Using Process Restarts to Improve Dynamic
Provisioning

Raquel V. Lopes, Walfredo Cirne, and Francisco V. Brasileiro

Universidade Federal de Campina Grande,
Coordenagao de Pés-graduagao em Engenharia Elétrica
Departamento de Sistemas e Computagao
Av. Aprigio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil
Phone: +55 83 310 1433
{raquel,walfredo,fubica}@dsc.ufcg.edu.br

Abstract. Load variations are unexpected perturbations that can
degrade performance or even cause unavailability of a system. There are
efforts that attempt to dynamically provide resources to accommodate
load fluctuations during the execution of applications. However, these
efforts do not consider the existence of software faults, whose effects
can influence the application behavior and its quality of service, and
may mislead a dynamic provisioning system. When trying to tackle
both problems simultaneously the fundamental issue to be addressed
is how to differentiate a saturated application from a faulty one. The
contributions of this paper are threefold. Firstly, we introduce the
idea of taking software faults into account when specifying a dynamic
provisioning scheme. Secondly, we define a simple algorithm that can
be used to distinguish saturated from faulty software. By implementing
this algorithm one is able to realize dynamic provisioning with restarts
into a full server infrastructure data center. Finally, we implement this
algorithm and experimentally demonstrate its efficacy.

Keywords: dynamic provisioning, software faults, restart, n-tier appli-
cations.

1 Introduction

The desire to accommodate load variations of long running applications is not
new. Traditionally, it has been made by overprovisioning the system [12]. Re-
cently, dynamic provisioning has emerged, suggesting that resources can be pro-
vided to an application on an on-demand basis BIZBIGIZIROITOITT]. Dynamic
provisioning is particularly relevant to applications whose workload vary widely
over time (i.e. where the cost of overprovisioning is greater). This is the case of
e-commerce applications, which typically are n-tier, long running applications
that cater for a large user community.

We have experimented with a dynamic provisioning scheme that targeted
a simple 2-tier application. To our surprise, we noticed that even when more

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 220-231] 2004.
© IFIP International Federation for Information Processing 2004

Using Process Restarts to Improve Dynamic Provisioning 221

resources had been provided, application quality of service (QoS) had still re-
mained low. Investigating further, we found out that the application failed due
to hard-to-fix software bugs such as Heisenbugs [12] and aging related bugs [13].
Thus, the real problem was that dynamic provisioning systems use functions
that relate system metrics (load, resource consumption, etc.) to the number of
machines to be provided to the application [BJ6T4]. However, when software
faults occur, these functions may not reflect the reality anymore, since there
are components of the application that are up, consuming resources, processing
requests, but not performing according to their specifications anymore.

In fact, there is a close relationship between load and software faults. Satu-
rated] applications are more prone to failures [I]. They are more susceptible to
race conditions, garbage collector misbehavior, and so on, increasing the prob-
ability of occurrence of non-deterministic bugs, such as Heisenbugs. Because of
this close relationship, we argue that a management system must deal with both
of them in a combined fashion. This dual goal system must be able to decide
between add/release resources (dynamic allocation actions) and restart software
(software fault recovery).

The contributions of this paper are threefold. First, we introduce the impor-
tance of taking software faults into account when conceiving a dynamic provi-
sioning scheme. Second, we define a simple algorithm that can be used to differ-
entiate saturated from faulty software. Third, we implement this algorithm to
experimentally evaluate its efficacy in the context of a full server infrastructure
data center. Our results indicate that by taking into account both load variability
and software faults, we can improve the quality of service (QoS) and yet reduce
the resource consumption, compared to doing solely dynamic provisioning.

The remaining of the paper is structured in the following way. In the next
section we discuss related work. Next, in Section[3, we show a control system that
makes decision in order to identify the application status (saturated, faulty, op-
timal or underutilized) and act over an n-tier application. This system is named
Dynamic Allocation with Software Restart (DynAlloc-SR). Then, in Section H
we present some preliminary results obtained from experiments carried out to
measure DynAlloc-SR efficacy. Finally, we conclude the paper and point future
research directions in Section [Bl

2 Related Work

Our research is related to two important areas: dynamic provisioning of resources
and usage of software reboots as a remedy for soft software bugs. In the following
we discuss related works in these areas and point out the novelty of our approach.

