
Trust Negotiation with Nonmonotonic
Access Policies

Phan Minh Dung and Phan Minh Thang

Department of Computer Science, Asian Institute of Technology,
GPO Box 4, Klong Luang, Pathumthani 12120, Thailand

{dung, thangphm}@cs.ait.ac.th

Abstract. We study the structure of nonmonotonic access policies for
internet-based resources. We argue that such policies could be divided
into two parts: the locally designed policies and imported policies. Im-
ported policies should always be monotonic while the local policies could
be nonmonotonic. We develop a safe proof procedure for nonmonotonic
trust negotiation where safety means that access to a resource is granted
only if its access policy is satisfied.

1 Introduction

Blaze, Feigenbaum and Lacy [1] introduced trust management (TM) as a new
approach to decentralized authorization. An access decision in TM is based on
two sources of information obtained from the credentials submitted by the clients
and from local databases of collected credentials and observations. An example
is an access policy of an auction site stating that a client with a valid digital
credit card and no record of cheating is allowed to participate in its auction
service. Such rule could be represented using Horn clauses as follows:

Believe(S,TrustWorthy(Auction),C) ← Believe(S,HaveFund,C),
not Believe(S,Fraudster,C)

stating that server S believes that client C is trustworthy for access to the auction
if S believes that C has sufficient fund and S has no evidence to believe that C
is a fraudster where a valid credit card is a convincing proof for S that the client
has sufficient fund.

It has been recognized in the literature that one of the key requirements for
TM access policies is that it should be monotonic with respect to the client’s
submitted credentials but could be nonmonotonic with respect to the site’s local
information about the client [12]. This requirement is designed to avoid situa-
tions in which the client has been given access to some services, but later when
he submits new credentials for other services, and the disclosure of the new cre-
dentials may terminate the access to those services granted to him before. The
question of what kind of structure access policies should have to satisfy this
requirement is still open.

A. Aagesen et al. (Eds.): INTELLCOMM 2004, LNCS 3283, pp. 70–84, 2004.
c© IFIP International Federation for Information Processing 2004



Trust Negotiation with Nonmonotonic Access Policies 71

A key aspect in TM is delegation. Delegation allows a principal to transfer
authority over some resources to other principals. Delegation hence divides a
principal’s access policies into two parts: The principal’s own policies and other
components that are imported. Consider for example the policies of a book store
that offered discount to its preferred customer [10]. Students from a nearby uni-
versity U are its preferred customers. The book store policy also states that any
preferred customer of an E-organization is also its preferred customer. The access
policy hence consists of two parts: the book store local regulation that directly
identifies who gets discount, and the imported regulation of the E-organization
about its preferred customers.

Imported policies are rules to determine the beliefs of those who issued them.
Therefore imported policies should be monotonic as otherwise, to evaluate them,
an agent would need to have access to the entire information base (often including
sensitive information) of the issuers of such policies. However in practice, agents
are unlikely to let other agents having access to their sensitive local information.
Hence, it is natural to expect imported policies to be monotonic.

Herzberg et all [6] has discussed nomonotonicity for access policies without
imported rules. The monotonicity with respect to the client submitted creden-
tials was not discussed in [6]. Though a proof procedure for nonmonotonic access
policies has been given in [6], it is not clear what kind of declarative semantics
this procedure has and especially how it is related to the semantics of nonmono-
tonic reasoning.

Trust negotiation is a process of exchanging certificates and policy statements
that allows one party to establish sufficient trust on the other party to allow it
access to some resource.

Logic programming has been shown to be an appropriate framework for
studying trust management [10]. It is also well-known that the mechanism of
negation as failure in logic programming provides a powerful tool for nonmono-
tonic reasoning [4, 5].

In this paper we study the structure of nonmonotonic access policies and
develop a procedure for trust negotiation with nonmonotonic access policies.
Our procedure is based on the sldnf procedure in logic programming. We then
show that the proposed procedure produces safe negotiation in the sense that
access to a resource is granted only if its access policy is satisfied.

2 Preliminaries: Logic Programming and Stable Model
Semantics

A program clause is of the form a ← a1, . . . , an, not b1, . . . , not bm where a,
a1, . . . , an, b1, . . . , bm are atoms. The clause is called definite if m = 0. A logic
program is a set of program clauses.

