portal (CIP) was conceived of to pro-
vide mission personnel a sense of situational awareness, allowing the MER sci-
entists, engineers and managers to accomplish their daily tasks by facilitating
access to various mission data products, schedules, broadcast announcements,
and the like. This paper focuses on the middleware and web services that were
developed for CIP. The rest of this section presents a brief overview of the day-
to-day mission operations, and describes previous work at Ames that both led to
and influenced the CIP project. Sec. 2 outlines the overall approach to systems
development that was employed. Sec. 3 provides an initial, high-level overview of
the client application functionality and back end data stores before proceeding
on to the details of the CIP middleware. Sec. 4 looks at the crosscutting func-
tionality that was implemented across all of the CIP middleware services. We
conclude the paper by identifying several of the lessons learned on the project.



Middleware and Web Services for the Collaborative Information Portal 3

1.1 MER Operations

The MER operations (Ops) environment is stressful, to say the least. The turn-
around time from downlink to uplink is approximately 14 hours, barely enough
time for the teams of scientists and engineers to analyze the recent data, plan the
next sols activities, and then generate and verify the command sequences before
uplink radiation. To make matters worse, a sol is approximately forty minutes
longer than a day is on Earth, so each day’s activities, meetings, etc. occur a lit-
tle later than they did the previous day. What this means, practically, is that the
time of telemetry downlink, and all associated activities occurring afterwards,
moved forward by approximately an eight-hour shift every other week, making
it extremely difficult for mission personnel to maintain a sense of situational
awareness about the mission. Operations proceeded in this fashion 24x7 for the
duration of each rover’s life. The cumulative stress on Ops personnel makes it
exceedingly difficult for them to remember when activities are to occur or where
data products are located.

The total amount of data associated with the MER mission is quite large.
The 1996 Mars Pathfinder mission, for reference, produced 2.3 gigabits of data
in over 17,000 data products in the nineteen days the rover was active. With two
rovers in operation during MER, several GB of data was being produced every
day, including Experimental Data Records (EDRs) from the rovers themselves,
Reduced Data Records (RDRs) as a result of EDR analysis, and the planning
documents and command sequences produced within Ops. This volume of data
not only needs to be archived, but also catalogued and tagged with metadata
for ease of indexing, location and retrieval. Furthermore, the interdependencies
of the various teams make the challenges of cooperative and collaborative work
more difficult than they would be otherwise. For example, if modifications are
made to a given resource then others who depend on that information must be
notified as quickly as possible. Subsequent modifications to data products ripple
outwards through other resources and people as the awareness of the changes
spreads.

1.2 Background

In the mid 1990s, the DARWIN project focused on the problem of providing
real-time access to aeronautical data captured during wind tunnel testing over
the internet [6]. DARWIN provided secure access to wind tunnel data, allowing
researchers at remote facilities to collaboratively analyze experimental results
using a standard web browser [11]. This system was implemented using Com-
mon Gateway Interface (CGI) scripting and Java applet technologies to access
underlying data repositories [12]. One of the aspects of this work that the CIP
project inherited was the D3 metadatabase schema [10].

The initial prototypes of the CIP tools were developed as applets and deliv-
ered within a commercial portal package, however we quickly identified several
drawbacks to this approach. The reloading of applets on hyperlink traversal and
web page refresh was problematic from a user experience perspective as well as



4 Elias Sinderson, Vish Magapu, and Ronald Mak

making it difficult to maintain state in the tools. Further, testing of this envi-
ronment, with multiple browsers, browser versions and Java plugin versions was
extremely resource intensive. Lastly, applets did not offer the sort of rich and
flexible client UI that was desired for CIP. For the above reasons, it was decided
that the CIP client should be developed as a full-fledged Java application.

2 CIP Development

As mentioned previously, CIP provides an enhanced sense of situational aware-
ness to mission personnel. Of primary importance was to allow secure local and
remote access to mission data products and scheduling information. The system
was specified to be available 24x7, with better than a 99% availability over the
course of the mission, while handling a load of 150 or more concurrent users. Fur-
thermore, addressing the needs of a diverse user community including scientists,
engineers, and managers posed a challenge in and of itself.

The basic principles we followed during the CIP development were to (a)
apply applicable industry standards, (b) utilize existing COTS software and
(c) use available commercial development tools. Essentially, we wanted to avoid
reinventing the wheel, as we were working against hard deadlines (i.e. launch
dates) that quite simply could not be pushed back.

