
A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 52–63, 2004.
© IFIP International Federation for Information Processing 2004

Policy Driven Business Performance Management

Jun-Jang Jeng, Henry Chang, and Kumar Bhaskaran

IBM T.J. Watson Research Center
New York 10598, U.S.A.

{jjjeng,hychang,bha}@us.ibm.com

Abstract. Business performance management (BPM) has emerged as a critical
discipline to enable enterprise to manage their business solutions in an on de-
mand fashion. BPM applications promote an adaptive means by emphasizing
the ability to monitor and control both business processes and IT events. How-
ever, most BPM processes and architectures are usually linear and rigid; and
once done, will be very hard to change. Hence, it does not help enterprise to
create adaptive monitoring and control applications for business solutions.
There is an urgent need of adaptive BPM framework to be used as a platform of
developing BPM applications. This paper presents a policy based BPM frame-
work to help enterprise to achieve on demand monitoring and control frame-
work for business solutions.

1 Introduction

Business performance management (BPM) has emerged as a critical discipline to
enable enterprise to manage their business solutions in an on demand fashion. BPM
applications promote an adaptive strategy by emphasizing the ability to monitor and
control both business processes and IT events. By coordinating the business and IT
events within an integrated framework, decision makers can quickly and efficiently
align IT and human resources based on the current business climate and overall mar-
ket conditions. Business executives can leverage the results of core business process
execution to speed business transformation, and IT executives can leverage business
views of the IT infrastructure to recommend IT-specific actions that can drive com-
petitive advantage.

However, most BPM processes and architectures are usually linear and rigid; and
once done, will be very hard to change. To change the requirements of BPM is some-
times like building a completely new application, which costs time and money. Some
enterprises attempt to increase the flexibility and agility of business by introducing
dynamic workflows and intelligent rules. However, this kind of systems is hard to be
modeled, deployed and maintained. In the BPM domain, business analytics are com-
monly incorporated in business monitoring and management systems in order to un-
derstand the business operations in a deeper sense,. Nevertheless, most functions
provided business analytics are performed in batch mode – unable to resolve business
situations and exceptions in a timely fashion. How to run analytics in a continuous
sense is a challenge. In general, it is extremely difficult to model, integrate and de

Policy Driven Business Performance Management 53

ploy monitoring & control capabilities into larger scale business solutions such as
supply chain management.

This paper presents a policy based BPM framework to address the above issues. A
BPM system is a system for sensing environmental stimulus, interpreting perceived
data, adjudicating the data to be business situations, and making decisions about how
to respond the situations. A BPM system takes monitored data from target business
solutions (e.g. business events), invokes BPM services and renders actions back to
target business solutions. In general, there are five representative categories of serv-
ices in a BPM system: Sense, Detect, Analyze, Decide and Effect. “Sense” is the stage
when a BPM system interacts with business solutions and provides data extraction,
transformation, and loading capabilities for the sake of preparing qualified data that is
to be further monitored and analyzed. “Detect” is the stage of detecting business
situations and/or exception occurring in the business solutions. “Analyze” is the stage
when a BPM system performs business analytics such as risk-based analysis of re-
solving business exceptions. “Decide” is the stage when a decision maker will make
decision about what to respond to business situations. A decision maker can be either
human or software agent. “Effect” is the stage when a BPM system carries out actions
for the purpose of enforcing the decisions made by decision makers. Actions can be
of many forms. The simplest kind of action is alerting interested parties about the
decisions. More complicated ones may be involved sophisticated process invocation.