Let P be a logic program and G be the set of all the ground instances of
clauses in P. A stable model of P is defined as a set of ground atoms M such that
M is the least Herbrand model of PM where PM is obtained from G as follows:



72 P.M. Dung and P.M. Thang

Delete every clause C from G whose body contains a negative literal notA
such that A ∈M .

Delete all negative literals from the remaining clauses.
We write P |= A for a ground atom A if A belongs to all stable models of P.

More about semantics of logic programs could be found in [4, 5].

3 Structure of Nonmonotonic Access Policies

We assume an alphabet consisting of the following components:

– A set R of role (also called attribute) names
– A set of principal identifiers PI
– A set RE of resource identifiers.
– A distinct unary attribute symbol Trustworthy (often abbreviated as TW)
– A ternary predicate Bel(x,R,y) stating that x believes that y has attribute R.
– A binary predicate symbol Hold(R,x) stating that x has attribute R.

A principal term is either a principal identifier from PI or a PI-variable where
a PI-variable is a variable that could be instantiated with values from PI only.

A certificate is of the form Cert(A,R,B) where A,B are principal identifiers
from PI and R is an attribute term. The purpose of a certificate is to certify
that A believes that B has the attribute R. In practice, certificates have more
complex structures. We restrict ourself on a simple form of certificates as we are
focused on the study of nonmonotonic access policies. Certificates represent an
important kind of resources that are different from those resources represented
by resource identifiers from RE. We define a resource term either as a resource
identifier, or a certificate.

A attribute term has the form R(t1, . . . , tn) where R is an n-ary attribute
symbol from R and t1, . . . , tn are resource terms.

An atom is either of the form Bel(p,T,q) or Hold(T,p) where p,q are principal
terms and T is an attribute term. q is called the subject of the atom while p is
its issuer. A literal is an atom or the negation of an atom. The subject or issuer
of a literal is the subject or issuer of its atom respectively.

Let S be a set of belief atoms and x,y be two principal terms appearing in
some atoms in S. We say that there is a flow of trust from x to y in S if
there are principal terms p1, . . . , pm and attribute terms T1, . . . , Tm−1 such that
Bel(pi, Ti, pi+1) ∈ S and x = p1 and y = pm.

A policy clause of a principal A is of the form:

Bel(A, T, p)← α1, . . . , αn, not αn+1, . . . , not αn+k

where A is a principal identifier, p is a principal term, T is a attribute term
and α1, . . . , αn+k are atoms such that every variable except p appears as the
subject of some positive literal in the body of the clause. The intuition behind
this condition is that there is a flow of trust from some well-known principals,
represented as principal identifiers in the clause, to any principal that could
possibly appear in A’s policy. A is called the issuer of the clause.



Trust Negotiation with Nonmonotonic Access Policies 73

A principal term p is said to be redundant in a policy clause if there exists no
flow of trust from p to the subject of the head of the clause in the set of positive
literals of the clause body. A policy clause is said to be nonredundant if there is
no redundant principal terms in its body.

It is not difficult to see that credentials defined in the languages RT0, RT1, RT2
in the RT family [10] could be represented either as a certificate or as a policy
clause in our framework.

An access policy of an principal A is defined as a a pair APL = (LPL, IPL)
where

– LPL is a finite set of local nonredundant policy clauses of A.
– IPL is a finite set of imported nonredundant policy clauses whose issuers are

not A.

Consider the access policies of the book store (BS) example in the introduc-
tion. The policy clauses of BS are the following:

Bel(BS, TW (Discount), x)← Bel(BS, PreferredCustomer, x)
Bel(BS, PreferredCustomer, x)← Bel(U, Student, x)
Bel(BS, PreferredCustomer, x)← Bel(EOrg, PreferredCustomer, x)

while the imported clauses are those determining who are the preferred cus-
tomers of EOrg.

Imported policies are rules to determine the beliefs of those who issued them.
Therefore imported policies should be monotonic as otherwise, to evaluate them,
an agent would need to have access to the entire information base (often including
sensitive information) of the issuers of such policies. However in practice, agents
are unlikely to let other agents having access to their sensitive local information.
Hence, it is natural to expect imported policies to be monotonic.