2.1 Autonomic Data Centers

Many research groups have been studying the issue of dynamic provisioning
of resources in data centers (DCs). For an autonomic DC to come to reality,

! The words saturated and overloaded are used interchangeably in this paper.

222 R.V. Lopes, W. Cirne, and F.V. Brasileiro

some problems must be solved. One of them is to know the optimal amount of
resources to give to an application on demand [3/5lJ6T4], which is our focus. Other
issues involve DC level decisions such as whether agents requests for resources
are going to be accepted, whether new applications are going to be accepted by
the DC and whether DC capacity is appropriate [389IT0]. Finally, technologies
that enable rapid topology reconfiguration of virtual domains are needed [4TT].

In [5] authors present an algorithm that indicates the amount of machines
a clustered application needs to accommodate the current load. The algorithm
makes decisions based on CPU consumption and load. That work considers a
full server infrastructure, where each server runs the application of only one
customer at each time. A market-based approach that deals with the allocation
of CPU cycles among client applications in a DC is presented in [3]. CPU con-
sumption in servers is the monitored metric that must be maintained around a
set point. A dynamic provisioning mechanism based on applications models is
proposed in [6]. Application performance models relate application metrics to
resource metrics and can be used to predict the effect of allotments on the ap-
plication. Both [3] and [6] consider a shared server data center infrastructure, in
which different applications may share the same server. An approach for dynamic
surge protection is proposed in [I4] to handle unexpected load surges. Resource
provisioning actions are based on short and long term load predictions. The au-
thors argue that this approach is more efficient than a control system based in
thresholds. Clearly, both have advantages and disadvantages. A dynamic surge
protection system is as good as the predictions it does. A threshold-based system
is as good as the threshold values configured. Finally, other researchers proposed
frameworks to help developers to write scalable clustered services [7lI5]. Only
applications in development can benefit from these frameworks.

As [5] we consider a full server infrastructure. However, we monitor applica-
tion performance metrics instead of system consumption metrics, and act over
the system as soon as possible in order to maintain the average availability and
response times of the application around a set point. Our provisioning system is
based only on QoS threshold values. Load tendency is taken into account only
to reinforce a resource provisioning decision. Our approach needs neither appli-
cation performance models nor specific knowledge about the implementation of
the application. We also do not require modification in the application code nor
in the middleware. Finally, our provisioning approach is able to detect when the
degraded performance is due to data layer problems, in which case, actions in
the application or presentation layers do not take effect.

2.2 Recovering from Software Faults

Some software bugs can escape from all tests and may manifest themselves during
the application execution. Typically, they are Heisenbugs and aging related bugs.
Both are activated under certain conditions which are not easily reproducible.
Software rejuvenation has been proposed as a remedy against the software
aging phenomenon [16]. Rejuvenation is the proactive rollback of an application
to a clean status. Software aging can give signs before causing a failure. As a

Using Process Restarts to Improve Dynamic Provisioning 223

result, they can be treated proactively. A similar mechanism named restart has
been prescribed for Heisenbugs recovery, however, on a reactive basis [I7/18)].

Rejuvenation can be scheduled based on time (eg every Monday, at 4 a.m.),
on application metrics (eg memory utilization) or on the amount of work done (eg
after n requests processed) [16]. [T9] and [20], for instance, try to define the best
moment to rejuvenate long running systems based on memory consumption. [19]
defines multiple levels of rejuvenation to cope with different levels of degradation.
[21] formally describes a framework that estimates epochs of rejuvenation. They
distinguish memory leakage and genuine increase on the level of memory used by
a leak function (each application may have its function) that models the leaking
process. The amount of leaked memory of some application can be studied by
using tools to detect application program errors [22]. However, these tools are
not able to detect leaks automatically during the execution of the application.
Methods to detect memory leaks still require human intervention.

The execution of micro-reboots is one technique proposed in [I8] to im-
prove the availability of J2EE (Java 2 Platform, Enterprise Edition) applications
by reducing the recovering time. Candea et al consider any transient software
fault, not only Heisenbugs or aging related bugs. Their technique is application-
agnostic, however, it requires changes in the J2EE middleware.

Our restart approach is a simplification of the one presented in [18]. We per-
form reactive restarts when the application exhibits bad behavior. Our restarts
are always at the middleware level. We try to differentiate saturation and soft-
ware faults without requiring any knowledge of the application being managed
neither modification in the middleware that supports its execution. We name
our recovery method restart, not rejuvenation, because of its reactive nature.

