
A Fully Adaptive Fault-Tolerant Routing

Methodology Based on Intermediate Nodes�

N.A. Nordbotten1, M.E. Gómez2, J. Flich2, P. López2, A. Robles2, T. Skeie1,
O. Lysne1, and J. Duato2

1 Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway
nilsno@simula.no

2 Dept. of Computer Engineering, Universidad Politécnica de Valencia,
Camino de Vera, 14, 46071-Valencia, Spain

megomez@gap.upv.es

Abstract. Massively parallel computing systems are being built with
thousands of nodes. Because of the high number of components, it is
critical to keep these systems running even in the presence of failures.
Interconnection networks play a key-role in these systems, and this paper
proposes a fault-tolerant routing methodology for use in such networks.
The methodology supports any minimal routing function (including fully
adaptive routing), does not degrade performance in the absence of faults,
does not disable any healthy node, and is easy to implement both in mes-
hes and tori. In order to avoid network failures, the methodology uses a
simple mechanism: for some source-destination pairs, packets are forwar-
ded to the destination node through a set of intermediate nodes (without
being ejected from the network). The methodology is shown to tolerate
a large number of faults (e.g., five/nine faults when using two/three in-
termediate nodes in a 3D torus). Furthermore, the methodology offers a
gracious performance degradation: in an 8× 8× 8 torus network with 14
faults the throughput is only decreased by 6.49%.

Keywords: fault-tolerance, direct networks, adaptive routing, virtual channels,
bubble flow control.

1 Introduction

There exist many compute-intensive applications that require a huge amount of
processing power, and this required computing power can only be provided by
massively parallel computers. Examples of these systems are the Earth Simulator
[12], the ASCI Red [1], and the BlueGene/L [2].

The huge number of processors and associated devices (memories, switches,
links, etc.) significantly increases the probability of failure. It is therefore critical
to keep such systems running even in the presence of failures. Much work deal
� This work was supported by the Spanish MCYT under Grant TIC2003-08154-C06-

01.

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 341–356, 2004.
c© IFIP International Federation for Information Processing 2004

342 N.A. Nordbotten et al.

with failures of processors and memories. In this paper, we consider failures in
the interconnection network. These failures may isolate a large fraction of the
machine, wasting many healthy processors that otherwise could have been used.
Therefore, fault-tolerant mechanisms for interconnection networks are becoming
a critical design issue for large massively parallel computers.

There exist several approaches to tolerate failures in the interconnection net-
work. The most prominent technique in commercial systems consists of replica-
ting components. The spare components are switched on in the case of failure
while switching off (or bypassing) the faulty components. The main drawback
of this approach is the high extra cost of the spare components. Another power-
ful technique is based on reconfiguring the routing tables in the case of failure,
adapting them to the new topology after the failure [5]. This technique is ex-
tremely flexible, but this flexibility may also kill performance. However, most
of the solutions proposed in the literature are based on designing fault-tolerant
routing algorithms able to find an alternative path when a packet meets a fault
along the path to its destination. Most of these fault-tolerant routing strategies
require a significant amount of extra hardware resources (e.g., virtual channels)
to route packets around faulty components depending on either the number of
tolerated faults [9] or the number of dimensions in the topology [17]. Alter-
natively, there exist some fault-tolerant routing strategies that use none or a
very small number of extra resources to handle failures at the expense of provi-
ding a lower fault-tolerance degree [9,14], disabling a certain number of healthy
nodes (either in blocks (fault regions) [6,7] or individually [10,11]), preventing
packets from being routed adaptively [15], or drastically increasing the latencies
for some packets [19]. Moreover, when faults occur, link utilization may become
significantly unbalanced when using those fault-tolerant routing strategies, thus
leading to premature network saturation, and consequently, degrading network
performance even more.

In [13] we proposed a fault-tolerant routing methodology for n-dimensional
meshes and tori, and that only requires one extra virtual channel. In order to
avoid network failures, an intermediate node is used for some source-destination
pairs.3 This node is selected in such a way that the faults are avoided when the
packets are routed first to the intermediate node and then from this node to the
destination node. However, in order to tolerate an acceptable number of faults,
an additional mechanism is used, that is, disabling adaptive routing for some
paths (i.e., routing packets deterministically).

Disabling adaptivity has two main drawbacks: The first is that it has a ne-
gative impact on network performance, because it prevents packets from being
adaptively routed. The second is that it needs additional complexity at the rou-
ters in order to enable turning off adaptivity on a per packet basis. For these
reasons it would be beneficial to use a single mechanism only. In this paper
we propose a methodology solely based on intermediate nodes, but instead of
using only one intermediate node, we propose to use several ones in order to cir-

3 Intermediate nodes were introduced by Valiant [21] for other purposes, such as traffic
balance.

A Fully Adaptive Fault-Tolerant Routing Methodology 343

cumvent faulty components. This way, regardless of the number of intermediate
nodes being used, the way packets are being routed does not need to be modified,
allowing the same router design as in the absence of intermediate nodes to be
used. Furthermore, this methodology allows all packets to be adaptively routed,
which again contributes to a good network performance.