The attribute dependency graph of a access policy P is a directed graph whose
nodes are the attributes appearing in P, and there is a positive (resp. negative)
edge from α to β if α appears in the head of a clause in P and β appears in
positive (resp. negative) literal in its body.

A path in the attribute dependency graph of P is said to be positive (resp
negative) if all (resp. some) edges on this path are positive (resp. negative).

Now we can define formally the notion of a trust management system.

Definition 1. Let A be a principal identifier. A Trust Management System
(TMS) for A is represented as a quadruple 〈APL, DBO, DBC, CA〉 consisting
of

1. An access policy APL = (LPL, IPL) of A such that all imported clauses in
it are definite.

2. a set DBO of ground atoms of the form Hold(R,B) where R is a ground
attribute term and B is a principal identifier. Atoms in DBO represent in-
formation A has collected locally about other principals.

3. a set of certificates DBC that are in A’s possession.



74 P.M. Dung and P.M. Thang

4. a set of client attributes CA ⊆ R that the A expects the client to satisfy. CA
is hence required to satisfy the following conditions:

(a) For each T ∈ CA, T does not appear in the head of each of the clauses
of APL.

(b) All paths leading to attributes in CA in the attribute dependency graph
of P are positive.
As we will see shortly this condition ensures that the access policy is
monotonic with respect to the client’s submitted credentials.

From definition 1, it follows immediately that there is no path linking an
attribute that appears in a negative literal in the body of some clause of APL to
an attribute in CA in the attribute dependency graph of APL. This condition
guarantees that when a server checks a negative condition, it does not require
the client to send extra information.

Example 1. Consider the trust management system 〈APL, DBO, DBC, CA〉 of
an agent S who oversees the access to sensitive documents in a hospital. The
policy states that only doctors who could present a credential from a recognized
hospital and are not known to have a careless conviction from recognized hospi-
tals, have access to the documents. A recognized hospitals is either known locally
or certified by other recognized hospitals [6]. The hospital access policies could
be expressed as follows:

Bel(S, TrustWorthy(R), x)← not Bel(S, Convicted, x), Bel(y, Doctor, x),
Bel(S, RecognizedHospital, y)

Bel(S, RecognizedHospital, x)← Hold(RecognizedHospital, x)
Bel(S, RecognizedHospital, x)← Bel(S, RecognizedHospital, y),

Bel(y, RecognizedHospital, x)
Bel(S, Convicted, x)← Bel(S, RecognizedHospital, y), Bel(y, Convicted, x),

where R denotes the sensitive documents.

The local certificate database DBC consists of certificates Cert(S,Recognized
Hospital,H), Cert(H,RecognizedHospital,K) and Cert(H,Convicted,P). The local
database DBO contains the fact Hold(RecognizedHospital,H). The set of client
attributes CA is defined by CA = {Doctor}.

Definition 2. Let C be a principal identifier and A = 〈APL, DBO, DBC, CA〉
be a TMS. A set SC of basic credentials of the form Cert(B,T,C) with T ∈ CA
is said to be a guarantee for C to get access to a resource R wrt A if

APL ∪DBO ∪ Th |= Bel(A, TrustWorthy(R), C)

where Th = {Bel(B, S, D) |Cert(B, S, D) ∈ DBC ∪ SC}

The monotonicity with respect to the client submitted credentials is stated
in the theorem below.



Trust Negotiation with Nonmonotonic Access Policies 75

Theorem 1. Let A = 〈APL, DBO, DBC, CA〉 be a TMS of A, C be principal
identifiers, SC be a guarantee for C to get access to R wrt A and SC ′ be a set
of credentials of the form Cert(B,T,C) with T ∈ CA such that SC ⊆ SC ′. Then
SC’ is also a guarantee for C to get access to R wrt A.

