
An Analysis Method for the Improvement of Reliability
and Performance in Policy-Based Management Systems

Naoto Maeda and Toshio Tonouchi

NEC Corporation, 1753 Shimonumabe, Nakahara-ku, Kawasaki 211-8666, Japan
n-maeda@bp.jp.nec.com, tonouchi@cw.jp.nec.com

Abstract. Policy-based management shows good promise for application to semi-
automated distributed systems management. It is extremely difficult, however, to
create policies for controlling the behavior of managed distributed systems that are
sufficiently accurate to ensure good reliability. Further, when policy-based man-
agement technology is to be applied to actual systems, performance, in addition
to reliability, also becomes an important consideration. In this paper, we propose
a static analysis method for improving both the reliability and the performance of
policy-based management systems. With this method, all sets of policies whose
actions might possibly access the same target entity simultaneously are detected.
Such sets of policies could cause unexpected trouble in managed systems if their
policies were to be executed concurrently. Additionally the results of the static
analysis can be used in the optimization of policy processing, and we have devel-
oped an experimental system for such optimization. The results of experimental
use of this system show that an optimized system is as much as 1.47 times faster
than a non-optimized system.

1 Introduction

Policy-based management shows good promise for application to semi-automated dis-
tributed systems management. It enables system managers to efficiently and flexibly
manage complicated distributed systems, which are composed of a large number of
servers and networks. This results in dramatic reductions in system management costs.

The reliability and performance in the policy-based management systems are essen-
tial issues when applying this kind of technology to actual systems. Flaws in a manage-
ment system will degrade the reliability of the managed system, and poor performance
may offset the advantage initially gained by using a policy-based technology: the ability
to adjust rapidly to a changing situation.

Tool support is indispensable to managers who wish to create policies that are suf-
ficiently correct to ensure reliability. Such tools check the properties of given policies,
such as type-checking equipped with programming language compilers. Recently, meth-
ods for detecting and resolving policy conflicts have been studied actively[2,6,8,9,11].
Policy conflicts can be categorized into a number of different types, of which there are
two major groupings: modality conflicts and application specific conflicts[9,11]. Modal-
ity conflicts can be detected by purely syntactic analysis using the semantics of policy
specification languages[9]. Application specific conflicts, by way of contrast, are defined
by application semantics as the name suggests. As a way of providing a generic way to

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 88–99, 2004.
c© IFIP International Federation for Information Processing 2004

An Analysis Method for the Improvement of Reliability and Performance 89

cope with application specific conflicts, approaches using constraint-based rules have
been proposed in [2,9].

In this paper, we propose a static analysis method for detecting all sets of policies
whose actions might possibly access the same target entity at the same time. We call
such sets of polices suspicious policy sets. The exact conditions for these sets will be
explained in section 3.2. A suspicious policy set could cause unexpected trouble in a
managed system if a policy run-time system were to execute1 concurrently the policies
included in it. From the viewpoint of [9,11], we may regard the target of analysis as
application specific (O+, O+) conflicts, where “O+” is the abbreviation for “Positive
Obligation Policy”.

Our analysis method can also be used to optimize policy processing. This optimiza-
tion is based on the detection of suspicious policy sets. Policy processing is optimized
when policies may be executed concurrently so long as they do not comprise any com-
bination of policies found in any one of the previously detected suspicious sets. This
offers great advantages in efficiency over ordinary conservative policy processing, in
which individual policies are all executed sequentially, and it is just as safe.

In order to confirm the feasibility of our approach, we have also developed an experi-
mental system to measure its performance.As an experimental policy-based management
system, we employ a slightly modified Ponder[4] framework, and as the system to be
managed, we use the J2EE1.4 Application Server[14] provided by Sun Microsystems.
As interfaces to monitor and control the system, we use Java Management Extension
(JMX) interfaces[13]. Our experiments show that an optimized system is as much as
1.47 times faster than a non-optimized system.

The contributions of the work are as follows: (1) with our analysis method, it is
possible to statically detect suspicious policy sets, i.e., those that might cause unex-
pected trouble in a managed system, if their policies were to be executed concurrently,
thus ensuring improved reliability; and (2) it contributes to significant performance im-
provement in policy systems by making it possible to optimize policy processing. The
effectiveness of this second contribution is shown in our experimental results.