On the other hand, this approach requires using additional virtual channels
as long as more intermediate nodes are used. However, virtual channels are
nowadays inexpensive. Current interconnects are able to provide several virtual
channels. This is the case for the Cray T3E [20] with five virtual channels, the
BlueGene/L [2] with four virtual channels, and InfiniBand switches [16] with 16
virtual channels.

Still, when designing a fault-tolerant routing scheme that requires extra vir-
tual channels, it is desirable to use a bounded number of virtual channels. At the
same time one should also tolerate a reasonably large number of faults, avoid
disabling any healthy node, maintain a low router complexity, and guarantee
routing through adaptive paths in order to provide high network performance
both in the absence and in the presence of faults.

The rest of the paper is organized as follows. In Sect. 2, the methodology is
presented. The methodology is then illustrated through some example scenarios
in Sect. 3. In Sect. 4, the routing algorithm obtained by the methodology is
analyzed in terms of performance and fault-tolerance. Finally, in Sect. 5, some
conclusions are drawn.

2 The Methodology

The methodology for achieving fault-tolerance through the use of one or more
intermediate nodes will now be presented. We will assume a k-ary n-cube (to-
rus) or n-dimensional mesh network. The methodology is valid for any minimal
routing function, although it is applied to minimal adaptive routing [18] in this
paper. Minimal adaptive routing with v virtual channels allows the use of any
minimal path through v−1 virtual (adaptive) channels, whereas the last channel
(i.e., the escape channel) uses deterministic routing. Thus, at least two virtual
channels per physical channel (v = 2) are required. In a torus the escape channel
also uses the bubble flow control mechanism [4].

Furthermore, a static fault model is assumed. This means that when a fault is
discovered all the processes are stopped, the network is emptied, and a manage-
ment application is run in order to deal with the fault. Checkpointing techniques
must also be used so that applications can be brought back to a consistent state
prior to the fault occurred. Detection of faults, checkpointing, and distribution
of routing info is assumed to be performed as part of the static fault model, and
are therefore not further discussed in this paper.

A fault-free path is computed by the methodology for each source-destination
pair. In the presence of faults, those paths that may use some faulty components
are not valid. The methodology avoids these faults by using intermediate nodes.
Packets are first forwarded to the first intermediate node, then from this node

344 N.A. Nordbotten et al.

to the second one, and so forth until the packet reaches its final destination. As
shown in Fig. 1, the use of intermediate nodes reduces the number of possible
paths, and therefore enables avoiding areas containing faults. The original rou-
ting algorithm (e.g., minimal adaptive routing) is used in all subpaths. Notice
that the packets are not ejected from the network at each intermediate node.

I2

F4

I1
F2

F3

D

F1

S

Fig. 1. The use of intermediate nodes (I) limits the number of possible paths,
from the source (S) to the destination (D), enabling faults (F) to be avoided

Packets sent through intermediate nodes carry the address of each interme-
diate node, in addition to the address of the final destination. As the packet
reaches each intermediate node, the address of that intermediate node is remo-
ved from the packet header, until the packet finally reaches its true destination.
In addition, every source node must maintain a table specifying the interme-
diate node(s) to be used for each destination that requires such measures to be
taken. When there are several candidates for the intermediate node(s), one of
the alternatives can be selected randomly or more than one alternative could be
listed in order to provide additional routing flexibility.

In what follows we will denote the source node as S and the destination
node as D. The intermediate nodes are denoted Ix, where I1 refers to the first
intermediate node in a route. Faulty links are denoted as Fi. A node failure can
easily be modelled as the failure of all the links of a node.

Deadlock freedom is ensured by having a separate escape channel for each
phase. E.g., with two intermediate nodes, one escape channel is used (if required)
from S to I1, another from I1 to I2, and a third one from I2 to D. This way, each
phase defines a virtual network, and the packets change virtual network at each
intermediate node. Although each virtual network relies on a different escape
channel, they all share the same adaptive channel(s). If y is the allowed number
of intermediate nodes for each source destination pair, and the minimal adaptive
routing algorithm uses one adaptive and one escape channel per physical channel,
the methodology requires a total of y + 2 virtual channels. Notice that one of
them corresponds to the escape channel used in the minimal adaptive routing
algorithm. So, for two intermediate nodes, four virtual channels are required.

A Fully Adaptive Fault-Tolerant Routing Methodology 345

The escape channels use deterministic Dimension Order Routing (DOR) with
the bubble flow control mechanism. With this mechanism, a packet that is injec-
ted into the network or cross a network dimension requires two free buffers (i.e.,
one for the packet itself and one additional free buffer) to guarantee deadlock
freedom. Hence, in order to avoid deadlocks, a packet changing virtual network
at an intermediate node should be considered as crossing a dimension, and the-
refore requires two free buffers.