CIP needed to be platform-independent, so we naturally chose to use Java
throughout the system, with J2EE [9] being used for the middleware and SOAP-
based web services [2] providing the client interface to the middleware EJBs
[3]. A major benefit in the tools we selected was that the IDE we used was
tightly integrated with the application server, making it possible to deploy and
test our code from within the IDE. Further, both the client and server web
service interfaces were automatically generated simply by invoking build utilities
provided with the application server. This saved us much effort in the long run
in not having to code these by hand whenever we had to change an interface.

The decision to pursue a Service Oriented Architecture (SOA) built on SOAP-
based web services was, at the time, felt to contain some risk, especially given the
relative immaturity of the associated technologies and the nature of the system
under development. However, the benefits offered in terms of firewall negotiation,
stateless connections and security made our early adoption of these technologies
a reasonable gambit. This approach has since been validated in several ways, not
the least of which by other MER applications utilizing the CIP web services for
authentication, authorization and data access in ways that we had not originally
anticipated.

3 CIP Architecture

In this section we provide an expose of the CIP architecture. The first two sub-
sections outline the client application functionality and the back end data stores
before presenting the CIP middleware and web services in detail. We conclude



Middleware and Web Services for the Collaborative Information Portal 5

Fig. 2. Screenshot of the CIP client application

this section by examining how crosscutting functionality such as security and
logging was implemented across all of the web services.

3.1 Client Application

CIP employs a three-tier client-server model in which the client is a desktop
application and the server is a J2EE compliant middleware platform consisting
of a number of web services. The server maintains user preferences and profile
data [1] in order to provide a consistent interface and behavior from one session
to the next. The suite of tools within CIP facilitated increased communication,
improved situational awareness and provided a greater exposure to mission in-
formation than would otherwise have been possible.

The CIP client application is divided into different information panels as
shown in Fig. 2, with broadcast messages and clocks displayed in the upper left,
the event horizon in the upper right, and lower tabbed pane for doing time con-
versions, displaying event and personnel schedules, browsing data files, searching
for files, monitoring the arrival of new files, and displaying observations. In this
screen shot, part of the tactical timeline schedule is visible with the time scale
showing both Earth and Mars times. The auxiliary window is displaying an
image of the martian horizon that has been selected in the data file browser.

In essence, mission management, operations and science team members used
CIP to retrieve the various data products, staffing and event schedules and main-



6 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 3. CIP client architecture showing the relationship between the tools, their service
managers and the CIP middleware

tain a sense of what was going on in the mission. In addition to integrating the
various mission data repositories into a common interface, CIP provided custom
tools for the following: Time keeping and conversion between Mars Local Solar
Time for each rover (LST-A and LST-B) and time zones on Earth. Tracking of
strategic and tactical events with an event horizon and schedule viewer that is
linked to information about science teams and data products. Access to mis-
sion broadcast announcements and lastly, the ability to manage subscriptions to
different types of notifications about new resources.

The CIP Client was implemented as a layered architecture, with each tool
panel relying on one or more of the middleware web services. Each service had a
service manager which ran in its own thread and served to manage the connec-
tion to the service. Each web service connection utilized a service adapter which
translated between data formats and mediated the exception handling for the
service manager. A number of different design patterns [4] were used throughout
the CIP client architecture, including singletons, factories, proxies, decorators
and iterators, among others.

CIP Client Tools. The CIP clocks maintain the correct time to within minute
accuracy (due to network latency) and convert between different time zones on
Earth as well as two Mars time zones LST-A and LST-B. An Event Horizon
panel is also provided to display upcoming, ongoing and recent events, including
communication windows, shifts and handovers, activity planning and approval
meetings, communications windows, press conferences, etc.

The schedule viewer is an interactive tactical event timeline. The time zones
supported by the scheduler are the same as those supported by the CIP Clocks.
Tactical events are displayed in the schedule viewer, which can also display
staffing information for mission personnel, press conferences, etc. The schedule



Middleware and Web Services for the Collaborative Information Portal 7

is hyperlinked such that when a user clicks on an event, information about the
associated teams, processes, and data products is displayed in a pop-up window.

The Browse Files and Find Files tabs provide tools for searching and brows-
ing mission data products and resources by name, type, date, etc. In addition,
the New Files tab allows users to subscribe to notification about active data
products that they are interested in. The mission resources of interest include
generated summary reports, rover health information, and strategic and activity
plan summaries among other things. The data products reside on mission spe-
cific file systems, while annotations and other resource metadata are maintained
in a metadata database. These repositories are described in more detail in the
next subsection.