As a motivating example for this paper, we want to show a BPM system for man-
aging business solution that we built for some microelectronics manufacturer [1]. It
comprises a suite of event-driven, decision management applications that enable
proactive management of business disruptions in real time. The system’s ability to
identify potential out of tolerance situations, whether to unexpected fluctuations in
supply and demand, or emerging customer, partner, and supplier needs, is enabled by
analytical exception detection agents. These agents utilize standardized or configur-
able measurements to observe business events; for example to ensure that enterprise
revenue goals are being accomplished. The BPM policies are managed pro-actively.
Alert messages inform business process owners in advance if a new trend is emerging
and actions must be taken. Finally, this system provides a suite of domain-dependent
optimization, performance prediction, and risk assessment agents that make exception
management even more effective. The agents adopt existing cost structures and busi-
ness process flexibility, and recommend optimized business policies and actions that
drive business performance to higher levels of productivity, efficiency, and financial
predictability. The following scenario illustrates a scenario how the business line man-
ager utilizes the BPM system.

• The BPM system receives events from various source systems from the supply
chain. Some of these events impact the inventory levels or revenue metrics for the
manufactured modules (such as “order placed” or “order cancelled” events). The
BPM system continuously updates the actual revenue, the revenue outlook and
inventory levels.

• Whether the progression of the accrued revenue is normal or below target is de-
termined by the BPM system using a wineglass model [2]. In the case where the

54 J.-J. Jeng, H. Chang, and K. Bhaskaran

revenue is below target, the system automatically detects such a situation and is-
sues an alert showing the current sales quantities of some selected saleable part
numbers in the nth week are out of their bands.

• The BPM system recommends adjusting the planned demand quantities and
safety stock requirements for the nth week. As next step, it invokes a demand
planning module and inventory planning module to analyse demand quantities
and safety stock requirements for the nth week.

• It further recommends altering the daily build plan in order to optimally match
new daily demand statements, thus high serviceability, and minimize manufac-
turing and inventory costs. By doing so, it also shows the effects and risks of all
suggested alternatives for changing the build plan.

• Finally, the business line manager looks at the suggestions of the BPM system
and makes a final decision for improving the build plan.

• The BPM system immediately revises the actual build plan in the ERP system
(action) and continues the monitoring of the performance indicators with the up-
dated build plan.

This paper is organized as follows. Section 1 introduced the BPM concept and a
motivating example. Section 2 describes the concepts and lifecycle of BPM policies.
Section 3 presents the policy-driven architecture for BPM. The related work is given
in Section 5. Finally, Section 6 concludes this paper and discusses the future endeav-
our.

2 Defining BPM Policies

A BPM system is meant to be a platform for adaptive enterprise information systems
in that the system behavior can be altered without modifying the mechanisms of the
system itself. A BPM policy aims to govern and constrain the behavior of the BPM
net and its constituent services. It usually provides policy rules for how the BPM
system should behave in response to emergent situations [3]. As an example, a policy
of supply chain inventory may impose limits on the range of inventory levels for the
manufacturing process based upon the revenue target of the enterprise. Relevant poli-
cies can be devised and applied to different aspects of business solutions. Examples
include role-based authorization to manage target business solutions and resources,
the scope of managed business solutions and resources, and service-level agreements.
Every BPM policy has its own lifecycle. The lifecycle of a policy consists of six basic
life-stages as shown in Figure 1. They are: policy definition, policy activation, policy
passivation, policy deployment and configuration, policy enforcement and policy
termination.

Policy Definition is the phase that a policy is created, browsed and validated. Corre-
sponding definitional tools such as editor, browsers and policy verifiers can be used
by business analysts to input the different policies that are to be effective in the BPM

Policy Driven Business Performance Management 55

system. Policy Deployment & Configuration configures and deploys a policy into
target system and configures the system correspondingly. Policy Enforcement is the
stage when a policy is being enforced to govern and constrain the behavior of target
systems. Policy Activation is the phase when a policy is loaded into target system and
waiting for further execution. Policy Passivation is the phase when a policy is put to
persistent storage without any active activity. Policy Termination is the phase when a
policy ceases to exist in the system.

Fig. 1. Policy Lifecycle.

 Potentially, a policy can be bound to BPM services at two points of its lifecycle:
(1) policy deployment & configuration: this type of binding is called early binding
between policy and mechanism since it is realized at the build time; and (2) policy
enforcement: this type of binding is, on the other hand, called late binding between
policy and mechanism since this binding is realized at the run time when policy is
being executed.