The computational complexity for identifying one intermediate node is O(1)
in torus and mesh topologies. For all the paths in the network the computatio-
nal complexity thus becomes O(n2). When using two intermediate nodes this
increases to O(n3) in the worst case. However, as we will see in Sect. 4, the
number of paths using more than one intermediate node is very low even when
there are many faults (e.g., 0.000001% of the paths in a 3× 3× 3 torus with six
faults). Thus, the methodology has a low computational cost, especially when
considering that a static fault model is used.

Next, a methodology for identifying the intermediate nodes is presented.
First, the case where only one intermediate node is used is presented. We then
show how the method can be extended to the use of multiple intermediate nodes.

2.1 One Intermediate Node

When at most one intermediate node is used for each source-destination pair,
the intermediate node I1 should have the following properties so that the fault(s)
Fi are avoided when routing packets from S via I1 to D:

1. I1 is reachable from S.
2. D is reachable from I1.
3. There is no I ′1 giving a shorter path than I1.

The first requirement guarantees that packets can be routed from S to I1,
and the second requirement guarantees that packets can be routed from I1 to
D. The third requirement guarantees that the final path is the shortest possible.

Also notice that, when minimal adaptive routing is used, a node N2 is re-
achable from a node N1 if and only if: For all i, Fi is not on any minimal path
from N1 to N2.

To identify the possible intermediate nodes, let TRS be the set of nodes re-
achable from S and TD the set of nodes from which D is reachable. Furthermore,
let l(x, y) be the length of the minimal path, in the fault free case, from x to y.
We then define Tj (for j ≥ 0) in the following way: A node N is in Tj if, and
only if, l(S, N) + l(N, D) = l(S, D) + j.

This way, Tj defines non-overlapping sets of nodes, as shown in figure 2.
These sets can easily be identified by starting with the nodes that are reached
(i.e., traversed) on any minimal path from S to D (i.e., j = 0), and continuing
outwards. As can be seen in Figure 2, the sets Tj are non-empty only for even
values of j. This is always the case for meshes, but not always for tori (due to
the wraparound links).

346 N.A. Nordbotten et al.

Source DestinationNode in TX X

4 4 4 4

4

4

4

4

4

4

4 4 4 4

4

4

2 2 2 2

2

2

2

2

2 2 2 2

0 0 0

0 0 0

Fig. 2. The nodes in the sets Tj , for j ≤ 4 in a 2D mesh

Theorem 1. Let j′ be the smallest j for which Tj ∩ TRS ∩ TD is non-empty. A
node N fulfills all three requirements, if and only if, N ∈ Tj′ ∩ TRS ∩ TD.

Proof. We prove the theorem by induction. The theorem is true for j = 0 (i.e.,
when a minimal route exists):

– Let us assume that there is one node N in the set that does not fulfill the
requirements. Then N would either have to be unreachable from S, not
have a valid route to D, or not be on a minimal path from S to D. If N
is unreachable from S it is by definition not in TRS . If N does not have a
valid route to D it is by definition not in TD. If N is not on a minimal path
from S to D it is by definition not in T0. Because of the properties of set
intersection, N must be in all the three sets TRS , TD, and T0 to be in the
set T0 ∩ TRS ∩ TD. Thus, we have a contradiction.

– Let us then assume that there is one node N , outside the set, which fulfills
the requirements. N would then have to be outside at least one of the sets
TRS , TD, or T0. If N is outside TRS it is unreachable from S and therefore
does not fulfill requirement one. If N is outside TD it has no valid route to D
and therefore does not fulfill requirement two. If N is outside T0 it violates
our assumption that a minimal route exists (i.e., that j = 0). Thus, we have
a contradiction in all three cases.

If the theorem is true for j = m, then the theorem is also true for j = m+1:
Concerning requirements one and two, the arguments made for j = 0 also hold
for j = m+1. Furthermore, when j = m+1, no route S-I1-D exists for j < m+1.
Indeed, as each increase of j adds one additional hop to the path S-I1-D, all the
intermediate nodes found when j = m + 1 yield paths S-I1-D of equal lengths.
Finally, for the same reason, no shorter path can be found for j > m + 1. The
theorem, therefore, fulfills all three requirements. ��

This way, we start considering the minimal paths (j = 0) and then, if neces-
sary, non-minimal paths (j > 0) to avoid the fault(s).

A Fully Adaptive Fault-Tolerant Routing Methodology 347

2.2 Multiple Intermediate Nodes

In cases where one intermediate node is insufficient, to avoid all the faults when
routing from S to D, two or more intermediate nodes can be used. The use of
multiple intermediate nodes may also enable shorter paths than those otherwise
obtained when using fewer intermediate nodes.

We will now first present a methodology for using two intermediate nodes.
We then generalize this methodology so that it can be used, in a recursive way,
for any number of intermediate nodes.

Two Intermediate Nodes. When using two intermediate nodes, we are loo-
king for intermediate nodes I1 and I2 so that:

– I1 is reachable from S.
– I2 is reachable from I1.
– D is reachable from I2.
– There are no I ′1 and I ′2 giving a shorter path than S-I1-I2-D.