2 Problem Statement

Figure 1 depicts an example of a problem that could possibly be caused by concurrently
executing policies contained in a suspicious policy set. In order to quickly react to
problems, it is highly possible that there are multiple managers responsible for creating
and modifying policies.A management system is composed of a policy repository, Policy
Enforcement Point (PEP), Policy Decision Point (PDP) and an event monitor[12]. A
managed system consists of servers and network devices. We assume that managers
register their carelessly created policies in the policy repository, and the policies are
then deployed to the PEP and enabled. If (1) policies registered by different managers
were to be executed simultaneously owing to the occurrence of specified events, (2) there
were to be the same action target in the policies, and (3) actions to the target were to have
side-effects, that is, the actions may change the value of attributes defined in the target,

1 In this paper, “execute a policy” means “execute the actions in the action clause of a policy”.

90 N. Maeda and T. Tonouchi

then the concurrent execution of the actions might possibly lead to problems. Although
problems of this kind are considered under Multiple Managers Conflict in [11], this work
does not present a way for detecting and resolving them.

Manager 2

Manager 1

Policy Repository Managed SystemManagers

Servers

Network Devices

{P1: e1, c1, a1}

{P2: e2, c1, a2}

{P3: e3, c3, a3}

Event Monitor

(1) Register

(1) Register

PDP PEP

Monitoring(2) Event Notification

Deploy
(3) P2 and P3 are fired
 at the same time

(4) access the same target

Fig. 1. Example of a problem caused by executing policies concurrently

The problems caused by the concurrent execution of policies included in a suspicious
policy set are as follows: (1) if the policies were to be created without any considera-
tions to race conditions of resources, threads executing such policies might possibly
fall into deadlock; (2) if operations provided by a target were not to be implemented as
thread-safe, the concurrent access to the target might possibly make states of the target
inconsistent; (3) since a sequence of actions defined in a policy may be interleaved by
another sequence of actions, the concurrent execution of them could cause transactional
errors that might destroy the consistency of a managed system.

Our analysis introduced in the following section enables managers to ensure relia-
bility by eliminating the potential for unexpected problems that might be caused by the
concurrent execution of policies.

3 Analysis

In this section, we clarify what kind of policy specifications we assume for our analysis
method and then explain the method in detail.

3.1 Target Policy Specifications

As targets of our analysis method, we assume Event-Condition-Action (ECA) policy
specifications, such as Ponder[4]. An ECA policy is composed of an event clause, a
condition clause and an action clause. The event clause shows events to be accepted.
The condition clause is evaluated when a specified event occurs. If the condition holds,
actions in the action clause will be executed.

The essential function of our method is to detect overlapped targets in policies. The
accuracy of the detection depends on the characteristics of policy specifications. The

An Analysis Method for the Improvement of Reliability and Performance 91

most accurate information on a target is information on an instance that can be mapped
to an actual device or a software entity composing a managed system. However, it is
not pragmatic to expect the information on instances is available in policy definitions.
Actual targets of actions are often decided at run-time, such as a target defined as the
least loaded server in a managed system.

In contrast to the above case, if information on targets were not available in policy
definitions, it would be impossible to apply our method to such definitions. An example
of such an action clause is as follows:

ObjectName targetName= new ObjectName("name=logmanager,...") ;
Object[] params= makeParam("WARNING") ;
String[] signature= makeSignature(String.class.getName()) ;
mejb.invoke(targetName, "setLogLevel", params, signature) ;

In the above example, the action clause is written in Java programming language[1],
which invokes setLogLevel provided by a managed entity in the J2EE[14] application
server to change the log level to WARNING using JMX[13] interfaces. Information on
the target is embedded in the parameter for the method. In general, it is impossible to
analyze the exact value of parameters using program analysis techniques.

Therefore, we presume policy specifications in which targets are defined by class are
applied to our method. The concept of class is the same as that defined in object-oriented
languages, which define attributes and operations of a device or a software entity. In the
network management domain, CIM[5] is the most promising model to define classes of
managed entities. A rewrite of the above example using a class is as follows:

Target: Logmanager l ;
Action: l.setLogLevel("WARNING") ;

In the above example, the variable l belongs to class Logmanger and it is clear that the
target of action setLogLevel is class Logmanger. While the equivalence of instances
cannot be checked under our assumption, the equivalence of classes of targets can be
determined.