The BPM policies are specified using Ponder-like expressions [11] as follows. In
this syntax, every word in bold is a token in the language and optional elements are
specified with square brackets []. The policy with name “policyName” will be trig-
gered when the events specified in “event-specification” are generated and captured
by the BPM system. The event can be primitive event and compound event what
composed from primitive event using event operator [6]. The keyword subject refers
to the service that will act as the policy enforcer, and the scope phrase indicates the
scope in that this policy will be applied. The “do-when” pattern signifies the actions
to be enforced based on the pre-defined constraints.

policy policyName[(<type>argName[,<type> argName]*)]
on event-specification;

subject [<type >] domain-Scope-Expression;
[scope [<type >] domain-Scope-Expression;]
do action-list;
[when constraint-Expression ;]

The following segment shows the policy of detecting the out-of-bound revenue
situation based on (a) given upper- and lower-bounds; and (b) predicted revenue
performance. A metric event carrying the context object of the MDBPM system

56 J.-J. Jeng, H. Chang, and K. Bhaskaran

(noted as MDBPMContext) acts as an input to this policy. Some of the data referred
by this policy are parameterized as input parameters: (1) upperBound is the upper
bound of the revenue performance; (2) lowerBound is the lower bound of the revenue
performance; (3) ActionPlanningService indicates the service to receive the detected
situation; (4) LOBManager is the manager who will get notified when the situation is
eventually detected.

policy senseOutOfBoundRevenueSituation(
int upperBound,

int lowerBound,
ActionPlanningService aps,
LOBManager lob)

on MetricEvent(MDBPMContext context);
subject PolicyManager; // the policy controller
target SituationDetectionService;//the policy enforcer
do {

// notify action planning service
notify(aps, “OutOfBoundRevenueSituation”,context);
// notify LOB manager
notify(lob, “OutOfBoundRevenueSituation”,context);

}
// situation detection rule
when context.revenue > upperBound \/ context.revenue <

lowerBound ;

The following policy shows what needs to be actually done when the aforemen-
tioned situation occurs. This policy is triggered by a situation event carrying the MD
context object MDBPMContext. The do clause defines an action by concatenating
three other actions: (1) invoke the demand planning service to create a demand plan
based on input situation object; (2) invoke the inventory planning service to create an
inventory plan based on the demand plan; (3) notify the LOB manager about the
recommended inventory plan. The execution strategy (as an input parameter) is
DO_ALL_IN_SEQUENCE meaning every action indicated in do clause needs to be
executed with indicated sequence.

policy respondOutOfBoundRevenueSituation(
DemandPlanningService dps,
InventoryPlanningService ips,
LOBManager lob,
ExecutionStraegy DO_ALL_IN_SEQUENCE)
on SituationEvent(MDBPMContext context);

subject PolicyManager;
target ActionPlanningService;
do {

// invoke demand planning service
demandPlan = invoke(dps, demandPlan, context);
// invoke inventory planning service
inventoryPlan = invoke(ips, demandPlan, context);
notify(lob, inventoryPlan, context); //notify LOB

manager
}

Policy Driven Business Performance Management 57

3 Policy Architecture

This section shows a realization of policy-driven BPM architecture. Two fundamental
notions are presented here: BPM ring and BPM net.

BPM Rings

The BPM cycle is realized into BPM ring. A BPM ring represents a scalable mecha-
nism of realizing real-time BPM capabilities at various levels of granularity (e.g.
business organization, enterprise, value-net). A BPM ring consists of nodes and links.
A BPM node is a basic service that enables transformation from input data to output
data based on its capabilities and the pre-defined policies. A BPM link transmits data
with specific types from one node to another node. A BPM node can have multiple
instances of input and output links. Therefore, it can process multiple input requests
concurrently. The number of BPM nodes in a BPM ring is subject to the actual re-
quirements. BPM rings are policy-driven and dynamic. The BPM policy as men-
tioned in previous section is used to govern the information exchange and control
signaling among BPM nodes. BPM rings can be used as a simple modeling vehicle of
integrating BPM capabilities at various organizational levels, e.g., strategic, opera-
tional and execution.