The broadcast announcements panel allows CIP users to communicate about
mission announcements, news, events, and plans. Past messages are archived to
a database and accessible through a message browser utility located in a pull
down menu. Using the message browser, users can delete messages from their
view or make important announcements ‘sticky’ so that they don’t scroll off the
screen as new messages appear.

3.2 Data Repositories

A critical aspect of the CIP application is being notified when new resources be-
come available or when existing resources are modified. This allows the metadata
cache to be kept up to date, in turn ensuring that mission personnel are using
the most recent versions of resources to make important decisions. Maintaining
a sufficient level of situational, group, and workspace awareness in a distributed
system required a reliable event notification infrastructure.

For simplicity and responsiveness under extreme user loads, MER utilized
several flat NFS file systems to store mission data products, hence the amount
of control over the repository was limited when compared to other, more robust
content management systems. To provide CIP with information about active
resources, the Solaris NFS logging daemon, nfslogd, was used to trap file opera-
tions. Information is written to a log file that is monitored by a data acquisition
daemon running on the CIP server.

When a given resource is active, a notification is sent to the CIP middleware
in the form of a JMS message. The notifications contain enough information to
update the CIP metadata repository appropriately. Subsequently, a notification
was sent to any concerned clients about the update. The CIP metadata is main-
tained in an Oracle database on a dedicated server. This database also maintains
schemas for scheduling information and archival storage of broadcast messages.

3.3 Middleware

CIP is a three-tier enterprise system based on the Java language. The client
tier consists of a desktop application developed with Java Swing components,
while the J2EE middleware tier consists of Enterprise Java Beans (EJB) and
servlets. Web services acted as the interface between the client applications and



8 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 4. CIP middleware architecture

the EJBs. The data repository tier included the mission file system, the Oracle
databases, and data monitor and data loader utilities. The middleware EJBs used
JDBC calls to access the databases. The Java Message Service (JMS) provides
asynchronous messaging among the three tiers.

The CIP middleware architecture and its’ relationship with the client appli-
cation and back end data repositories is shown in Fig. 4. In the final deployed
configuration, the CIP middleware, data acquisition and data management sys-
tem ran on separate machines, with the MER mission data servers were NFS
mounted as shown.

The CIP middleware consisted of a number of independent services, forming
an example of a service oriented architecture. Each service had a public inter-
face implemented by a stateless session EJB, acting as a session facade [7], that
was the service provider. Each service provider had a SOAP processor to han-
dle incoming web services requests and their responses. CIP used the HTTPS
protocol to ensure secure communications between the client applications and
the middleware. A general representation of the CIP web service architecture is
presented in Fig. 5.

The following web services were exposed to the client application: User man-
agement, Time, Database query, File streaming, and JMS messaging. These
services were chosen based on logical groupings of functionality present in the
system requirements. The primary goals of the middleware included scalability,
reliability, extensibility, and security. For the most part, these goals were ful-
filled by our use of J2EE and web services over HTTPS. Our other goal for the
middleware was that it remained invisible to the end client, giving each user the
illusion of having direct and exclusive access to the data. It was evident that we
had achieved this latter goal when users asked, “What server?”, not realizing
that they were connected to one in the first place.



Middleware and Web Services for the Collaborative Information Portal 9

Fig. 5. CIP Web Services

User Management Service. The CIP User Management Service provides
authentication and authorization services for CIP clients and is designed to be
an independent vertical service that can be used for either purpose across several
MER subsystems apart from CIP. The requirements for other MER subsystems
to use the CIP User Management Service was inclusion of the user management
service client stubs by way of a jar file.

Time Service. It was important for everyone working on the MER mission to
be able to answer the question “What time is it?”. The mission ran on Mars
time, and since a Sol is about 40 minutes different than an Earth day, regularly
scheduled events drifted later from day to day relative to Earth time. Moreover,
two Martian time zones, one per rover were used extensively throughout the
mission.

The CIP application displayed clocks that showed Mars and Earth times in
various time zones chosen by the user. The CIP middleware supplied accurate
times, which went over the Internet to the CIP applications. Due to network
latencies, the times displayed by the CIP applications could be a few seconds off;
we only guaranteed accuracy to the minute. The middleware obtained accurate
Earth time via a Network Time Protocol server and computed the Mars times
from the Earth time.