3.2 Analysis Method

The analysis method detects all suspicious policy sets, which meet three conditions:
(1) there is a shared target that appears in the action clause of policies contained in a
suspicious policy set; (2) there are one or more actions that have side-effects on the
shared target; (3) policies in a suspicious policy set might possibly be executed at the
same time.

The method consists of two parts. One is the analysis for the action clause, corre-
sponding to conditions 1 and 2, and the other is the analysis for the event clause and the
condition clause, corresponding to condition 3. The former detects all sets of policies
that are not assumed to be safe for the concurrent execution and the latter makes results
of the former analysis more precise by dividing or removing the suspicious policy set
containing policies that will not be executed at the same time.

The method is conservative, i.e. it detects all policy sets supposed to be unsafe,
although the detected sets might possibly include the sets that are safe for the concurrent
execution. Below, we will explain these two analyses.

92 N. Maeda and T. Tonouchi

Action Clause Analysis. In this analysis, all sets of policies meeting conditions 1 and
2 are detected. With the predicate logic, the conditions are formally defined as below:

C: set of all classes corresponding to managed entities in a managed system.
SP: set of policies (Suspicious Policy set).
targets(p): function that returns the set of all classes appearing in policy p.
actions(p, st): function that returns the set of all actions appearing in policy p and
defined in class st .
sideEffects(a): predicate that indicates the action a has side-effects.

∃st ∈ C : {∀p ∈ SP : st ∈ targets(p)}∧{∃p ∈ SP, ∃a ∈ actions(p,st) : sideEffects(a)}
The variable st expresses the Shared Target of polices in a suspicious policy set. With
this analysis, we detect all sets of the largest SP and the smallest SP for each class
appearing in policies. The smallest SP is the set that contains only one policy whose
actions have side-effects on the shared target. We regard the smallest set as a self conflict
that a policy contained in the set should not be executed with itself concurrently, since
it is possible that a policy may be executed twice at almost the same time if an event to
be accepted by the policy were to be notified twice virtually simultaneously. Notice that
the above logical expression is satisfied even in the case that there is only one action that
has side-effects on the shared target in a suspicious policy set SP. In this case, while the
race conditions of resources will not occur, the transactional errors mentioned in section
2 might possibly occur.

As mentioned before, whether targets are the same or not is determined by checking
the name of classes. All sets of the smallest SP can be created by, for all policies, making
a set containing only one policy whose actions have side-effects. How to obtain all sets
of the largest SP is as below:

1) collect the class name of targets appearing in the action clause of all policies.
2) for each previously collected class name c, make a set of polices whose action clause

contains the class name that is equal to c.
3) from the sets obtained above, remove all sets that contain only policies whose actions

do not have side-effects on the shared target.

In order to decide whether an action has side-effects or not, all actions defined in
classes must in advance be assigned one of 3 attributes: Write, Read and Unknown.
Write is assigned to the actions that may change the target entity states, i.e. have side-
effects. Read is assigned to the actions that do not have side-effects. Since the attributes
are supposed to be assigned manually, Unknown is used for the actions that are not
explicitly assigned an attribute. Unknown is treated as Write in this analysis.

These attributes can be included in class definitions or in other definitions separately
from class definitions. For instance, using the JMX[13], which is the standard specifica-
tion for monitoring and managing applications written in Java programming language,
attributes of actions (or methods) can be obtained by invoking
MBeanOperationInfo.getImpact().

Event and Condition ClauseAnalysis. The problems mentioned in section 2 occur only
when multiple threads execute actions of policies concurrently. There are two issues that

An Analysis Method for the Improvement of Reliability and Performance 93

determine whether policies will actually be executed concurrently. One is the difference
between strategies that policy run-time systems employ to execute policies and the other
is how to analyze the event and the condition clause. Below, we will explain both of
these.

There are several strategies for executing policies. Whether policies are concurrently
executed by a policy run-time system depends on strategies. We categorized the strategies
into three types:

– Conservative Strategy: All the policies executions are serialized. Although the prob-
lems mentioned in section 2 will not occur, it involves deterioration of policy pro-
cessing performance. In section 4, we will introduce an application using the action
clause analysis to improve the performance of systems employing the strategy.

