
Design and Implementation of a Remote

Debugger for Concurrent Debugging of Multiple
Processes in Embedded Linux Systems�

Jung-hee Kim1, Hyun-chul Sim1, Yong-hyeog Kang2, and Young Ik Eom1

1 School of Information and Communication Eng., Sungkyunkwan University
300 cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea

{kimjh, jlmaj, yieom}@ece.skku.ac.kr
2 School of Business Administration, Far East University

5 San Wangjang, Gamgok, Eumseong, Chungbuk 369-851, Korea
yhkang@mail.kdu.ac.kr

Abstract. In the embedded software development environments, devel-
opers can concurrently debug a running process and its child processes
only by using multiple gdbs and gdbservers. But it needs additional cod-
ing and messy works of activating additional gdb and gdbserver for each
created process. In this paper, we propose an efficient mechanism for con-
current debugging of multiple remote processes in the embedded system
environments by using the library wrapping mechanism without Linux
kernel modification. Through the experimentation of debugging two pro-
cesses communicating by an unnamed pipe in the target system, we show
that our proposed debugging mechanism is easier and more efficient than
preexisting mechanisms.

1 Introduction

Currently, the gdb has been popularly used as a remote debugging tool in the
embedded Linux software developments. By running the gdb in the host sys-
tem and the gdbserver in the target system, developers can debug a remote
process running in the target system [1][2]. However, developers must insert a
“sleep” function into the debugged program in order to concurrently debug a
newly created child process of the current debugged process. Developers also
need additional gdbserver in the target system and connect it to the blocked
child process. In the host system, additional gdb is required to connect to the
new gdbserver in the target system. Therefore, developers must have the same
number of gdbs in the host system and gdbservers in the target system as the
number of the debugged processes.

A gdbserver in the target system provides developers with the ability of
debugging a process by using ptrace system call in the Linux systems. But the
ptrace system call needs the parent-child relationship between a gdbserver and
� This work was supported by Korea Research Foundation Grant (KRF-2003-041-

D20420).

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 280–283, 2004.
c© IFIP International Federation for Information Processing 2004

Design and Implementation of a Remote Debugger 281

a debugged process [3]. When a debugged process creates a new process, the
parent-child relationship is not established between a gdbserver and the newly
created child process. Developers need to insert the sleep code into a newly
created child process code. When the newly created process is blocked by the
sleep code in the target system, developers run a new gdbserver in the target
system and connect it to the blocked process. Developers also run a new gdb in
the host system and connect it to the new gdbserver in the target system. When
two connections are established, developers can debug the newly created process
in the target system by using the gdb in the host system and the gdbserver in
the target system.

2 Our Proposed Mechanism

In this paper, we propose a new debugging mechanism that supports concur-
rent debugging of multiple remote processes by using the mgdb library and the
mgdbserver. Fig. 1 shows the overview of our proposed mechanism that supports
the concurrent debugging of multiple remote processes. The mgdbserver in the
target system communicates with the gdb in the host system. Developers can
concurrently debug multiple remote processes by selecting the process intended
to debug at desired time by using the mgdbserver. Whenever a debugged process
creates a new child process, the mgdbserver runs a new gdbserver in the target
system and connects it to the newly created child process automatically in order
to support the concurrent debugging of the newly created child process.

Host Machine
Target Machine

App

glibc library

Linux Kernel

App gdb

glibc library

Linux Kernel

mgdb library

mgdbserver

App

App

gdbserver

gdbserver

Fig. 1. Overview of our concurrent and remote debugging mechanism

In order to support concurrent debugging of multiple remote processes, the
mgdbserver must know when the current debugged process invokes fork system
call. In this paper, we use the mechanism of wrapping the glibc library in order
to intercept the system call that a currently debugged process invokes. When
the currently debugged process calls the function in the glibc library, the library
wrapping scheme intercepts the function call and calls the same name function
in our mgdb library. The called function in our mgdb library executes the code
that is needed for debugging of multiple processes before calling the function in
the glibc library that is intended to be called originally. In order to intercept
system call, we use the interposition mechanism of Linux dynamic linker [4] by
preloading our mgdb library before the glibc library.