BPM rings provide the means of building highly configurable and adaptive inte-
gration platform for BPM solutions. In our example, we have come up with 5 typical
BPM service nodes in a BPM ring: (1) event processing service that takes raw data
and produce qualified data to be further processed; (2) metric generation service that
receives the qualified data and produced metrics; (3) situation detection service that
analyzes incoming metrics and raise situations if needed; (4) action planning service
that is triggered by situations and creates an action plan in order to resolve the situa-
tion; and (5) action rendering service that takes a group of actions from action plan-
ning service and actually renders them to the target business solutions. A BPM serv-
ice node can process multiple input data requests based on the functionality to which
it is aimed. Each service realizes grid specification and developed upon OGSA code
base.

Implementation-wise, the BPM ring architecture is a physical star and a data
processing ring. The BPM ring nodes are connected to a dispatching module called a
Multi Node Access Unit (MNAU). Normally several MNAUs are connected in one
BPM node while BPM links connect those MNAUs to the BPM nodes. This makes up
the physical star. The control flow is rendered from one BPM node to the other
through the MNAUs and each connected BPM links. The control flows of BPM ring
realized by control tokens. Each BPM node on a BPM ring acts as both a data trans-
former and a repeater, receiving a series of data from one node and passing them on
to the next. During this transformation/repeating process, if a ring node notices that it
is the destination of the control flow (coded in the token), each data is copied into
BPM data repository and the final data stream is altered slightly to let other ring
nodes know that the control token was received. The control token is sent to each ring
node in a specific order, known as the ring order. This ring order never changes un-

58 J.-J. Jeng, H. Chang, and K. Bhaskaran

less another ring node joins or leaves the ring. Once the token reaches the last node in
the ring, it is sent back to the first node. This method of token passing allows each
node to view the token and regenerate it along the way.

A BPM node is triggered when it receives a control token. This token gives the
ring node permission to transform and transmit data. If there are more than one token
residing within a BPM node. They will be queued up in local repository and will be
processed in a first-come-first-serve fashion. However, some preemptive policies can
be defined. One node on the network is the leader, and makes sure that the ring oper-
ates properly. This leader is called the BPM ring Leader. It performs several impor-
tant functions including control token timing, making sure that control tokens and
data don't circle the ring endlessly, and other maintenance duties. All nodes have the
built-in capability to be the BPM ring Leader, and when there is no monitor on a ring,
all the BPM nodes use special procedures to select one.

BPM Nets

Figure 2 illustrates a potential structure of BPM net formed by BPM rings and the
interactions among them.

Fig. 2. BPM Net and BPM Rings.

Multiple BPM rings form a BPM net in that each BPM ring becomes a node and
interactions among BPM rings constitute the links. While BPM rings capture the
monitoring and control patterns of specific business situations (or exceptions), BPM
net represents the pattern of communicating autonomous BPM rings in order to cap-
ture a global behavior of monitoring and control across business solution. Hence, a
BPM net realizes the BPM capabilities for a business organization (enterprise). BPM
rings collaborate with one another and aggregate into higher granularities. The struc-
ture of BPM nets can represent contractual bindings between business organizations
(enterprises) and typically result in information exchange between business organiza-
tions (enterprises).