– Serialized Event Strategy: The execution of policies for incoming events is sus-
pended until all executions of policies triggered by the previous event have been
completed. Policies triggered by the same event will be executed concurrently. With
this strategy, we can detect the sets of policies that will not be executed concurrently
with the analysis for the event clause and the condition clause.

– Concurrent Strategy: Policies are executed concurrently. Therefore, managers have
to take into account the concurrent processing issues when writing policies. The
analysis for the event clause will not make sense, since all kinds of events may
possibly occur all the time. The analysis for the condition clause, however, will work
effectively. For instance, a policy in which only the temporal condition 10:00-17:00
holds will not be executed with one in which the temporal condition 18:00-21:00
holds'D

Thus the effectiveness of the analysis for the event clause and the condition clause
depends on strategies.

Next, we consider the analysis for the event clause. The event clause shows events to
be accepted. It contains a single event or an expression of composite events. Composite
events are combined by logical operators or operators that specify an order of event
occurrences[3].

In the event clause analysis, we focus on the events that may directly trigger an exe-
cution of policies. Since the event clause analysis is mainly used for systems employing
the serialized event strategy, whether polices can possibly be executed simultaneously
can be determined by checking whether the policies have the same direct trigger event.
Here, we will explain the direct trigger events in detail. In the case of a single event and
a composite event combined by the “OR” operator, direct trigger events are all events a
policy accepts, since the occurrence of these events might directly involve an execution
of the policy. In the case of the composite event “e1 → e2”, which means that the event
e2 occurs after the event e1, the direct trigger event is e2. In the case of the “AND”
operator, “e1 AND e2” is interpreted as “e1 → e2 OR e2 → e1”, so the direct trigger
events are both e1 and e2. In the other case, if we could make an automaton from the
event expression we would be able to obtain direct trigger events of policies. Such an
automaton may have a start state, final states, nodes to express states of the acceptance of
events and transitional labels corresponding to events. Events corresponding to labels to
the final states of an automaton can be regarded as direct trigger events. Thus, the poli-
cies that contain the same direct trigger event might possibly be executed concurrently.

94 N. Maeda and T. Tonouchi

These policy sets can be detected by a method similar to the action clause analysis. By
adapting the action clause analysis to result sets detected with this analysis for the event
clause, we can make suspicious policy sets more precise.

Next, we will consider the condition clause. There are two widely adopted conditions.
One is the temporal constraint used for specifying the duration a policy should be enabled,
such as 10:00-17:00. The other is to check whether a specified condition for a managed
system holds by retrieving states of managed entites when an event occurs.

By analyzing conditions for time constraints, policies that will not be executed at
the same time can be detected (only if there are no undefined variables in the condition
clause). Consider an example: {P1, P2, P3} is one of suspicious policy sets detected
with the action clause analysis. Then by analyzing the conditions of P1, P2 and P3, we
presume to obtain the result that neither P1 and P2 nor P2 and P3 will be executed at the
same time. We can make suspicious policy sets obtained with the action clause analysis
more precise as follows:

We know P1 will not be executed with P2
{P1, P2, P3} → {P1, P3}, {P2, P3}

We know P2 will not be executed with P3
{P1, P3}, {P2, P3} → {P1, P3}, {P2}, {P3}

Since {P2}, {P3} can be eliminated, we obtain the result set {P1, P3}. Thus we can
refine results of the action clause analysis with the condition clause analysis.

In the case of conditions that check states of managed entities, it is almost impossible
to determine whether the conditions will not hold at the same time. Consider a condition
“x.CPU LOAD > 90” and another condition “x.CPU LOAD < 30”. If the variable x is
always bound to the same target, these conditions will not hold at the same time. In
most cases, however, the variable x might possibly be bound to different target entities.
Therefore, we do not deal with this kind of condition in this paper.

Thus, we have explained our analysis method that detects all suspicious policy sets.
The analysis for the action clause detects all sets of policies that should not be executed
concurrently, and the analysis for the event clause and the condition clause make the sets
more precise using information on whether policies are actually executed concurrently.