Proof. Let P = APL ∪ DBO ∪ {Bel(B, S, D) |Cert(B, S, D) ∈ DBC ∪ SC}
and P ′ = APL ∪DBO ∪ {Bel(B, S, D) |Cert(B, S, D) ∈ DBC ∪ SC ′}. Further
let SC0 = SC ′ \ SC. Further let M ′ be stable models of P ′. It is not difficult
to see that P ′

M ′ = PM ′ ∪ {Bel(B, S, D) |Cert(B, S, D) ∈ SC0}. Let M be the
least Herbrand model of PM ′ . Hence M ⊆ M ′. It is not difficult to see that
for each atom α ∈ M ′ \M , there is a positive path from the attribute of α to
an attribute of a certificate in SC0 in the attribute dependency graph of APL.
From the structure of trust management system (definition 1), it follows that α
does not appear as a ground instance of a negative literals in any of the policy
clauses. Hence PM = PM ′ . Hence M is a stable model of P. From the assumption
that SC be a guarantee for C to get access to R wrt A, it follows immmediately
Bel(A, TW (R), C) ∈M ′. The theorem is proved.

4 Trust Negotiation with Nonmonotonic Access Policies

When a principal A wants to access a resource R controlled by B, A sends a
request to B. B will consult its local policy to check whether A is trustworthy
enough to be given access to R. During this process, B may ask A to send over
some certificates to certify certain attributes of A. If the checking process is
successful, B will send A a message informing it that its request for access to
R has been granted. On the other hand, when A gets requests from B for A’s
certificates, A consults its own local policy to check whether B should be given
access to the requested certificates. A may ask B to send over some certificates
before sending B the requested certificates. An example is a scenario in which a
client of a E-business orders some good. The business may ask the client for a
credit card. Before sending the credit card to the business, the client may ask
for a Better Business Bureau certificate from the business. In the following, we
will model these processes.

There are many possible strategies on how trust negotiation could be con-
ducted. Consider an example of a policy governing access to sensitive documents
of a top secret project where only members of partner projects are allowed to
access the documents.

Bel(S, TrustWorthy, x)← Hold(Partner, y), Bel(y, Member, x),

An agent could work on many projects and is reluctant on its part to disclose
its associations to these projects.

When getting a access request, S could reveal the partner projects and asks
the client to prove its association to one of them. This would reveal sensitive
information about identity of the partner projects and hence unacceptable to S.
S could on the other hand ask the client to identify the projects he works in.



76 P.M. Dung and P.M. Thang

If one of them is a partner project of S, access is granted for the client. This
would force the client to reveal its association to projects that it may consider
to be sensitive. Which one is preferred could hardly be determined without
considering the real context of such applications. The example indicates that
there may be no conceptually best access policies evaluation strategy for all
participants involved. The evaluation proof procedure we are going to present
shortly may be an appropriate one in one context and less so in others. But
anyway it represents an option that needs to be taken into consideration when
a method is designed for access policy evaluation in an application.

The negotiation strategy developed in this paper is biased toward the man-
ager of a resource. In the above example, when getting a access request, the server
asks the client for credentials certifying its association to projects he works in.
In this way, the server could protect its data but the client may have to expose
more sensitive information than it loves to.

There are two kinds of requests that principals may send to each other:

– Original requests that start a negotiation process:

A toB : Bel(B, TW (R), A)

stating intuitively that A (the sender) asks B (the receiver) to check whether
A is trustworthy for access to R.

– Requests that are sent in response to an earlier request:

A toB : Bel(x, T, B)

stating intuitively that A asks B for certificates certifying that B has at-
tribute T.

Negotiation results are sent in messages of the following form:

A toB : success(R)
A toB : fail

in which A informs B that the negotiation for access to R has succeeded or failed
respectively.

During a trust negotiation, the sets of certificates collected by participants
change as the principals involved may have to send to the other side a number
of certificates. We define a state of a principal B during a negotiation as a pair
(sc,ss) where sc represents the set of certificates it has collected so far in his
database of certificates and ss represents the set of certificates it has sent to the
other side from the start of the current negotiation until now.

A negotiation is characterized by state change caused by sending and receiv-
ing requests. We use the notation (sc, ss)

M?;N !−→B (sc′, ss′) (resp. (sc, ss)
M !;N?−→B

(sc′, ss′)) to denote that when B receives (resp. sends) a request M, B will start
its part in a negotiation process to satisfy M and B ends the negotiation when
B sends out (resp. receives) message N containing the result of the negotiation.
At the end of the negotiation, sc” is the set of credentials B has collected so far
and ss” is the set of credentials B has sent over to A.