Query Service. The middleware query service accessed schedules and metadata
stored in the Oracle databases of the data repository tier. CIP client applications
displayed staff and event schedules, which they requested from the middleware.
The applications also allowed users to browse data and images sent by the rovers.
This information was categorized according to metadata fields, such as which
rover, which sol, or which instrument. Users could also do searches based on
metadata field values. The metadata was generated and loaded into the database
by the data loader utility in the data repository tier.



10 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 6. The CIP query service

As shown in Fig. 6, the query service used stateful session EJBs to perform
the queries via JDBC calls. Each session EJB stored the query results. By keeping
track of these stateful session EJBs in a registry – a hash table keyed by the
query strings – the middleware was able to cache query results in memory. As
of this writing, the middleware cache has achieved a cumulative hit rate of 65%
over the longest recorded server uptime.

Streamer Service. A user of the CIP client application often requested down-
loads of data and images. The middleware responded to such a request by ac-
cessing the desired file from the mission file servers in the data repository tier.

The middleware transmitted each file in small blocks, with the web services
interface converting each block of binary data into ASCII – two characters per
original byte – using base 64 notation. The block was then encrypted and sent
over HTTPS to the requesting client application. The web services client stub
decrypted the block and converted it back to binary. The application received
all the blocks sequentially, and so it was simple for it to reassemble the data or
image.

Despite all the data conversions and the encryption and decryption, files
downloaded at the rate of around 100 MB per hour. Most of the data or image
files were smaller than a few megabytes, although some data products were quite
large – panoramic mosaics, for example, that were composed of many smaller
images being stitched together.

Message Service. The CIP Message Service provided JMS messaging capabil-
ities between the CIP client and the middleware. The clearest example of this
functionality is the broadcast announcements tool, which allowed managers to
send messages out to the mission. Many of the CIP components, however, were
able to take advantage of this framework so that the information they displayed
was the freshest possible.



Middleware and Web Services for the Collaborative Information Portal 11

Fig. 7. CIP Message Service

The Schedule Viewer subscribed to messages about modifications to the mis-
sion schedules. When a new schedule is uploaded to the server, or an existing
schedule is modified, a message is published to ‘schedules’ topic. When the client
receives the message, the display is updated to reflect that new scheduling in-
formation is available. Similarly, the New Files tab allows users to subscribe to
active resources by their type and when they were last modified. When resources
are modified or added to one of the mission repositories, an active resource noti-
fication message is published to a ‘resources’ topic and if a client has subscribed
to notifications of that type, it is notified.

On the data acquisition side of things, the database loader subscribes to a
‘monitor’ topic, which carries messages about NFS operations on mission data
products. This information is used to keep the metadata about the mission
resources accurate and up to date. Thus, when the loader receives a notification
that new data products are available it populates the metadata database with
information about them.

The decoupling of event producers and event consumers within the overall
system is perhaps one of the greatest benefits of using messaging oriented ar-
chitectures. This approach redeemed itself when it became necessary to migrate
the data acquisition components to another machine in order to lighten the load
on the primary machine that clients connected to. Without the decoupling of
system components provided by JMS, this would have required a fair amount of
effort.

One of the difficult challenges in designing the CIP Message Service was in
allowing multiple clients to connect using the same user ID. This situation would
arise, for example, whenever a user left an instance of the CIP client application
running in their office or at home and then subsequently attempted to log in
at a terminal in one of the science areas. This posed a problem because the
application used durable subscriptions for several of the system services. As the
JMS specification states, durable subscriptions require a unique client ID to be
used consistently from one session to the next and only a single client can use
this client ID at any given time [5]. The solution was to use a client proxy on



12 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 8. CIP file notification process

the server to connect to the JMS server in the J2EE container of the application
server. In this way, when a user logged in more than once, we could detect that
this was the case and manage the JMS subscriptions appropriately.

4 Crosscutting Functionality

In this section we take a look at the crosscutting functionality that was imple-
mented across all of the CIP middleware services. At the time CIP was being
developed, the current approaches to SOA did not address overarching issues
such as logging, system monitoring, runtime configuration and security. Whereas
more recent activities focus on specifying additional application tiers for these ac-
tivities, [8], our solutions to these issues were considerably less formal, although
sufficient for their intended purpose. The monitoring and logging methods de-
scribed below all rely upon the use of shared data structures, referenced by the
application server classpath setting.