However, it can be observed that if a suitable I1 is identified, then the second
intermediate node I2 follows from Theorem 1. Thus, the problem can be reduced
to identifying I1.

In order to solve this problem, let us introduce a variation of TD, namely
T k

D1. We define this new set as the set of nodes that can reach D through one
intermediate node (i.e., the 1 in the subscript denotes that one intermediate node
is used). This intermediate node is given by Theorem 1, and k here represents
the j in the set Tj used, with Theorem 1, for identifying it. E.g., the set T 0

D1
consists of the nodes that have minimal path, via one intermediate node, to D.
The set T 1

D1, on the other hand, consists of nodes which have a path length equal
to the minimal path plus one, via one intermediate node, to D. As before, TRS

denotes the nodes reachable from S.

Theorem 2. Let j′ and k′ be the smallest j and k (i.e., so that their sum is
minimized) for which Tj ∩ TRS ∩ T k

D1 is non-empty. A node N fulfills all four
requirements if, and only if, N ∈ Tj′ ∩ TRS ∩ T k′

D1.

Proof. Let us define l as the sum of j and k, i.e., l = j + k. We then prove the
theorem by induction. The theorem is true for l = 0 (i.e., when a minimal path
exists):

– Let us assume that there is one node N in the set T0 ∩ TRS ∩ T 0
D1 that

gives a path S-N -I2-D that does not fulfill the requirements. It follows from
Theorem 1, and the definition of T k

D1, that I2 is reachable from N and that
D is reachable from I2. Thus, N must be unreachable from S or the path
S-N -I2-D is not the shortest possible. If N is unreachable from S, N is by
definition not in TRS . It also follows from Theorem 1 that the subpath N -
I2-D is the shortest possible. Thus, N can not be on a minimal path from
S to D for the path S-N -I2-D to be a non-minimal path. However, then N
is by definition not in T0. Therefore, we have a contradiction.

348 N.A. Nordbotten et al.

– Let us then assume that there is one node N outside the set T0 ∩TRS ∩T 0
D1

that fulfills the requirements. N would then have to be outside at least one
of the sets T0, TRS , or T 0

D1. If N is outside T0 it violates our assumption that
l = 0. If N is outside TRS , it is unreachable from S and therefore violates
requirement one. If N is outside of the set T 0

D1 it violates requirements two
or three, or our assumption that l = 0.

If the theorem is true for l = m, then it is also true for l = m + 1: As for
reachability, the same arguments as for l = 0 are still valid. Thus, it only remains
to be shown that the path S-N -I2-D is the shortest possible. By definition, when
l = m+1, no N exists for l < m+1. Each increase of l adds one hop to the path
S-N -I2-D. Thus, all paths where l = m + 1 are of equal length, and no shorter
path can be found for l > m + 1. ��

Thus, as before, we start considering the minimal paths (i.e., j + k = 0) and
then consider non-minimal paths (i.e., j + k > 0), if necessary, to avoid all the
faults.

Any Number of Intermediate Nodes. Let us now generalize the definition
of T k

D1, in order to apply Theorem 2 for any number of intermediate nodes. We
therefore define T k

Dz in the following way:

– T 0
D0: The set of nodes from which D is reachable without the use of any

intermediate node (i.e., the set of nodes defined by the original set TD).
– T k

Dz , for z > 0 and k ≥ 0: The set of nodes given by Tj′ ∩TRS ∩ T k′
Dz′ , where

z = z′ + 1 and k = j′ + k′.

Thus, T k
Dz is the set of nodes that reach D through z intermediate nodes,

and where k is the number of additional hops, in the path to D, compared to
the minimal path. When paths of equal length exist, preference should be given
to paths with fewer intermediate nodes.

Notice that the set Tj ∩ TRS ∩ T 0
D0 is actually the same as that in Theorem

1, and thus results in paths with one intermediate node. The set Tj ∩TRS ∩T k
D1

is that given by Theorem 2, resulting in paths with two intermediate nodes.
Similarly, Tj ∩TRS ∩T k

D2 gives paths with three intermediate nodes. Continuing
this way, an arbitrary number of intermediate nodes can be obtained.

3 Example Scenarios

We will now illustrate the methodology through two example scenarios. A 2D
mesh is used for this purpose, although the methodology is also valid for other
topologies such as a 3D mesh or torus. For both scenarios we assume that mi-
nimal adaptive routing is used, and that at most two intermediate nodes are
allowed in each route.

Figure 3a shows a scenario with three faults. Because there are faults present
in some of the minimal paths between S and D, an intermediate node is needed.

A Fully Adaptive Fault-Tolerant Routing Methodology 349

In order to find a minimal path, we look for an intermediate node within T0. As
shown in Fig. 3a, there are several nodes within T0 that are either reachable from
S, or able to reach D. However, we are only interested in nodes with both of
these attributes, i.e., the nodes given by the set T0 ∩TRS ∩T 0

D0. In this scenario
there is only one such node, i.e., the one identified as a possible intermediate
node in the figure. By using this node as the intermediate node, it is guaranteed
that the faults are not encountered when packets are routed first from S to I1

and then from I1 to D.