Trust Negotiation with Nonmonotonic Access Policies 77

Definition 3. Suppose principals A,B are in a state st = (sc, ss), st′ = (sc′, ss′).
A state transition is triggered when a request M is sent or received.

1. Let M be of the form
A toB : Bel(B, TW (R), A)

where R is a resource but not a certificate. A negotiation is initiated when
M is sent from A to B. It follows that ss = ss′ = ∅. When B receives M,
B checks its access policy to see whether A is trustworthy for access to R.
Formally B constructs a local derivation (to be defined shortly) of the form

Ld = (G0, sc, ∅), . . . , (G, sc”, ss”)

and G0 = Bel(B, TW (R), A).
(a) If Ld is a successful local derivation wrt B (to be defined shortly) then

following transition happens

(sc, ∅) M?;N !−→B (sc”, ss”)

(sc′, ∅) M !;N?−→A (sc′ ∪ ss”, sc” \ sc)

where N has the form

B toA : success(R)

(b) If Ld is a failed local derivation wrt B (to be defined shortly) then fol-
lowing transition happens

(sc, ∅) M?;N !−→B (sc”, ss”)

(sc′, ∅) M !;N?−→A (sc′ ∪ ss”, sc” \ sc)

where N has the form

B toA : fail

2. Let M be of the form

A toB : Bel(p, T, B)

stating that A needs access to some certificate certifying that B has prop-
erty T. Note that p is a principle term. Upon receiving M , B will check for
those certificates of the form Cert(C,T,B) in its pool of certificate DBCB.
B selects one of them and consults its local policy to check whether A could
be given access to it. If the check is successful, the certificate will be sent to
A If the check fails another certificate of the form Cert(C,T,B) is selected
and check whether it could be sent to A. The process continues until either
B finds a certificate to send to A or B breaks the negotiation by sending a
fail message to A. This process is formalized as follows:

Let SC = {C1, . . . , Cm}, m ≥ 0 be the set of certificates in SC of the
form Cert(Ci, T, B) such that p, Ci are unifiable.



78 P.M. Dung and P.M. Thang

(a) If SC = ∅ then following transition happens:

(sc, ss)
M?;N !−→B (sc, ss)

(sc′, ss′)
M !;N?−→A (sc′, ss′)

where N has the form
B toA : fail

(b) Let SC 
= ∅. Let G0 = K1 ∨ . . . ∨Km where Ki = Bel(B, TW (Ci), A).
There are two cases:
i. There is a successful local derivation wrt B of the form

(G0, sc, ss), . . . , (H, sc”, ss”)

with H = nil ∨Ki+1 ∨ . . . ∨Km. Then following transition happens

(sc, ss)
M?;N !−→B (sc”, ss” ∪ {Ci})

(sc′, ss′)
M !;N?−→A (sc′ ∪ (ss” \ ss) ∪ {Ci}, ss′ ∪ (sc” \ sc))

where N has the form
B toA : success(Ci)

We will see later, a successful local derivation (G, sc, ss), . . . , (H, sc′,
ss′) wrt B means that B has successively check that A could be given
access to some of the certificate in SC. From H = nil∨Ki+1∨. . .∨Km,
this certificate is identified as Ci.

ii. There is a failed local derivation wrt B of the form

(G0, sc, ss), . . . , (∅, sc”, ss”)

then

(sc, ss)
M?;N !−→B (sc”, ss”)

(sc′, ss′)
M !;N?−→A (sc′ ∪ (ss” \ ss), ss′ ∪ (sc” \ sc))

where N has the form
B toA : fail

We introduce now the notion of local derivation. First we define a goal as a
disjunction K1 ∨ . . . ∨Kn where each Ki is a conjunction of literals.

Intuitively a local derivation from a goal G wrt B is a sequence of goals whose
first element is G. Each step in the derivation corresponds to the application of
some inference rule which replaces one of the conjunctions by a goal. In this pa-
per, we use a depth-first strategy by always selecting the leftmost conjunction for
expansion. A derivation is successful if one of the conjunction is an empty one.A
derivation is failed if the last goal is the empty disjunction1. In the following, we
give a formal definition of the inference steps involved.