4 Optimization for Policy Processing Using Analysis

Here, we introduce the optimization of policy processing based on the detection of
suspicious policy sets and explain the implementation for the optimization.

4.1 Basic Idea

The conservative strategy mentioned in section 3.2 is highly advantageous over the con-
current strategy, in that managers are freed from complicated concurrent processing
issues when writing policies. However, this strategy has a problem in terms of perfor-
mance.

With our analysis, we aim to improve the performance of policy processing sys-
tems that employ the conservative strategy, retaining the advantage of the conservative
strategy. We will explain this idea using Figure 2.

An Analysis Method for the Improvement of Reliability and Performance 95

Policy
Repository

Class Definition
Repository

Analysis Tool

Event Monitor

Managed System

Policy Enforcer

Policy Processing Unit

monitoring

Policy DescriptionsPolicy DescriptionsPolicy Description deploy

Analytical Result

retrieve
class data

input

retrieve
policy data

output feed the result

output the result to monitor
for managers to check

safly access the managed
entities concurrently

notify

Fig. 2. Overview of the System for Policy Processing Optimization

At first, a manager applies the action clause analysis to new policy descriptions to
be deployed into a policy enforcer and to deployed policies which can be retrieved from
a policy repository. Then, the analytical result that indicates suspicious policy sets is
reflected to a configuration of a policy processing unit in the policy enforcer. The policy
processing unit controls the executions of actions and concurrently executes policies so
long as they do not comprise any combination of policies found in any of the suspicious
policy sets shown in the analytical result.

4.2 Implementation

We have implemented an experimental system using the Ponder[4] framework devel-
oped at Imperial College and the J2EE application server[14] provided by Sun Microsys-
tems. The implementation of the experimental system can be divided into two parts, the
policy analysis and the run-time execution control.

Policy Analysis. Figure 3 shows the policy analysis part of the implementation. The
policies written in the Ponder policy specification language are compiled into the Java
classfiles and stored in an LDAP server called Domain Storage. The analysis component
in the figure applies the action clause analysis to policies stored in the LDAP server and
outputs the result into a file, which will be fed to the policy processing unit. In order
to check side-effects of actions, the analysis tool retrieves information on classes of the
targets and on attributes of the actions from the J2EE application server via the JMX
interfaces.

While targets are expressed in Domain Notation[9] in the Ponder framework , we
treat the domain name for targets as the name to be mapped to managed entities in a
J2EE application server. For instance, a target class “/J2EE/logmanager” is mapped
to the corresponding managed entity “Logmanager” in a server. The managed entities
in the J2EE applications are modeled in [15].

Run-time Execution Control. The run-time execution control is a policy run-time
system based on the Ponder framework, which is intended for use in the management

96 N. Maeda and T. Tonouchi

Policy
Repository Analytical Result

input

output

Analysis Tool

Ponder Policy

Ponder Editor/
Compiler

Managed System

J2EE Application ServerJM
X

 A
PI

s

Application
Management
Beans

store

retrieve stored policy objects retrieve class data

Fig. 3. Policy Analysis Part

of J2EE applications. While the framework employs the concurrent strategy, we have
modified the implementation of Ponder so as to execute policies sequentially, using a
waiting queue into which policies to be executed are put. This was a minor modification
and we have modified less than a hundred lines of the original source code in interpreting
the action clause and executing the actions defined in the clause. We have also added a
few new classes for the optimization.

Figure 4 shows the internal mechanism of the run-time execution control. There are
a policy enforcer that accepts events notified by a event monitor and a managed system.
The policy enforcer contains a policy processing unit that controls executions of the
action clause of policies with a waiting queue and a set named active policy set. We will
explain the mechanism using the example depicted in the figure.