282 J.-h. Kim et al.

gdb mgdbserver gdbserver Linux Kernel
Newly Created
Process (pid)

Receives SIGUSR1 signal

creates new
gdbserver

TASK_STOPPED state
ptrace(PTRACE_ATTACH,
new_child_pid, …)

Set PT_PTRACED value to
ptrace variable

Removes process of pid
from process list

Changes a parent process
of newly created process to
gdbserver
Connects process of pid to
the last of process list

Sends SIGSTOP signal
Return value : 0

Selects process
intended to debug Selects a appropriate

gdbserver
Sends a request
for setting a
breakpoint

Sends a request for
setting a breakpoint ptrace(PTRACE_PEEKTEXT,

new_child_pid, …) Sets a breakpoint

Return value : 0
Return value : 0

Confirms a result of
setting a breakpoint

Confirms a
result of setting
a breakpoint

Sends a execution
request by a
breakpoint

Sends a execution
request by a
breakpoint

ptrace(PTRACE_CONT,
new_child_pid, …)

Clears TRAP_FLAG value
from eflags register of process

Wakes up a process of pid

TASK_RUNNING state

TASK_STOPPED state

Return value : 0
Invokes waitpid(pid,...);
Waits until a status of
process is changed or
terminated

Alarms change of a
process status Confirms a execution

by a breakpoint
Confirms a
execution by a
breakpoint

Fig. 2. Flow of debugging newly created process after mgdbserver receives signal

When the currently debugged process creates a new child process, our mgdb
library blocks the newly created process in order to prevent the process from
terminating. It also informs the mgdbserver that the currently debugged process
creates a new child process by the signal. The mgdbserver runs a new gdbserver
and connects it to the newly created process. As shown in Fig. 2, when the
mgdbserver receives the signal from our mgdb library, it creates a new gdbserver.

In order to become the parent process of the newly created process, the
new gdbserver sets the PT PTRACED value to a ptrace variable of the newly
created process by invoking ptrace system call. When developers want to change
the currently debugged process, they can select the process to debug by using a
gdb in the host system. When the new debugged process is selected by a gdb,
the mgdbserver passes debugging request from the gdb to the gdbserver.

3 Experiment and Performance Analysis

The scenario used in the experiment is as follows. The parent process creates a
child process and sends a string through the unnamed pipe shared by the child
process. After the child process receives the string from the parent process, it
rearranges the string in reverse order and sends the string to the parent process
through the unnamed pipe. After the parent process receives the string, it prints
the string sent by the child process.

Design and Implementation of a Remote Debugger 283

Developers can see the debugged status information of all processes created
by the currently debugged process by typing “show-remoted-debugee” at the
“gdb” prompt in the host system. By selecting the process identifier number,
they also can change a specific process for debugging through “change-remote-
debugee” command with “pid” argument.

Table 1. Comparison of TotalView with our mgdb library and mgdbserver

ETNUS’s TotalView Our proposed debugger

Test program image size 53658 bytes 23973 bytes

Library linking mechanism staic dynamic

Remote debugging no supporting supporting

In this experiment, we focus on the ability of our debugger tool to support
concurrent and remote debugging of the parent process and the newly created
child process by selecting the process intended to debug using only one gdb in the
host system. As shown in Table 1, we compare our proposed scheme with ETNUS
TotalView program that supports debugging of multiple processes [5]. However,
the library linking mechanism in ETNUS TotalView supports only static linking,
therefore the size of the debugged program in ETNUS TotalView is larger than
that in our proposed scheme. ETNUS TotalView also cannot support remote
debugging.

4 Conclusion

In this paper, we presented a new concurrent debugging mechanism for remote
processes through the design and implementation of the mgdb library and the
mgdbserver. In our proposed scheme, developers can debug all debugged pro-
cesses in the target system by selecting the debugged process among them
through one gdb in the host system. Compared with the preexisting mechanism,
our proposed scheme provides easier and more efficient concurrent debugging for
multiple remote processes in the target system.

References

1. Daniel Jacobowitz, Remoting Debugging with GDB, http://www.kegel.com/linux/
gdbserver.html, 2002.

2. Richard M. Stallman, Debugging with GDB, 4th ed., Cygnus Support, 1996.
3. Uresh Vahalia, Unix Internals, Prentice Hall, 1996.
4. Sun Microsystems Inc., Linker and Libraries Guide, October, 1998.
5. Etnus, Totalview Getting Started, http://www.etnus.com/Products/TotalView/

started/getting started2.html, 2001.

	Introduction
	Our Proposed Mechanism
	Experiment and Performance Analysis
	Conclusion