1 Note that empty conjunction denotes true while empty disjunction denotes false.



Trust Negotiation with Nonmonotonic Access Policies 79

Let B = 〈APlB , DBOB , DBCB , CAB〉. Formally, a local derivation wrt B
from a goal G is a sequence of pairs (G0, st0), . . . , (Gn, stn) where Gi are goals,
G0 = G, sti = (sci, ssi) are states of B. Each Gi in the sequence is obtained
from the previous one using an inference rule given below. We employ depth-first
search strategy by always selecting the leftmost literal in the leftmost conjunc-
tion for expansion.

For the purpose of simple reference, we call an atom of the form Bel(x, T, A)
where T ∈ CAB an input atom of B as A is expected to provide a certificate to
certify it.

Definition 4. Let L be the selected atom in Gi and suppose that Gi has the
form K1 ∨ . . .∨Km, where each Ki is a conjunction of literals. Let K1 = LK ′

1
2.

(Gi+1, sci+1, ssi+1) is obtained from (Gi, sci, ssi) by applying one of the following
steps:

1. (Unfolding). L is a positive literal that is not an input atom3. Let Cl =
{cl1, . . . , clk} be the set of clauses in

APlB ∪DBOB ∪ {Bel(D, S, E)← |Cert(D, S, E) ∈ sci}

such that the heads of these clauses are unifiable with L and for each i, θi is
the most general unifier (mgu) of L and the head of cli. There are two cases:
(a) Cl is empty. Then

Gi+1 = K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

(b) Cl is not empty. Let bdi be the body of cli

Gi+1 = (bd1K
′
1)θ1 ∨ . . . ∨ (bdkK ′

1)θk ∨K2 ∨ . . . ∨Kn

(sci+1, ssi+1) = (sci, ssi)

2. (Negation As Failure). L is a negative literal. There are two cases:
(a) L is not ground. Then

Gi+1 = K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

(b) L is ground. There are two cases:

2 For simplicity, a conjunction is written as a sequence of its conjuncts.
3 i.e. L has the form Bel(p, T, C) such that T �∈ CRB .



80 P.M. Dung and P.M. Thang

i. L = not Bel(B, T, D).
If there is a failed local derivation wrt B from (Bel(B, T, D), sci, ssi)
then

Gi+1 = K ′
1 ∨K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)4

If there is successful local derivation wrt B from (Bel(B, T, D), sci, ssi)
then

Gi+1 = K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

ii. L = not Hold(T, C).
If Hold(T, C) 
∈ DBOB then

Gi+1 = K ′
1 ∨K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

If Hold(T, C) ∈ DBOB then

Gi+1 = K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

3. (Asking for Credential). L is a positive input literal, i.e L has the form
Bel(p, T, A) with T ∈ CAB and p a (possibly nonground) principal term.

Let SC = {C1, . . . , Ck}, m ≥ 0 be the set of credentials in sci of the form
Cert(Ci, T, A) and θi be the substitution {p/Ci} assigning Ci to p. There are
two cases:

(a) SC 
= ∅. Then

Gi+1 = K1,1 ∨ . . . ∨K1,k ∨K2 ∨ . . . ∨Km

(sci+1, ssi+1) = (sci, ssi)

where K1,j = K ′
1θj

4 Note that due to lemma 1, the sets sci, ssi do not change in any local derivation of
Bel(B,T,D).



Trust Negotiation with Nonmonotonic Access Policies 81

(b) SC = ∅, i.e. B can not find any certificate in its pool that certifies the
belief L. B then starts a negotiation by sending A a request M of the form

B toA : Bel(p, T, A)

If there is a successful negotiation of B with A represented by a tran-
sition (sci, ssi)

M !;N?−→B (sc, ss) where N is a success message of the form
”A to B: success(C)”, then

Gi+1 = K ′
1θ ∨K2 ∨ . . . ∨Kk

if p is a variable and θ is the substitution {p/D} assigning D to p and
C = Cert(D, T, A). Otherwise

Gi+1 = K1 ∨K2 ∨ . . . ∨Kk

In both cases

(sci+1, ssi+1) = (sc, ss)

If there is a failed negotiation of B with A represented by (sci, ssi)
M !;N?−→B

(sc, ss) where N is a fail message of the form A to B: fail, then

Gi+1 = K2 ∨ . . . ∨Kk

(sci+1, ssi+1) = (sc, ss)

A local derivation (G0, sc0, ss0), . . . , (Gn, scn, ssn) of B is successful if Gn is
of the form nil ∨ D. It fails if Gn is an empty disjunction.