(a) (b)

Source Destination

Failure Node in TD Node in TRS 0

0

Possible intermediate node

Node in TD
 0

1

Fig. 3. (a) The faults are avoided by the use of one intermediate node. The
shaded area identifies the nodes in T0. (b) Two intermediate nodes must be used
in order to avoid the faults. The figure shows how the first of these intermediate
nodes (i.e., I1) is identified. The shaded areas identify the nodes in T2

Figure 3b shows the same fault scenario as in the previous example, except
that the source node is different. In this case, all the minimal paths between S
and D are blocked by faults. The set T0 ∩TRS ∩T 0

D0, giving minimal paths with
one intermediate node, is therefore empty. The set T0∩TRS∩T 0

D1, giving minimal
paths with two intermediate nodes, is also empty. Because preference is given
to the paths with the least number of intermediate nodes when the path length
is equal, we then try to find an intermediate node within T2 (because this is a
mesh we are only interested in the even values of j) giving a non-minimal path
with one intermediate node. However, this set, T2 ∩ TRS ∩ T 0

D0, is also empty.
There are now two more sets giving the same path lengths as the previous

one, but using two intermediate nodes instead of one. Which of these two sets are
given preference is irrelevant for the correctness of the methodology as they both
give the same value for j + k (which should be minimized according to Theorem
2). Increasing j means adding one hop to the path. S-I1, while increasing k adds
one hop to the path I1-I2-D.

350 N.A. Nordbotten et al.

Anyway, of the two sets, the set T0 ∩ TRS ∩ T 2
D1 is empty, while T2 ∩ TRS ∩

T 0
D1 gives us the possible intermediate nodes shown in Fig. 3b. Thus, the first

intermediate node, I1, can be selected among these three nodes. If I ′1 is the first
intermediate node, then the second intermediate node, I2, can be selected among
the intermediate nodes that give I ′1 a path with one intermediate node to D. In
this case, I2 would be the same as the one identified as I1 in the first example.

4 Evaluation of the Methodology

In this section, we evaluate the proposed methodology. In a first study, we ana-
lyze the fault-tolerance properties of the methodology, i.e., how many faults
the mechanism is able to tolerate. The methodology is n−fault tolerant if it is
able to tolerate any combination of n failures. A given combination of failures,
again, is tolerated if the methodology is able to provide a valid path for every
source-destination pair in the network. On the other hand, faults can physically
disconnect some nodes in the network. In this situation, disconnected nodes are
not taken into account and, provided that the paths for the remaining nodes can
be computed, the fault combination is considered as tolerated.

Then, we evaluate how the methodology influences network performance.
For this, network throughput has been measured for different numbers of faults.
For each number of faults, 50 randomly generated fault combinations have been
simulated, and the average network throughput for these combinations is provi-
ded.

We have applied the methodology to 3 × 3 × 3 (27 nodes) torus and mesh
networks, to a 3 × 3 (9 nodes) torus network, and to an 8 × 8 × 8 (512 nodes)
torus network. Although actual systems are built with larger topologies (e.g.,
a 32 × 32 × 64 torus for the BlueGene/L), smaller networks can be evaluated
exhaustively from a fault-tolerant point of view and the results can then easily
be extended to larger networks.

4.1 Simulation Model

A detailed event-driven simulator has been used to analyze the performance
exhibited by the proposed methodology. The simulator models a direct inter-
connect network with point-to-point bidirectional serial links. Each router has
a non-multiplexed crossbar with queues only at the input ports. Each physical
input port uses five virtual channels, each providing buffering resources in order
to store up to two packets. A round-robin policy has been chosen to select among
packets contending for the same output port.

In order to make a fair evaluation, the same number of virtual channels (i.e.,
five) is used regardless of the number of intermediate nodes used in the metho-
dology. Virtual channels are used as adaptive or as escape channels, depending
on the number of required intermediate nodes. If paths use at most one inter-
mediate node, three virtual channels are used for adaptive routing, whereas the

A Fully Adaptive Fault-Tolerant Routing Methodology 351

remaining two virtual channels are used for the escape paths. For two inter-
mediate nodes, there are two adaptive channels and three are escape channels,
and so on. When faults are not present (i.e., when no intermediate nodes are
required), four adaptive channels are used. In the escape channel(s), packets are
deterministically routed following the DOR routing and the bubble flow con-
trol mechanism. Notice that for a given number of intermediate nodes, all the
paths in the network will have the same number of adaptive virtual channels,
regardless of whether they use intermediate nodes or not.

For each simulation run, we assume that the packet generation rate is con-
stant and the same for all of the nodes. The destination of a message is randomly
chosen with the same probability for all the nodes. This pattern has been widely
used in other evaluation studies [3,8]. In all the simulations, the packet length
is set to 128 bytes.