Policy Processing Unit
Waitng Queue

Analytical Result

{ P1, P4, P6 }
{ P2, P3 }

Active Policy Set

Policy Enforcer

P1

P4

P5

P3

Event
Monitor

notify

P1
P2

P3 P4
P5

P6

Deployed Policies

P6

Managed
System

put fired
polices into
the queue

actions
performed

dequeue

Fig. 4. Run-time Execution Control Part

The analytical result is fed to the policy processing unit beforehand, which shows
that neither P1, P4 and P6 nor P2 and P3 should be executed concurrently2. When an
event occurs and a policy is fired, the policy will be put into the waiting queue. The policy
processing unit dequeues a policy in the FIFO manner and put it into the active policy
set. The policy will remain in the set until the execution for it has been completed. If the
analytical result shows that a policy to be dequeued conflicts with any of the policies
in the active policy set, it will be skipped and the next policy will be dequeued. In the
figure, P1 and P5 are in the active policy set and P4 in the waiting queue conflicts with

2 The conflicts between the same policy are omitted for simplicity.

An Analysis Method for the Improvement of Reliability and Performance 97

P1 and P6 as shown in the result. Thus, P4 will be skipped and P3 will be dequeued to
be concurrently executed with P1 and P5 using the Java threads.

Thus, the optimized policy processing executes policies efficiently and safely us-
ing the analytical results. Using the implementation, the efficiency of optimized policy
processing over the sequential processing is presented in the following section.

4.3 Experiments

We have conducted experiments for comparing performance of the sequential policy
processing named the conservative strategy and the optimized policy processing. The
results show the optimized one is as much as 1.47 times faster than the sequential one
under the experimental environment.

We employ two PCs(CPU: Pentium4 3.0 GHz, Memory: 1.0GBytesOS: WidnowsXP
Pro). The implementation based on the latest version of the Ponder Toolkit(11 March
2003) is located at one PC. On the other PC, the J2EE1.4 Application Server Platform
Edition 8 is located. The PCs are connected by a 100base-T switch.

A total of 48 polices are deployed in the implementation. The definitions of the
policies are the same except the name of policy. The policy definition is as follows:

inst oblig /Policy/${PolicyName}{
on EventForExperiment() ;
subject /PMAs/PMA;
target t= /J2EE/logmanager;
do t.setLogLevel("","SEVERE") -> t.setLogLevel("","WARNING");

}

The action clause of the policy means that the operation “setLogLevel” of the managed
entity “logmanager” has to be invoked twice sequentially. The operation is used for
changing the grain of data to be logged.

We prepare an artificial analytical result that is only written for controlling the be-
havior of the optimized processing for the experiment. The result consists of 8 sets of
a suspicious policy set that contains 6 name of policies that should not be executed
concurrently. The name of a policy appears in the result exactly once, that is, a policy is
assumed to conflict with the other 5 policies and itself.

We put the 48 polices into the waiting queue randomly at first, then measured the
time to complete 100 iterations of the process that (1) make a copy of the original waiting
queue and (2) process all policies in the copy. The measurement was conducted 3 times
to check the variance of results. The results are shown in Table 1. The time described
in the table is the average of the 100 iterations of the process. The result shows the
optimized processing is as much as 1.47 times faster than the sequential one.

5 Related Work

Our analysis method is developed for detecting all sets of polices that should not be
executed concurrently. This type of problem between policies is classified as Multiple
Managers Conflict in [11], although how to detect them is not presented.

98 N. Maeda and T. Tonouchi

Table 1. Experimental Result

First Second Third Average

Sequential processing 951ms 944ms 944ms 946ms
Optimized processing 643ms 645ms 643ms 643ms

The way of the detection and the resolution for Modality Conflict is proposed in [9].
It detects sets of polices of which subjects, targets and actions are overlapped. However,
it cannot detect the polices that should not be executed concurrently, since it is not
necessary for actions to be overlapped, although attributes of actions should be taken
into account.

In order to cope with the application specific conflicts, approaches of using con-
straints on polices are proposed in [2,9]. In particular [2] focuses on conflicts of actions
and presents formal semantics and notation to detect and resolve such conflicts.Although
they may allow managers to write constraints for the concurrent processing issues as
mentioned in section 2, how to implement an interpreter for these constraints is not
presented. We have focused on the concurrent processing issues and presented analysis
specific to them in detail, taking into account the strategies of the policy processing. In
addition to improve the reliability of the system, we have shown the analysis can be used
for improving policy processing performance.

The analysis assumes the action clause is written in the typed languages.As proposed
in [10], it is possible to assign type to the targets in the action clause which is written in
non-typed languages, by mapping the targets to the management model, such as CIM[5]
or the model of J2EE[15].