ERP

Business Solutions

External SourcesDatabaseLegacy Systems

BPM Net

BPM Ring
Repository

BPM Ring Control
Services

Control Token

BPM Ring Node

BPM Ring Leader

Data Transmission

Policy Driven Business Performance Management 59

Formal BPM Net Model

A key goal of BPM net is to provide ubiquitous BPM services for target business
solutions. Furthermore, the BPM net, is a dynamic and open environment where the
availability and state of these services and resources are constantly changing. The
primary focus of the BPM net model presented in this paper is to automatically create
BPM policies (when possible) from the set of available services to satisfy dynami-
cally defined monitoring and control objectives, policies and constraints. In the BPM
net model, BPM services and policies can he dynamically defined. The pool of cur-
rently available BPM services is represented as a graph where the node represents
services and the links, can be modeled as potential interactions.

To define BPM net, we need to define the relation, called subsumption, among
BPM rings. For two messages M1 and M2, we define that M1 is subsumed by M2,
(noted by 1 2M M�), if and only if for every argument a in the output message of
M1, there is always an argument b in the input message of M2 such that either they
have the same type or the type of a is the subtype of the type of b. Formally,

 1 2M M� ⇔ 1.M Output_Arg a∀ ∈
2. (M Input_Argb∃ ∈ s.t. (() ()) (,))type a type b substype a b= ∨ .

Similarly, for two services S1 and S2, we say that S1 is subsumed by S2 if for
every message M1 in S1, there is a message M2 such that M1 is subsumed by M2.
Formally, 1 2 1 1 2 2 1 2S S M S (M S s.t. M M)⇔ ∀ ∈ ∃ ∈� � .

The formal definitions of BPM ring and BPM net are as follows:

1) A BPM ring Rk = (Sk, Ck) where, Sk is a set of service nodes and Ck a set of serv-
ice connection.

a) Service set kk k,1 k,2 k,nS ={s ,s , ... ,s } where nk is the number of functional

stages in the ring Rk;

b) Connection set k kk k,1 ,2 k,2,3 k,n -1,nC ={c , c , ... ,c } where ck,i-1,i connects sk,i-1 and

sk,i. The data output of sk,i-1 is the input of ck,i-1,i and the input of sk,i is the
output of ck,i-1,i .

2) A BPM net is a structure based on a service graph N(B, Σ, Φ) where B is the
business solution that the BPM Net monitors and controls, Σ a set of BPM rings,
and Φ a set of potential interactions among rings.

a) The target business solutions B = {P, E} where P is set of probes that emit
monitored data to BPM net and E a set of effectors that received control di-
rectives from the BPM net.

b) The set of rings Σ ={Ri} where each of Ri is associated with an order set of
contextual data {Context(Ri)}.

c) The set of potential interactions among rings Φ = { (i,x) ,(j , y)L } such that Ri,
Rj ∈ R and x-th service of Ri connects to y-th service of Rj. Each connection

60 J.-J. Jeng, H. Chang, and K. Bhaskaran

is associated with a utility function to calculate the cost value
Cost((i,x),(j , y)L).

3) In the net graph, N(B, Σ, Φ), the available services are nodes and interactions are
edges. The edges { (i,x),(j, y)L } are created at runtime when one of the following
conditions hold

a) Both (i,x)S and (j, y)S belong to the same ring, i.e., i = j and y = x+1.

b) (i,x)S is subsumed by (j, y)S , i.e., , ,i x j yS S� 
4) The initial service S0 of the ultimate BPM net is the service that can consume the

output generate by the probes of the business solution P, hence, 0 S P� .

5) The final service Sf of the of the ultimate BPM net is the service that produce the
output to be consumed by the effectors of the business solution E, hence,

 fE S�
6) The chosen services from BPM net at run time form an execution path {S0, S’1,

S’2, …, Sf} in N(B, Σ, Φ)

7) The costs of S0 and Sf represent the costs of instrumentation of the target business
solution. Assume the total cost of monitoring and controlling business solution B
is constrained by a given value CostBound then we have the following relation
for the final execution path:

1

() () (')
n

i n i t i a l f i n a l i
i

C o s t S C o s t S C o s t S C o s t B o u n d
=

+ + ≤∑

The subsumption relationships among services can be used to generate candidate
BPM services for the ultimate BPM net. The constraints among services are given by
the users including the total execution cost of monitoring and controlling target busi-
ness solutions. We single out the cost of the instrumentation of target business solu-
tion, which make it ready to be monitored and controlled by BPM net because of the
high variability of such cost for different solutions. For the BPM net, the candidate
execution paths can be generated from S0 to Sf.