3 Dynamic Provisioning with Software Restart

DynAlloc-SR is a closed-loop control system that controls n-tier applications
through dynamic provisioning and process restart. Its main components are
showed in Figure [l The managed application is an n-tier Web based appli-
cation. Typically, an n-tier application is compounded of layers of machines
(workers). A worker of a layer executes specific pieces of the application. For
a 3-tier application, for example, there is the load balancer and workers that
execute presentation, application and data layer logic. A Service Level Agree-
ment (SLA) specifies high level QoS requirements that should be delivered to the
users of the application. It defines, for instance, response time and availability
thresholds. The decision layer is aware of the whole application health status.
Thus, it is the one who makes decisions and executes them by actuating over
the execution environment of the application. It can choose among four differ-
ent actions to execute: i) add workers; ii) remove workers; iii) restart a worker
software, and iv) do nothing. At the monitoring layer there are the components
that produce management information to the decision layer.

224 R.V. Lopes, W. Cirne, and F.V. Brasileiro

e
A Meragsd Aookalion

e

i

RN

Decision Iayer | laballlansger " Arlualoe |

Monitoring layer

Fig. 1. DynAlloc-SR architecture

3.1 The Monitoring Layer

Monitoring components collect information from each active worker of the appli-
cation. Monitoring information collected from the load balancer (LB) is related
to the application as a whole because the LB is a central point on which the
application depends. We call it application level monitoring information. For the
other workers, monitoring information is called worker level information. These
two levels of information give insight about the health status of the application
and allow the detection of workers that are degrading the application QoS.

DynAlloc-SR gets monitoring information in two ways: (i) submitting probe
requests, and (ii) analyzing application logs. Probe requests are used to capture
the quality of the user experience. Success responses occur when the response
time is less than a threshold (specified in the SLA) and does not represent an
error. Logs provide information on load, response times and availability. Logs
can also be processed to obtain tendencies of such metrics.

Both ways of gathering information have pros and cons. Application logs
contain average response times and availability offered to the stream of real
users. Moreover, they are available for free, since they are produced regardless
of DynAlloc-SR and do not require modifications in the applications. However,
logs may miss certain failures. For example, opening TCP connections to a busy
server may fail, but the server will never know about it (and thus will not log any
event). This problem does not affect probe requests, since they are treated by the
application as a regular user request. On the other hand, probe requests bring
intrusiveness because they add to the application load. Hence, to be as close as
possible to the real user experience, and at the same time to be as unintrusive
as possible, we combine both methods to infer the quality of user experience.

Each probe sends requests to a specific worker (WorkerProbe - WP) or to
the load balancer (ApplicationProbe - AP) periodically. Some of these requests
depend only on the services of the layer of the worker in question and others
depend on services offered by other layers. Probes analyze the responses received
and suggest actions to the decision layer instead of sending raw monitoring data.

WPs can suggest actions such as doNothing, addWorkers, otherLayerProb-
lem and restart. The action doNothing means that all responses received did
not exceeded the SLA threshold for response times and do not represent errors.

Using Process Restarts to Improve Dynamic Provisioning 225

HTTP (Hyper Text Transfer Protocol) probes, for instance, consider good re-
sponses those who carry response code 2xx. A probe proposes addWorkers when
at least one of the responses for the requests that do not depend on other layers’
services do not represent errors but are exceeding the response time threshold
specified in the SLA. A WP suggests restart when responses that represent er-
rors are received even for the requests that do not depend on another layers.
Finally, otherLayerProblem is proposed when all responses exceeding the SLA
response time threshold or representing errors depend on other layers services.

The AP sends requests to the LB. If all responses received do not represent
errors it proposes doNothing. Otherwise, it suggests addWorkers. The AP does
not suggest restart actions nor otherLayerProblem because it has no idea about
which worker may be degrading the QoS.

DynAlloc-SR also monitors other application metrics in the LB: availability
and response times offered to the real users and load tendency. All of them are
computed by processing logs. Availability and response times are well known
metrics that do not need extra explanations. The tendency metric informs if
the application is more or less loaded during a given monitoring interval in
comparison with the previous one.