4.2 Fault Analysis Models

For a reduced number of faults in the network, all the possible combinations of
faults can be explored. However, as the number of faults increases, the number of
possible fault combinations increases exponentially. Therefore, from a particular
number of faults, it is impossible to explore all the fault combinations in a
reasonable amount of time. We tackle this problem with two approaches. In the
first approach, we focus on faults bounded into a limited region of the network.
Notice that the worst combinations of faults to be solved by the methodology are
those where the faults are closely located. This is because the number of fault-free
paths in that region is reduced. Because the number of fault combinations within
such a region is much lower than for the entire network, all the fault combinations
can be evaluated. Although the results obtained cannot be directly extended to
the generic case, where faults may be located over the entire network, it gives
us an approximation of the effectiveness of the methodology in the worst case.

For this, we must define the region where the faults are to be located. The
region is formed by all the links attached to the nodes that are one hop away
from a node (the center node). Therefore we refer to this as a distance 1 region,
and it consists of 36 links. However, in a 3 × 3 × 3 torus it only consists of 33
links, as three of the links then are shared by nodes within the region. The center
node is randomly selected.4 Notice that with a high number of faults and for
a large number of fault combinations, the center node is hardly accessible, as
very few links are non-faulty. So, the distance 1 region actually represents a real
worst case to access the center node.

In the second approach, a statistical analysis is performed, analyzing a subset
of the fault combinations, where the faults are randomly located over the entire
network. From the obtained results, statistical conclusions are extracted about
the fault-tolerance degree of the proposed methodology.

4 The selection of the center node does not affect the results in a torus network due
to the symmetry of the topology.

352 N.A. Nordbotten et al.

Table 1. Fault tolerance achieved by the methodology when using at most one
(I × 1), two (I × 2), or three (I × 3) intermediate nodes in a 3 × 3 × 3 torus
network. The three rightmost columns show the percentages of the paths that
use each number of intermediate nodes when at most three intermediate nodes
are used

Link Analysis Combinations Not tolerated combinations I×3 Paths using # I
faults type analyzed I×1 I×2 I×3 1 2 3

1 Exhau- 81 0% 0% 0% 6.86% 0% 0%
2 stive 3,240 2.50% 0% 0% 12.99% 0.04% 0%
3 85,320 7.44% 0% 0% 18.46% 0.13% 0%
4 1,663,740 14.67% 0% 0% 23.32% 0.31% 0%
5 25,621,596 24.06% 0% 0% 27.62% 0.56% 0%
6 324,540,216 35.49% 0.0002% 0% 31.41% 0.90% 0.000001%

6 Dist.1 1,107,568 54.52% 0.01% 0% 28.09% 1.19% 0.00003%
7 4,272,048 70.31% 0.06% 0% 30.41% 1.78% 0.0004%
8 13,884,156 83.30% 0.31% 0% 32.25% 2.51% 0.002%
9 38,567,100 92.15% 1.06% 0% 33.67% 3.38% 0.008%
10 92,561,040 96.97% 2.99% 0.001% 34.71% 4.36% 0.02%
11 193,536,720 99.01% 6.51% 0.01% 35.42% 5.44% 0.05%
12 354,817,320 99.67% 12.88% 0.62% 35.84% 6.58% 0.11%

6 Stati- 10,000,000 35.46% 0.00% 0% 31.41% 0.90% 0.000001%
7 stical 10,000,000 48.72% 0.00% 0% 34.72% 1.34% 0.00001%
8 10,000,000 62.98% 0.01% 0% 37.61% 1.88% 0.00007%
9 10,000,000 76.51% 0.03% 0% 40.10% 2.53% 0.0002%
10 10,000,000 87.40% 0.09% 0% 42.21% 3.29% 0.0008%
11 10,000,000 94.47% 0.23% 0% 43.98% 4.16% 0.002%
12 10,000,000 98.05% 0.52% 0.00001% 45.44% 5.14% 0.005%
13 10,000,000 99.46% 1.10% 0.0003% 46.60% 6.22% 0.01%
14 10,000,000 99.88% 2.13% 0.0009% 47.50% 7.41% 0.02%

4.3 Evaluation Results

Table 1 shows the fault tolerance achieved by the methodology for a 3 × 3 × 3
torus network. The table shows the results for the three different types of analysis
performed (exhaustive, distance 1, and statistical). From the exhaustive analysis
results, we can observe that the methodology is only 1-fault tolerant when using
only one intermediate node. For two faults present in the network, 2.5% of the
fault combinations are not tolerated when using one intermediate node. As the
number of faults increases, the percentage of not tolerated combinations grows
fast. For six faults, 35.49% of the fault combinations are not supported when
using one intermediate node.

By using two intermediate nodes, the methodology greatly increases its fault
tolerance degree. In particular, it is 5-fault tolerant as all the fault combinations
of up to and including five faults are tolerated. With six faults in the network,
two intermediate nodes where sufficient for almost all the fault combinations,
except for 0.0002% of the combinations.