BPM Capabilities

The execution paths generated from BPM net based on constrains and goals defined
in the BPM requirement actually manifest the capabilities of a BPM system on
monitoring and controlling business solutions. As described in previous section, BPM
policies are applied to multiple levels of emprise abstraction: strategy, operation,
execution, and implementation. Each layer consists of corresponding BPM rings that
are specialized in monitoring and controlling specific layer of enterprise resources.

Policy Driven Business Performance Management 61

Fig. 3. BPM Capabilities.

Figure 3 illustrates the distribution of BPM rings in different enterprise layers. BPM
capabilities can be defined either horizontally or vertically. Horizontal BPM capabil-
ity is an execution path that consists of BPM rings exclusively of a specific layer, e.g.
the strategic BPM capability. On the other hand, the vertical BPM capability is an
execution path which contains the BPM rings across different layers. In the diagram,
it is also indicated that some BPM rings are for processing external events and some
for internal events among BPM rings.

Discussion

We have applied the concepts of BPM policies into real customer scenarios such as
the one described in Section 1. A policy-driven BPM system makes it adaptive to
monitor and control business solutions, which is particularly useful for the domain
with high volatility of monitoring and control requirements. Crystallization of BPM
policies into BPM rings and BPM net increases the modularity and reusability of
BPM policies and consequently the system behavior. Formalization of BPM nets
allows the dynamic formation of service execution and hence makes BPM system on
demand monitoring and control system. The formal model of BPM nets also allows
us to optimize the execution of BPM nets based on given constraints and cost bounds.
Usually, the monitoring and control applications for specific business solution such as
supply chain management systems are defined in an ad-hoc and static manner. A
BPM solution is bound with a set of services at design time, which realizes the early
binding of BPM policies with the underlying policy architecture. However, in an on-
demand environment, the binding is not possible until the policies are discovered and
enforced at run time. There are benefits and disadvantages on either approach. Early
bindings facilitate the analysts to perform the policy impact at design time and hence
imply an efficient implementation at run time. On the other hand, late bindings enable
high flexibility of policy bindings with the policy architecture such as execution
paths. Therefore, more adaptive BPM functionality can be enabled via policies.

62 J.-J. Jeng, H. Chang, and K. Bhaskaran

4 Related Work

The policy-driven management model is recognized as an appropriate model for man-
aging distributed systems [7][8]. This model has the advantages of enabling the auto-
mated management and facilitating the dynamic behaviors of a large scale distributed
system. Policy works in standard bodies such as focus more on defining frameworks
for traditional IT systems. Minsky and Ungureanu [9] described a mechanism called
law-governed interaction (LGI), which is designed to satisfy three principles: (1) co-
ordination policy needs to be coordinated; (2) the enforcement needs to be decentral-
ized; and (3) coordination policies need to be formulated. LGI uses decentralized
controllers co-located with agents. The framework provides a coordination and control
mechanism for a heterogeneous distributed system. Verma et al. [10] proposes a pol-
icy service for resource allocation in the Grid environment. Due to the nature of Grid
computing, virtualization has been greatly used for defining policy services in the
paper. However, in contrast to their work, the BPM is aimed for providing policy
framework for business activities instead of a service for system domain.

The Ponder Language [11] and Policy Framework for Management of Distributed
Systems [12] address the implementation of managing network systems based on
policies. Traditional grid based frameworks for enterprise [13] focus on distributed
supercomputing, in which schedulers make decisions about where to perform compu-
tational tasks. Typically, schedulers are based on simple policies such as round-robin
due to the lack of a feedback infrastructure reporting load conditions back to schedul-
ers. However, the BPM system is governed by the BPM policies (BPM nets) that are a
mode sophisticated policy than OGSA policy. ACE [14] presents a framework ena-
bling dynamic and autonomic composition of grid services. AThe formal model of
BPM nets has similar merits to their approach. However, our framework is aimed for
composing monitoring and control systems for business solutions.