3.2 The Decision Layer

The GlobalManager (GM) is the decision layer component that periodically
collects probes’ suggestions and other metrics (availability, idleness, etc.) from
monitoring layer components. Eventually, the GM can try to collect monitoring
information while probes/monitors are still collecting new information. In this
case, GM will use the last information collected. It correlates the information
received, makes decisions and actuates over the application. More specifically, it
correlates all monitoring metrics received and decides if the probes’ suggestions
must be applied.

In a first step, GM uses the application response times and availability com-
puted by analyzing logs and the WPs suggestions to discover if the LB is a source
of performance degradation. If response times or availability violates the SLA
thresholds and all WPs suggest doNothing then GM restarts the LB software.

Next, the GM separates WPs’ suggestions as well as the AP suggestion by
layer into sets. There are 4 sets for each layer: doNothing, addWorkers, restart
and otherLayerProblem. Probes’ suggestions are organized as elements of these
sets. A layer is considered overloaded if the cardinality of its addWorkers set
is greater than a minimum quorum. One layer receives resources only if it is
overloaded. We consider load balancing is fair among workers, thus, saturation
happens to a set of workers at the same time. The minimal quorum is a mecha-
nism to distinguish scenarios in which an increasing in capacity is actually needed
and scenarios in which some pieces of the application are degraded. If less than
the quorum has proposed an increase in capacity, the GM will restart the work-
ers that proposed addWorkers instead of increasing the layer capacity. To give
some time for the load to be rebalanced, the GM waits for some time before
adding new workers, even if all conditions for a new increasing are satisfied.

226 R.V. Lopes, W. Cirne, and F.V. Brasileiro

The status of a layer could be degraded due to problems in other layers. The
GM does not act over a layer if the cardinality of the otherLayerProblem set
is greater than a quorum. It follows the same minimal quorum reasoning as for
capacity increasing. If less than the quorum has proposed otherLayerProblem the
GM decides to restart the software of those who suggested otherLayerProblem.

The restart process does not depend on the layer status, but on individual
status of each worker. Thus, all restart suggestions are implemented by the GM
as soon as possible to avoid the worker to degrade even more along the time.

Workers of the data layer do not depend on services of other layers. If prob-
lems in this layer are detected the GM forwards monitoring information to a
database agent that can act over the database. A lot of new challenges are
involved in the dynamic provisioning of the data layer and some systems are
concerned with the load variability problem [23].

A worker is removed if DynAlloc-SR remains some period without the need
to act over the application and the majority of the load tendencies collected
during this period indicates load reduction. In this case, the load balancing stops
sending requests to the oldest worker and when this worker has no requests to
process it returns to the pool of free servers, as proposed in [5].

4 DynAlloc-SR Experimental Analysis

A prototype of DynAlloc-SR was implemented as well as a system named Dy-
nAlloc, which does not perform restarts. It increments the application capacity
as soon as any signal of QoS degradation is seen. We compared the average avail-
ability and response times of the managed application as well as the number of
machines used by each system in order to measure the efficacy of DynAlloc-SR.

4.1 DynAlloc-SR and DynAlloc Prototypes

Our prototypes were conceived to manage 2-tier applications. HTTP is used
between the client and the presentation layer. There is a WP sending requests
to each active worker of the presentation layer and an AP sending requests to the
LB. All probes analyze the responses received as described in[3l Following the
HTTP specification [24], only HT'TP response codes 2xx are considered success.

A WP can suggest otherLayerProblem when it detects that the responses
were unsuccessful due to poor QoS of data layer components. Each WP sends
different kinds of requests to the probed worker: some that require data layer
access and others that do not requireE. If only the DB queries have delivered
bad QoS, then the probe suggests otherLayerProblem.

The minimum quorum used by DynAlloc-SR is “majority”. We could have
used “all”, but reach unanimity in such an asynchronous distributed environ-
ment is very unlikely. When one probe suggests addWorkers, others may be still
waiting the workers’ replies.

2 We plan to send requests directly to DB workers using Java Database Connectivity.

Using Process Restarts to Improve Dynamic Provisioning 227

Currently, the database agent of the DynAlloc-SR. prototype does nothing.
Thus we are not acting over the data layer for now.