4.1 Security and Authorization

According to Sun Micro Systems J2EE specification there are two ways to con-
trol access to application resources using the J2EE architecture, declarative au-
thorization and programmatic authorization. In the declarative authorization
the application permission model is defined in a deployment descriptor. In the
programmatic authorization the container makes access control decisions before
dispatching method calls to a component. The CIP User Management Service
uses programmatic authorization. In this architecture, the J2EE container serves
as an authorization boundary between the components it hosts and their callers

The CIP authentication process is as follows. The CIP client sends a login
request by sending username and password on HTTPS (or HTTP if the client is
inside the Ops firewall). The User Management Service authenticates the creden-
tials by interacting with the J2EE container. If the authentication is successful,
the service generates an access token and returns the token to the client. If the
request fails the service returns a null token.



Middleware and Web Services for the Collaborative Information Portal 13

Fig. 9. CIP Authentication and authorization scheme in which (1) SSL certificate is
exchanged, (2) user credentials are submitted over a secure channel, (3) user credentials
are verified against the embedded LDAP store, (4) a user session EJB is created along
with a corresponding session token, which is passed back to the client, (5) subsequent
requests for middleware web services include the user session token, which is used by
the middleware to look up the user session EJB and authorize the request against the
associated roles and privileges, and (6) the expiration of the session token and removal
of the user session EJB upon client logout. The actions in (6) may also occur if a CIP
client is idle for too long and their session expires

The CIP user authorization procedure is accomplished through the definition
and enforcement of user roles. The authorization process for a CIP client is as
follows. When a CIP client requests a CIP middleware service, it supplies the
login token obtained in a prior authentication request. The token is validated
and then user is checked against the roles for granting permission to access the
service requested. If the check is successful, the service request will be allowed
to proceed, otherwise an authorization error will be returned to the client. The
complete life cycle of CIP authentication and authorization described above is
depicted in Fig. 9.

4.2 Logging and System Monitoring

Extensive run time logging and real time monitoring enhanced the middleware’s
reliability. The middleware web services logged every user request and it’s subse-
quent processing within the system. As shown in Fig. 10, the log entry contains



14 Elias Sinderson, Vish Magapu, and Ronald Mak

Fig. 10. Sample log entries for the CIP metadata query service

a time stamp, the user’s name, the named of the called method, details of the
request, and key information about the results. Data mining these logs, using
standard Unix utilities such as grep and sort, allowed us to deduce usage patterns
and tune the system configuration accordingly.

A separate utility monitored the status of the middleware and graphically
reported statistics such as memory usage and response times. Knowing the health
of server at all times enables system administrators to correct any problems
before they became serious. This monitoring was made possible by writing status
information for each of the web services to a static data structure that was made
available via inclusion on the application servers’ main classpath. Fig. 11 shows
a screenshot of the graphical monitoring utility. In addition to the statistics tab
shown, the Users tab displayed the users currently logged in, the file tab showed
which files had recently been accessed by users, and the cache tab showed the
metadata that was currently cached from users interaction with the system. In
addition to the GUI monitoring utility, a cron job was set up to report the same
information to an administrative email address as well.

4.3 Runtime Configuration

An important measurement of software reliability is how long a system stays up
and running. An application can unexpectedly crash, or system administrators
can bring it down for maintenance. A common maintenance operation is to
reconfigure an application to meet some change in operational usage or deployed
configuration.

A key feature that has allowed the CIP server to stay up and running for
extended periods (over 70 days at a time) was dynamic reconfiguration. CIP’s
middleware design allowed individual services to be hot redeployable. In other
words, it was possible to reconfigure and restart a given service while the rest



Middleware and Web Services for the Collaborative Information Portal 15

Fig. 11. The CIP Middleware monitoring utility, displaying the primary statistics tab,
showing the current memory profile, number of users logged in, cache data, file upload /
download statistics, database and server response times, and server uptime. The other
tabs displayed the currently logged in users, recently downloaded files and cached
metadata

of the middleware web services (and CIP as a whole) continued to run without
interruption. To reconfigure a service, a system administrator first edited the
service’s configuration file and then redeployed the service, causing it to read in
the new configuration. Redeploying a service typically took only a few seconds,
and often users did not notice any service interruptions even though they had
active clients up and running. When the CIP client was unable to connect to a
service, the request was queued until the service was reachable.