A Fully Adaptive Fault-Tolerant Routing Methodology 353

With three intermediate nodes, the methodology achieves a very good fault
tolerance degree. From the exhaustive analysis results, we observe that using
three intermediate nodes allows tolerating all the possible fault combinations up
to and including six faults. In the statistical analysis, where 10 million randomly
generated fault combinations were analyzed for up to 14 faults5, the methodology
could provide a valid path for every non-disconnected pair of nodes for up to
11 faults. For 12 faults one not tolerated combination was found (in 10,000,000)
and this number increased to 89 when 14 faults were present.

However, taking into account the distance 1 analysis (representing the worst
case situation) we can observe that with 10 faults in the network there were
some not tolerated combinations. Therefore, the methodology is not 10-fault
tolerant. Even, from seven up to and including nine faults we can not deduce for
sure that the methodology is n-fault tolerant since not all the fault combinations
have been tested. However, this strongly indicates that the methodology tolerates
nine faults. Anyway, even with a high number of faults, the percentage of not
supported fault combinations is very low when using three intermediate nodes.
So, the methodology achieves a high fault-tolerance degree.

Table 1 also shows the percentage of paths that use a certain number of
intermediate nodes. As can be seen, most of the paths avoid faults by using
just one intermediate node, and very few paths need a third intermediate node.
Notice that although the third intermediate node is little used, it makes a large
difference for the fault-tolerance degree.

Table 2 shows the results achieved for a 3 × 3 torus network and for a 3 ×
3 × 3 mesh network. In the 3 × 3 torus, all the combinations of up to and
including six faults (i.e., 1/3 of the total number of links) have been exhaustively
analyzed. The methodology tolerates one fault when using one intermediate
node, three faults when using two intermediate nodes, and five faults when using
three intermediate nodes. So, the fault-tolerance degree in a 2D torus is lower
than in a 3D torus. This is not unexpected considering that a 2D torus provides
lower routing flexibility.

For the 3 × 3 × 3 mesh network, the results are not as good as for the torus
networks. The methodology requires at least two intermediate nodes in order to
be 1-fault tolerant.6 When using three intermediate nodes, the methodology is
4-fault tolerant, and it is 6-fault tolerant when using four intermediate nodes.

Finally, Fig. 4 shows the performance degradation exhibited by the metho-
dology in an 8×8×8 torus network when up to two intermediate nodes are used.
Notice that in a larger network, like the one used in the performance analysis,
the percentage of not tolerated fault combinations, when using two intermediate
nodes, is much lower than in a 3× 3× 3 torus. Thus, all the randomly generated
combinations for the performance evaluation could be solved by the use of at
most two intermediate nodes. When only one fault is present in the network,

5 The error due to not analyzing all the combinations is lower than 0.05.
6 Notice that in a mesh the wraparound links do not exist and it is therefore impossible

to communicate to a node on the direct opposite side of the fault without using at
least two intermediate nodes (i.e., when S, F , and D are in the same row/column).

354 N.A. Nordbotten et al.

Table 2. Fault tolerance degree achieved by the methodology for a 3 × 3 torus
network and a 3×3×3 mesh network. The table shows the percentage of the total
number of combinations that are not tolerated. The results have been obtained
by exhaustively analyzing all the possible fault combinations

Link 3 × 3 torus 3 × 3 × 3 mesh
faults I×1 I×2 I×3 I×1 I×2 I×3 I×4

1 0% 0% 0% 100% 0% 0% 0%
2 11.76% 0% 0% 100% 0% 0% 0%
3 33.82% 0% 0% 100% 0.97% 0% 0%
4 67.06% 1.18% 0% 100% 4.23% 0% 0%
5 91.81% 10.71% 0% 100% 11.65% 0.05% 0%
6 96.49% 40.24% 2.33% 100% 24.89% 0.28% 0%
7 N/A N/A N/A 100% 43.67% 1.02% 0.002%
8 N/A N/A N/A 100% 64.53% 2.83% 0.02%

only one intermediate node is used. The figure shows for every number of faults,
the average throughput achieved. The presented throughput is the average of
the individual results obtained when evaluating the 50 randomly generated fault
combinations.7 As can be observed, the throughput decreases as the number of
faults in the network increases. However, the decrease in throughput, is very
low. In particular, when there are 14 faults, the throughput is on average only
decreased by 6.49% compared to the fault-free case (from 474 flits/cycle to 443
flits/cycle). In particular, this degradation is lower than the one obtained with
the methodology proposed in [13], where with 5 virtual channels the degradation
from the fault-free case to 14 faults was 11.02%.

5 Conclusions

In this paper we have proposed a fault-tolerant routing methodology based on
the use of intermediate nodes. The proposed methodology can be applied with
any minimal routing function in n-dimensional mesh and torus networks, and
it has been applied with minimal adaptive routing in this paper. The main
advantage of the proposed mechanism is its simplicity, since the same original
routing (e.g., minimal adaptive) continues to be valid. The only requirement
on switches is that they should provide the required number of extra virtual
channels. However, only a low number of virtual channels is required.

The paper provides the necessary and sufficient conditions, for selecting the
intermediate nodes, in order to tolerate as many faults as possible and to provide
the shortest paths possible.