DynAlloc-SR knows a pool of machines it can use. Each of these machines is
either an idle machine or is an active worker running pieces of the application.
When restarting a worker, DynAlloc-SR first verifies if there is an idle machine.
In this case it prepares one of them with the appropriate software, adds it to
the pool of active workers and only then stops the faulty worker and returns
it to the pool of idle machines. When the pool of idle machines is empty, the
rejuvenation action stops the faulty software and then restarts it in the same
machine. Since this operation takes some seconds, the number of active workers
is temporarily reduced by one during restart. Clearly, the first way of restart
is more efficient than the second. This is yet another advantage of combining
dynamic provisioning with software restart in the same system.

DynAlloc has the same monitors as DynAlloc-SR, however, its GM does not
take into account the minimal quorum. It increases the application capacity as
soon as some QoS degradation is perceived and ignores suggestions of restart.

4.2 Testbed

The managed application is a mock-up e-commerce application named xPet-
stord]. In our experiments, after sometime running, we observed one of the
following flaws (in order of frequency of occurrence): EJBException, Applica-
tionDeadlockException or OutOfMemoryError.

The testbed consists of 5 application servers running JBoss 3.0.7 with Tomcat
4.29, one database server running MySQL, one LB running Apache 2.0.48 with
mod_jk, 3 load generators and a manager that executes either DynAlloc-SR or
DynAlloc. We start an experiment using 2 workers.

Obtaining actual logs from e-commerce companies is difficult because they
consider them sensitive data. Thus, we use synthetic e-commerce workloads gen-
erated by GEIST [25]. Three workload intensities have been used: the low load,
with 120 requests per minute (rpm) in average, the medium load with 320 rpm
and the high load with 520 rpm. Each workload lasts for around an hour and
presents one peak. Based on the study reported in [26] we assume that the
average number of requests per minute doubles during peaks.

DynAlloc-SR and DynAlloc availability and response times thresholds are
97% and 3 seconds respectively.

4.3 Experimental Results

We here present results obtained by running each experiment ten times. Aver-
age values of availability and response times measured during all experiments
are presented in Table [[1 DynAlloc-SR yielded better average application avail-
ability and response times than DynAlloc. This is an indication that although

3 xPetstore is a re-implementation of Sun Microsystem PetStore, and can be found in
http://xpetstore.sourceforge.net/. Version 3.1.1 was used in our experiments.

228 R.V. Lopes, W. Cirne, and F.V. Brasileiro

very simple, DynAlloc-SR is able to make good choices when adding/releasing
resources and restarting software.

Table 1. Average availability and response times of xPetstore

DynAlloc-SR| DynAlloc
Availability 88.04% 77.99%
Response times| 49.65 sec. [136.37 sec.

Next we compare DynAlloc-SR and DynAlloc considering each load intensity
individually. These results are illustrated in Figures 2] and

120.00%

100.00%

80.00%

60.00%

Availability%

40.00%

20.00%

0.00%

Response times (s)

redium

high

250.00

200.00

150.00

100.00

50.00
7 -

0.00 L

lowy

redium

high

98.41%

92.19%

73.53%

38.78

103.76

[--e--ymelocsr | 62
| Dynalioc 2547

[=-o-— Dymaac-sr
| Dynalioc

98.27% 85.05%

Load

50.65% 157.02

Load

276.82

Fig. 2. Average availability Fig. 3. Average response times

In average, DynAlloc-SR yielded 0.13%, 7.14% and 22.9% better availability
than DynAlloc during the low, medium and high load experiments respectively.
As we can see, the availability gain increases considerably when the load in-
creases. The more intense is the load and the more saturated is the software,
the greater is the probability of failures due to software faults. This is because,
when load increases, the probability of race conditions, garbage collector misbe-
havior, acceleration of process aging, etc., also increases. This correlation makes
the differentiation between faulty and overloaded software difficult.

Response time gains did not follow the same crescent pattern. For low and
medium loads the gains were around 75%. For the higher load this gain was
smaller (54%). Investigating further, we found out that the LB reached its max-
imum allowed number of clients and became a bottleneck during high load exper-
iments. The Apache MaxClients directive limits the number of child processes
that can be created to serve requests. Any connection attempt over this limit is
queued, up to a number based on the ListenBacklog directive. Since DynAlloc-
SR cannot actuate over the capacity of the LB, the response times increased
and, thus, the gain around 75% was not achieved.