16 Elias Sinderson, Vish Magapu, and Ronald Mak

5 Conclusions

All things considered, CIP performed admirably throughout the MER mission
and has received a significant amount of praise for the broad functionality it
provided. The responsiveness of the system, its’ robustness in the face of heavy
user load and the overall availability of the system throughout the mission all
met the original requirements and specifications. Further, the flexibility and ease
of runtime configuration made it relatively straightforward to make last minute
changes when necessary. Nevertheless, there are, of course, aspects of the design
that we would do differently if we had to do it all over again.

When we first designed the middleware, a very complex data model [10] was
already in place that precluded the use of entity EJBs. Therefore, as described
above, we implemented our own data caching algorithm using stateful session
EJBs. This became problematic in that we had to solve many thread synchro-
nization problems. In retrospect, we should have simplified the data model and
used entity EJBs. The obvious lesson for future projects is to (re)design the
data model at the same time as the middleware is being developed to ensure
that entity EJBs can be used.

After proving its worth during a series of Operational Readiness Tests at JPL,
the mission managers deemed CIP to be mission critical. By then, it was too
late for us to increase its reliability by clustering the middleware servers. While
CIP turned out to be extremely reliable (with better than 99.9% uptime) despite
the middleware running on a single server, admins were obliged to monitor the
system extensively over the course of the mission. The lesson for future projects
is to always design the middleware to run on clustered servers if possible, since
one can always disable clustering if it isn’t needed.

Despite the recognized shortcomings, overall we feel the CIP middleware is
a good example of a service oriented architecture that was able to overcome
several difficult challenges. The use of shared data structures to enable session
management across multiple web services and monitoring of server statistics is
a useful technique that may be applied in other situations. Further, using JMS
to integrate the data acquisition components proved to be a wise design choice,
providing the necessary flexibility to migrate these components to another sys-
tem for performance reasons. Lastly, we were able to effectively unify multiple
web services into a single client application, giving many of the users the dis-
tinct impression that the CIP client was a unified application with direct and
immediate access to the mission data repositories. CIP continues to be one of
the primary tools used by MER mission personnel, both remotely and within
mission control.

References

1. Joshua Bloch and Mark Pozefsky. Jsr 10: Preferences api specification. Technical
report, Sun Microsystems, Inc. and International Business Machines Corporation
(IBM), May 2002. http://www.jcp.org/en/jsr/detail?id=10.



Middleware and Web Services for the Collaborative Information Portal 17

2. Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-
sohn, Herik Nielsen, Satish Thatte, and Dave Winer. Simple object ac-
cess protocol (soap) 1.1. Technical report, World Wide Web Consortium,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, May 2000.

3. Linda DeMichiel. Jsr 19: Enterprise javabeans 2.0. Technical report, Sun Microsys-
tems, Inc., June 1999.
http://www.jcp.org/en/jsr/detail?id=19.

4. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout. Java
Message Service. Sun Microsystems,
http://java.sun.com/products/jms/docs.html, April 2002.

6. D. J. Koga, D. J. Korsmeyer, and J. A. Schreiner. Darwin information system of
nasa – an introduction. In 19th AIAA Advanced Measurement and Ground Testing
Technology Conference, New Orleans, LA, June 1996. AIAA.

7. Floyd Marinescu. EJB Design Patterns. Wiley Computer Publishing, 2002.
8. Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and

directions. In Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering. IEEE Computer Society, 2003.

9. Bill Shannon. Java2 Platform Enterprise Edition Specification, v1.3. Sun Microsys-
tems, Inc., July 2001.

10. Joan Walton, Robert E. Filman, Chris Knight, David J. Korsmeyer, and Diana D.
Lee. D3: A collaborative infrastructure for aerospace design. In Workshop on Ad-
vanced Collaborative Environments, San Francisco, CA, August 2001.

11. Joan Walton, Robert E. Filman, and David J. Korsmeyer. The evolution of the
darwin system. In Symposium on Applied Computing, pages 971–977, Como, Italy,
March 2000. ACM.

12. Joan Walton, D. Korsmeyer, R. Batra, and Y. Levy. The darwin workspace envi-
ronment for remote access to aeronautics data. In 35th Aerospace Sciences Meeting,
Reno, NV, January 1997.


	1 Introduction
	1.1 MER Operations
	1.2 Background

	2 CIPDevelopment
	3 CIPArchitecture
	3.1 Client Application
	3.2 Data Repositories
	3.3 Middleware

	4 Crosscutting Functionality
	4.1 Security and Authorization
	4.2 Logging and System Monitoring
	4.3 Runtime Configuration

	5 Conclusions
	References