The idea of assigning attributes to operations for checking side-effects has been
commonly used in distributed systems. For instance, the distributed object system “Orca”
uses the attributed method of the distributed objects for keeping the consistency of
replicas of objects[7]. We have applied this idea to our analysis.

6 Summary and Future Work

In this paper, we have presented an analysis method for improving both reliability and
performance in policy-based management systems. It detects all set of policies whose
actions might possibly access the same target entity simultaneously. This information is
vital to managers, who naturally wish to ensure reliability by eliminating the potential for
unexpected problems that might be caused by the concurrent execution of combinations
of policies contained in any one of such suspicious policy sets. The same information can
also be used to optimize policy processing, making it possible to execute concurrently
all policy combinations not included in any detected set.

Experimental testing of our analysis method shows that it can be used to execute
policies more efficiently than can be done with the conservative, sequential-execution
approach, and that it can do so just as safely. Results further indicate that an optimized
system is as much as 1.47 times faster than a conservative system.

An Analysis Method for the Improvement of Reliability and Performance 99

In our analysis, the equivalence of targets is checked at the class level, not at the
instance level. It will be a main cause of the false detection of the analysis. In order
to determine whether or not this approach is both accurate and effective, we intend to
continue our work by applying our analysis to use-case scenarios.

In this paper, we assume that there is one policy engine to execute policies in a
policy-based management system. In the case of multiple engines, we think our method
is still useful for managers to create policies, since using the method they can know
whether they should consider the concurrent processing issues or not. Improvement of
our method taking into account the multiple engines is also future work.

Acknowledgements. This work is supported by the Ministry of Public Management,
Home Affairs, Posts and Telecommunications.

References

1. Arnold, K. and Gosling, J.: The Java Programming Language, Second Edition, Addison-
Wesley (1998).

2. Chomicki, J., Lobo, J. and Naqvi, S.: Conflict resolusion using logic programming, IEEE
Trans. on Knowledge and Data Engineering, Vol.15, pp.245–250 (2003).

3. Damianou, N.: A Policy Framework for Management of Distributed Systems, PhD Thesis,
Imperial College, London, Feb (2002).

4. Damianou, N., Dulay, N., Lupu, E. and Sloman, M.: The Ponder Policy Specification Lan-
guage, In Proc. of Policy2001, Jan (2001).

5. DMTF: Common Information Model Spec.v2.2, June (1999).
6. Dunlop, N., Indulska, J. and Raymond, K.: Methods for Conflict Resolution in Policy-Based

Management Systems, In Proc. of EDOC2003, Sep (2003).
7. Hassen, B.S., Athanasiu, I. and Bal, H.E.: A Flexible Operation Execution Model for Shared

Distributed Objects, In Proc. of OOPSLA ’96, pp.30–50,(1996).
8. Fu, Z., Wu, S. F., Huang, H., Loh, K and Gong, F.: IPSec/VPN Security Policy: Correctness,

Conflict Detection and Resolution, In Proc. of Policy2001, Jan (2001).
9. Lupu, E. and Sloman, M.: Conflicts in Policy-Based Distributed System Management, IEEE

Trans. on SE, Vol.25, No.6, Nov (1999).
10. Lymberopoulos, L., Lupu, E. and Sloman, M: Using CIM to Realize Policy Validation within

the Ponder Framework, DMTF 2003 Global Management Conference, Jun (2003).
11. Moffett, J. and Sloman, M.: Policy Conflict Analysis in Distributed System Management,

Journal of Organizational Computing, Vol.4, No.1 (1994).
12. Moore, B., Ellesson, E., Strassner, J. and Westerinen A.: Policy Core Information Model -

Version 1 Specification, IETF, RFC 3060, Feb (2001).
13. Sun Microsystems Inc: Java Management Extensions Instrumentation and Agent Spec.v1.2,

Oct (2002).
14. Sun Microsystems Inc: Java2 Platform, Enterprise Edition Specification, v1.4 Final Release,

Nov (2003).
15. Sun Microsystems Inc: Java2 Platform, Enterprise Edition Management Specification, Final

Release v1.0, June (2002).

	Introduction
	Problem Statement
	Analysis
	Target Policy Specifications
	Analysis Method

	Optimization for Policy Processing Using Analysis
	Basic Idea
	Implementation
	Experiments

	Related Work
	Summary and Future Work