Using Process Restarts to Improve Dynamic Provisioning 229

These high gains may be an indicative of the fragility of the application and
its execution environment. It is likely that applications in production are more
robust than the one we used here and thus these gains may be overestimated.
However, applications will fail someday, and when this happens, a dynamic pro-
visioning with software restart will deliver better results than a dynamic provi-
sioning system that does not take software faults into account.

DynAlloc-SR also used less resources than DynAlloc. The mean number of
machines used by DynAlloc was 14.6% greater than the mean number of ma-
chines used by DynAlloc-SR. This is due to the fact that workers that needed
rejuvenation contributed very little to the application QoS, yet kept consuming
resources. When looking at the load variation, the mean number of machines
used by DynAlloc was 5.3%, 15.0% and 20.5% greater than the mean number
of machines used by DynAlloc-SR, for low, medium and higher loads, respec-
tively. We believe the raise from 5.3% to 15.0% in “resource saving” is due to
the greater number of software failures generated by a greater load. Interest-
ingly, however, this phenomena does not appear when we go from medium to
high load: the increase in “resource saving” is of five percent points (from 15%
to 20%). We believe that this is due to the maximum number of machines used.
The maximum number of machines used (5) is more than enough to process the
low load. However, when load increases DynAlloc tries to correct the degraded
performance of the application by adding more machines, always reaching the
maximum number of machines. If more machines were available, more machines
would be allocated to the application. If the total number of machines was higher
than 5, the “resource saving” for high load would likely be greater.

5 Conclusions and Future Works

We have shown that a dynamic provisioning system that takes into account soft-
ware faults is able to deliver better application QoS using less resources than a
similar dynamic allocation system that does not consider software faults. One of
the most complex duties of such a dual goal management system is to differen-
tiate saturated and faulty software. This is because aging related bugs produce
effects in the application and the execution environment that are similar to those
produced by load surges. Moreover, the probability of failure is proportional to
the load intensity being hold by the application, turning the relationship between
load and bugs still narrower. We here propose DynAlloc-SR, a control system
that copes not only with capacity adjustment, but also with software faults of
n-tier applications. DynAlloc-SR assumes that saturation is something that al-
ways happens simultaneously to a minimal quorum of workers of the same layer
while software faults do not follow this clustered pattern.

Our experimental results indicate the efficacy of DynAlloc-SR decision algo-
rithms. By combining a restart scheme with our dynamic allocation scheme, we
could increase the average application availability from 78% to 88%. Maybe this
improvement is overestimated due to the fragility of our demo application. How-
ever, even n-tier applications in production fail. When applications fail, dynamic

230 R.V. Lopes, W. Cirne, and F.V. Brasileiro

provisioning with software restart will deliver better results than a dynamic pro-
visioning system that does not take software faults into account. The dual goal
system also uses less resources than the dynamic allocation only system. DynAl-
loc used in average 15% more resources than DynAlloc-SR.

Our main goal here is not to propose a perfect dynamic provisioning algo-
rithm but to demonstrate the importance of treating software faults in conjunc-
tion with dynamic provisioning. However, we emphasize two important features
of our dynamic allocation scheme that, as far as we know, had not been applied
by other schemes. Firstly, we consider dependency relationships among n-tier
application layers. For instance, DynAlloc-SR does not try to add more ma-
chines in a layer L if another layer L’ on which layer L depends presents poor
performance. Secondly, DynAlloc-SR uses probes to infer the application health
and do not depend on correct behavior of the application, since we do not use
specific functions that relates QoS metrics with number of machines.

Before we proceed with the study of a combined solution to the problems
of load variability and software faults, we plan to study deeper the interac-
tions among dynamic provisioning systems, rejuvenation schemes and degrada-
tion/failure phenomena due to transient software faults. Based on the interac-
tions discovered we hope to define new techniques in both areas (software faults
recovery and dynamic provisioning), which maximize/create positive interactions
or minimize/eliminate negative ones.

Acknowledgments. This work was (partially) developed in collaboration with
HP Brazil R&D and partially funded by CNPq/Brazil (grants 141655/2002-0,
302317/2003-1 and 300646/1996-8).