Lemma 1. Let B = 〈APlB , DBOB , DBCB , CRB〉, and sc0 = DBCB. Let
(G0, sc0, ss0),. . ., (Gn, scn, ssn) be a local derivation wrt B with G0 = L such
that notL is a negative literal appearing in an ground instance of a policy clause
in APLB. Then there are no asking-for-credential-steps in the derivation and
scn = sc0 and ssn = ss0.

Proof. Obvious from the fact that there is no path from a attribute occuring in
a negative literal to an attribute in CAB in the attribute dependency graph.

Example 2. Consider the hospital example 1. Suppose that P wants to access
the sensitive documents. P has a certificate C = Cert(H,Doctor,P) issued by
hospital H. P is willing to show every body his certificate, i.e. APLP consists of
the only clause

Bel(P, TW (C), x)←
P starts a negotiation with S by sending S a request M of the form ”P to S:

Bel(S,TW(R),P)”. After receiving M, S starts a local derivation as follows



82 P.M. Dung and P.M. Thang

Ld = (G0, sc0, ss0), (G1, sc0, ss0), (G2, sc0, ss0)

to check whether P is trustworthy for access to the documents where
G0 = Bel(S, TW (R), P )
G1 = not Bel(S, Convicted, P ), Bel(y, Doctor, P ),

Bel(S, RecognizedHospital, y)
G2 = ∅ and
sc0 = DBC, ss0 = ∅.
Note that the selected subgoal in G1 is not Bel(S, Convicted, P ). As there

is a successful local derivation from (Bel(S, Convicted, P ), sc0, ∅) to (nil, sc0, ∅),
we have G2 = ∅.

S hence informs P that his request is rejected. We have

(sc0, ∅) M?;N !−→S (sc0, ∅)
({C}, ∅) M !;N?−→P ({C}, ∅)

where N is of the form ”S to P: fail”.

The following theorem shows that the negotiation defined in this chapter is
safe in the sense that access to a resource is granted to a client only if it has
produces a guarantee to establish its trustworthiness.

Theorem 2. (Safe Negotiation)
Let B = 〈APlB , DBOB , DBCB , CRB〉, and sc0 = DBCB.

1. Let (G0, sc0, ss0), . . . , (Gn, scn, ssn) be a local derivation wrt B with G0 =
{Bel(B, TW (R), A)}. Then scn\sc0 is a guarantee of Bel(B,TrustWorthy(C),
A) for each certificate C ∈ ssn \ ss0.
If the derivation is successful then scn \ sc0 is a guarantee of
Bel(B,TrustWorthy
(R),A)

2. Suppose that

(sc, ss)
M?;N !−→B (sc′, ss′)

or

(sc, ss)
M !;N?−→B (sc′, ss′)

where sc = DBCB. Then for each C ∈ ss′ \ ss, sc′ \ sc is a guarantee for
Bel(B, TW(C),A) wrt B where A is the other party in the negotiation.

Proof (Sketch). Assertion 2 follows immediately from assertion 1. Assertion 1 is
proved by induction on the depth of the nested negotiation invoked in asking-for-
credential-steps. The full proof is tedious and long and the readers are referred
to the full version of this paper.



Trust Negotiation with Nonmonotonic Access Policies 83

5 Conclusion and Related Works

We have studied the structure of nonmonotonic access policies and provided a
general sufficient condition that guarantees the monotonicity wrt the client sub-
mitted credentials. We also have argued that only locally defined policy clauses
should be nonmonotonic. The semantics of our policy language is based on the
stable semantics of logic programming. We have also given a procedure for trust
negotiation within our framework and showed its safety.