The methodology has been shown to be five fault-tolerant when using two
intermediate nodes in a 3D torus network. When using three intermediate nodes,

7 The 95% confidence intervals are always smaller than 0.796.

A Fully Adaptive Fault-Tolerant Routing Methodology 355

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

fl
its

/c
yc

le
)

Number of failures

Fig. 4. Overall throughput (flits/cycle) for the proposed methodology in an 8×
8 × 8 torus network. Five virtual channels are used

the method is nine fault-tolerant for 3D torus networks, five fault-tolerant in 2D
torus, and four fault-tolerant in 3D mesh topologies.

Regarding performance, the methodology does not degrade performance in
the absence of faults, whereas in the presence of faults it provides a gracious
performance degradation. Specifically, it has been shown that the average per-
formance degradation, in an 8 × 8 × 8 torus network with 14 faults, is only
6.49%.

References

1. ASCI Red Web Site. http://www.sandia.gov/ASCI/Red/.
2. IBM BG/L Team. An Overview of the BlueGene/L Supercomputer. ACM Super-

computing Conference, 2002.
3. R. Bopana and S. Chalasani. A Comparison of Adaptive Wormhole Routing Algo-

rithms. Proc. 20th Annual Int. Symp. Comp. Architecture, 1993.
4. C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo. A Flow Control Mechanism to

Avoid Message Deadlock in K-ary N-Cube Networks. 4th International Conference
on High Performance Computing, pp. 332-329, 1997.

5. R.Casado, A. Bermúdez, J. Duato, F.J. Quiles, and J.L. Sánchez. A protocol for
deadlock-free dynamic reconfiguration in high speed local area networks. IEEE Tran-
sactions on Parallel and Distributed Systems, vol. 12, No. 2, pp. 115-132, 2001.

6. A.A. Chien and J.H. Kim. Planar-adaptive routing: Low-cost adaptive networks for
multiprocessors. Proceedings of the 19th International Symposium on Computer
Architecture, pp. 268-277, 1992.

7. S.Chalasani and R.V. Boppana. Communication in multicomputers with nonconvex
faults. IEEE Transactions on Computers, vol. 46, no. 5, pp. 616-622, 1997.

8. W.J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 3, no. 2, pp. 194-205, 1992.

356 N.A. Nordbotten et al.

9. W.J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks
using virtual channels. IEEE Transactions on Parallel and Distributed Systems, vol.
4, no. 4, pp 466-475, 1993.

10. W. J. Dally et al., The Reliable Router: A Reliable and High-Performance Com-
munication Substrate for Parallel Computers. Proc. Parallel Computer Routing and
Communication Workshop, 1994.

11. J. Duato. A theory of fault-tolerant routing in wormhole networks. Proc. Interna-
tional Conference on Parallel and Distributed Systems, pp. 600-607, 1994.

12. Earth Simulator Center. http://www.es.jamstec.go.jp/esc/eng/index.html.
13. M.E. Gómez, J. Duato, J. Flich, P. López, and A. Robles / N.A. Nordbotten, O.

Lysne, and T. Skeie. An Efficient Fault-Tolerant Routing Methodology for Meshes
and Tori. Computer Architecture Letters, vol. 3, May 2004.

14. G.J. Glass, and L.M. Ni. Fault-Tolerant Wormhole Routing in Meshes without
Virtual Channels. IEEE Transactions Parallel and Distributed Systems, vol. 7, no.
6, pp. 620-636, 1996.

15. C.T. Ho and L. Stockmeyer. A New Approach to Fault-Tolerant Wormhole Rou-
ting for Mesh-Connected Parallel Computers. Proc. 16th International Parallel and
Distributed Processing Symposium, 2002.

16. InfiniBandTM Trade Association, InfiniBandTM architecture. Specification vol. 1.
Release 1.0.a. Available at http://www.infinibandta.com.

17. D.H. Linder and J.C. Harden. An Adaptive and fault tolerant wormhole routing
strategy for k-ary n-cubes. IEEE Transactions on Computers, vol. C-40, no. 1, pp.
2-12, 1991.

18. V. Puente, J.A. Gregorio, J.M. Prellezo, R. Beivide, J. Duato, and C. Izu. Adap-
tive Bubble Router: A Design to Balance Latency and Throughput in Networks for
Parallel Computers. 22nd International Conference on Parallel Processing, 1999.

19. Y.J. Suh, B.V. Dao, J. Duato, and S. Yalamanchili. Software-based rerouting for
fault-tolerant pipelined communication. IEEE Transactions on Parallel and Distri-
buted Systems, vol. 11, no. 3, pp. 193-211, 2000.

20. S.L. Scott and G.M. Thorson. The Cray T3E Network: Adaptive Routing in a High
Performance 3D Torus. Symposium on High Performance Interconnects, 1996.

21. L.G. Valiant, A Scheme for Fast Parallel Communication. SIAM J. Comput. 11,
pp. 350-361, 1982.

	Introduction
	The Methodology
	Example Scenarios
	Evaluation of the Methodology
	Conclusions