References

1. Gribble, S.D.: Robustness in complex systems. In: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems. (2001) 21-26

2. Ejasent: Utility computing: Solutions for the next generation IT infrastructure.
Technical report, Ejasent (2001)

3. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A., Doyle, R.P.: Managing en-
ergy and server resources in hosting centres. In: Symposium on Operating Systems
Principles. (2001) 103-116

4. Appleby, K., et al: Oceano - sla based management of a computing utility. In: 7th
IFIP/IEEE International Symposium on Integrated Network Management. (2001)
855 —868

5. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: Qos-driven server migration for internet
data centers. In: Proceedings of the International Workshop on Quality of Service.
(2002)

6. Doyle, R., Chase, J., Asad, O., Jen, W., Vahdat, A.: Model-based resource pro-
visioning in a web service utility. In: Proceedings of the USENIX Symposium on
Internet Technologies and Systems USITS 2003. (2003)

7. Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.: Cluster-based
scalable network services. In: Proceedings of the 6th ACM Symposium on Oper-
ating Systems Principles, ACM Press (1997) 78-91

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Using Process Restarts to Improve Dynamic Provisioning 231

Rolia, J., Zhu, X., Arlitt, M.F.: Resource access management for a utility hosting
enterprise applications. In: Proceeding of the 2003 International Symposium on
Integrgated Management. (2003) 549-562

Rolia, J., Arlitt, M., Andrzejak, A., Zhu, X.: Statistical service assurancecs for
applications in utility grid environments. In: Proceedings of the Tenth IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and
Telcommunication Systems. (2003) 247-256

Rolia, J., et al: Grids for enterprise applications. In Feitelson, D.G., Rudolph,
L., Schwiegelshohn, U., eds.: Job Scheduling Strategies for Parallel Processing.
Springer Verlag (2003) 129-147 Lect. Notes Comput. Sci. vol. 2862.

Rolia, J., Singhal, S., Friedrich, R.: Adaptive internet data centers. In: In SS-
GRR’00 Conference. (2000)

Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems. (1986)
Vaidyanathan, K., Trivedi, K.S.: Extended classification of software faults based on
aging. In: Proceedings of the 12th International Symposium on Software Reliability
Engineering. (2001)

Lassettre, E., et al: Dynamic surge protection: An approach to handling unexpected
workload surges with resource actions that have dead times. In: 14th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management.
Volume 2867 of Lecture Notes in Computer Science., Springer (2003) 82-92
Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. In: Proceedings of the 8th ACM Symposium on Operating
Systems Principles, ACM Press (2001) 230-243

Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D.: Software rejuvenation: Anal-
ysis, module and applications. In: Proceedings of the Twenty-Fifth International
Symposium on Fault-Tolerant Computing, IEEE Computer Society (1995) 381-390
Candea, G., Fox, A.: Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems. (2001) 125-132

Candea, G., Keyani, P., Kiciman, E., Zhang, S., Fox, A.: Jagr: An autonomous
self-recovering application server. In: 5th International Workshop on Active Mid-
dleware Services. (2003)

Hong, Y., Chen, D., Li, L., Trivedi, K.: Closed loop design for software rejuvena-
tion. In: Workshop on Self-Healing, Adaptive, and Self-Managed Systems. (2002)
Li, L., Vaidyanathan, K., Trivedi, K.S.: An approach for estimation of software
aging in a web server. In: International Symposium on Empirical Software Engi-
neering. (2002)

Bao, Y., Sun, X., Trivedi, K.S.: Adaptive software rejuvenation: Degradation model
and rejuvenation scheme. In: Proceedings of the 2003 International Conference on
Dependable Systems and Networks, IEEE Computer Society (2003) 241-248
Erickson, C.: Memory leak detection in embedded systems. Linux Lournal (2002)
Oracle: Oracle database 10g: A revolution in database technology. Technical report,
Oracle (2003)

Fielding, R., et al: Hypertext transfer protocol — http/1.1. Technical report, RFC
2616 (1999)

Kant, K., Tewari, V., Iyer, R.: Geist: A generator of e-commerce and internet server
traffic. In: Proceedings of the 2001 IEEE International Symposium on Performance
Analysis of Systems and Software, IEEE Computer Society (2001) 49-56

Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large
web-based shopping system. ACM Trans. Inter. Tech. 1 (2001) 44-69

	Introduction
	Related Work
	Autonomic Data Centers
	Recovering from Software Faults

	Dynamic Provisioning with Software Restart
	The Monitoring Layer
	The Decision Layer

	DynAlloc-SR Experimental Analysis
	DynAlloc-SR and DynAlloc Prototypes
	Testbed
	Experimental Results

	Conclusions and Future Works