A weakness of our negotiation procedure is that the negotiation parties do not
know whether they have submitted enough credentials for access to a resource
until access is granted. This problem could be avoided by sending partially eval-
uated policies instead of requests for certificates like in [3, 13]. We also do not
consider the privacy of local data and policies. In the future works, the procedure
should be extended to deal with these problems.

Our work is based and inspired by a large body of works on trust management
and negotiation [1, 3, 6, 9, 10] though with the exception of Herberg et all [6], no
author has studied problems related to nonmonotonic access policies.

Bonatti and Saramanti [3] present a framework for regulating access control
and information release. Access policies are monotonic and are represented by
condition-action rules. The credentials are complex and represented by terms.

Trust negotiation and strategies have been studied extensively in [9, 13]. Sev-
eral criteria for trust negotiation have been proposed in [13]. It would be inter-
esting to see how these criteria could be incorporated into our framework.

Our framework is very much inspired by the RT frameworks proposed by Li,
Mitchell and Winsborough [10]. Both systems are based on logic programming.
While the RT framework is proposed to combine the strengths of role-based
access control and trust management, our is focused on the nonmonotonicity of
access policies.

References

1. M. Blaze, J. Feigenbaum, J. Lacy Decentralized Trust Management. In Proc of the
17th IEEE Symposium on Security and Privacy, Oakland, CA, May 1996

2. M. Blaze, J. Feigenbaum, M. Strauss Compliance Checking in the PolicyMaker
Trust management System. In Proc. of Financial Cryptography ’98, LNCS 1465,
1998

3. P. A. Bonatti, P. Samarati A Uniform Framework for Regulating Service Access
and Information Release on the Web. In Conference on Computer and Communi-
cation Security, Athens, Greece, 2000

4. P. M. Dung. Negation as hypothesis: an argument-based foundation for logic
programming. Journal of Logic Programming, 1994

5. M. Gelfond, V. Lifschitz, The stable model semantics for logic programming.
iclp5thWashington, Seattle1988K. Bowen and R. A. Kowalski, eds 1070–1080

6. A. Herzberg, I. Golan, O. Omer, Y. Mass. An efficient algorithm for establishing
trust in strangers http://www.cs.biu.ac.il/ herzbea/Papers/PKI/ec01-paper.pdf



84 P.M. Dung and P.M. Thang

7. A. Hess, B. Smith, J. Jacobson, K. E. Seamons, M. Winslett, L. Yu, T. Yu. Nego-
tiating Trust on the Web, In IEEE Internet Computing, pages 30-37. IEEE Press.
November 2002.

8. N. Li, W. H. Winsborough, Towards Practial Automated Trust Negotiation. In
IEEE 3rd Intl. Workshop on Policies for Distributed Systems and Networks (Policy
2002). IEEE Press, June 2002.

9. X. Ma, M. Winslett, T. Yu. Prunes: An Efficient and Complete Strategy for
Automated Trust Negotiation over the Internet. In Proceeding of Seventh ACM
Conference on Computer and Communications Security(CCS-7), pages 210-219.
ACM Press, November 2000.

10. N. Li, J. C. Mitchell, W. H. Winsborough. Design of a Role-based Trust-
management Framework. In Proceedings of the 2002 IEEE Symposium on Security
and Privacy, May 2002.

11. J. C. Mitchell, N. Li, W. H. Winsborough, Distributed Credential Chain Discovery
in Trust Management. In Proceeding of Eighth ACM Conference on Computer and
Communications Security(CCS-8), pages 156-165. ACM Press, November 2001.

12. K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, L.
Yu. Requirements for Policy Languages for Trust Negotiation. In 3rd International
Workshop on Policies for Distributed Systems and Networks, June 2002

13. T. Yu, M. Winslett. An Unified Scheme for Resource Protection in Automated
Trust Negotiation. In IEEE Symposium on Security and Privacy, May 2003


	Introduction
	Preliminaries: Logic Programming and Stable Model Semantics
	Structure of Nonmonotonic Access Policies
	Trust Negotiation with Nonmonotonic Access Policies
	Conclusion and Related Works 