5 Conclusion

In this paper, we have described an approach of building an adaptive BPM policy
architecture for managing business solutions. The system is designed, keeping in mind
the need for multi-level of abstraction, various types of services, and different types of
collaboration so that not only can BPM chores be quickly assembled and executed,
but the configuration data can be deployed to the system dynamically. The dynamic
interactions among services are captured in the BPM net in response to business
situations that are detected from the set of observed or simulated metrics in the target
business solutions. The BPM net model allows the composition of BPM services and
resources using policies. We have defined a formal model for such purpose. Much
more work remains to be done toward realizing complete and full implementation of
BPM net. The future works include: automating the derivation of configuration model
based on BPM policies, defining dynamic resource model and relations using onto-
logical approach, applying model-driven approach into the development of BPM
applications, and developing BPM policy and configuration tools.

Policy Driven Business Performance Management 63

References

1 G. Lin, S. Buckley, M.Ettl, K. Wang. Intelligent Business Activity Management – Sense
and Respond Value Net Optimization. To appear in: C. An, H. Fromm (eds.) Advances in
Supply Chain Management. Kluwer (2004).

2 L.S.Y. Wu, J.R.M. Hosking, and J.M. Doll, “Business Planning Under Uncertainty: Will
We Attain Our Goal?,” IBM Research Report RC 16120, Sep. 24, 1990, Reissued with
corrections Feb. 20, 2002.

3 “Business Process Execution Language for Web Services Version 1.1,”
http://www-106.ibm.com/developerworks/library/ws-bpel/

4 “Web Service Notification,”
http://www-106.ibm.com/developerworks/library/specification/ws-notification/ March,
2004.

5 “Open Grid Services Architecture,” http://www.globus.org/ogsa/
6 H. Li, J.J. Jeng, “Managing Business Relationship in E-Services Using Business Com-

mitments”, Proceedings of Third International Workshop, TES 2002, Hong Kong, China,
August 23-24, 2002, LNCS 2444, pages 107-117.

7 The IETF Policy Framework Working Group: Charter available at the URL
http://www.ietf.org/html.charters/policy-charter.html

8 Distributed Management Task Force Policy Working Group, Charter available at URL
http://www.dmtf.org/about/working/sla.php.

9 N.H. Minsky and V. Ungureanu, “Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogenous Distributed Systems,” ACM Transaction on Software
Engineering and Methodology, Vol. 9, No. 3, July, 2000, Pages 273-305.

10 N. Damianou, N. Dulay, E. Lupu, M. and Sloman, M., “The Ponder Policy Specification
Language”, Proceedings of the Policy Workshop 2001, HP Labs, Bristol, UK, Springer-
Verlag, 29-31 January 2001,
http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf

11 N. Damianou, “A Policy Framework for Management of Distributed Systems”, PhD
Thesis, Faculty of Engineering of the University of London, London, England, 2002,
http://www-dse.doc.ic.ac.uk/Research/policies/ponder/thesis-ncd.pdf

12 D. Verma, “A Policy Service for Grid Computing,” M. Parashar (Ed.): GRID 2002,
LNCS 2536, pp. 243–255, 2002.

13 Helal, S. et al, The Internet Enterprise, In Proceedings of the 2002 Symposium on Appli-
cation and the Internet (SAINT2002).

14 R. Medeiros, et. al “Autonomic Service Adaptation in ICENI Using Ontological Annota-
tion,” in the Proceedings of the Fourth International Workshop on Grid Computing
(GRID 2003), pages 10-17, Phoenix, Arizona, November 17, 2004.

	Introduction
	Defining BPM Policies
	Policy Architecture
	Related Work
	Conclusion
	References

