

Content Aggregation Middleware (CAM) for Fast
Development of High Performance Web Syndication

Services

Su Myeon Kim, Jinwon Lee, SungJae Jo and Junehwa Song

Dept. of EECS., Korea Advanced Institute of Science and Technology,
371-1 Guseong-Dong, Yuseong-Gu, Daejon, 305-701, Korea

{smkim, jcircle, stanleylab, junesong}@nclab.kaist.ac.kr

Abstract. The rapid expansion of the Internet accompanies a serious side ef-
fect. Since there are too many information providers, it is very difficult to ob-
tain the contents best fitting to customers’ needs. Web Syndication Services
(WSS) are emerging as solutions to the information flooding problem. How-
ever, even with its practical importance, WSS has not been much studied yet. In
this paper, we propose the Content Aggregation Middleware (CAM). It pro-
vides a WSS with a content gathering substratum effective in gathering and
processing data from many different source sites. Using the CAM, WSS pro-
vider can build up a new service without involving the details of complicated
content aggregation procedures, and thus concentrate on developing the service
logic. We describe the design, implementation, and performance of the CAM.

1 Introduction

The Internet has been growing exponentially for the past decades, and has already
become the major source of information. The estimated number of Internet hosts
reached 72 million in February 2000, and is expected to reach 1 billion by 2008[1].
However, such a rapid expansion accompanies a serious side effect. Although users
can easily access the Internet, it is very difficult to obtain the contents best fitting to
their needs since there are too many information providers (Web hosts). This problem
is usually called information flooding.

Various Web Syndication Services (WSS) (See Figure 1) are emerging as solu-
tions to the information flooding problem. WSS is a new kind of Internet service
which spans over distributed Web sites. It provides value-added information by proc-
essing (e.g., integrating, comparing, filtering, etc) contents gathered from other Web
sites. Price comparison service such as Shopping.com [2] and travel consolidator
service like Expedia.com [3] can be considered as examples of the WSSs. To ordi-
nary clients who are not familiar with a specific domain, a WSS targeting the domain
would be of a great help to overcome the information flooding.

Providing a WSS is technically challenging. It is much more complicated than
providing an ordinary service. However, even with its practical importance, WSS has
not been much studied yet. A system providing a WSS can be seen into two parts; the

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 195-204, 2004.
 IFIP International Federation for Information Processing 2004

196 S.M. Kim et al.

WSS service logic and the content aggregation subsystem. The content aggregation
is the common core of many WSS’s while the service logic is service specific and
differs from service to service. It receives requests from clients and interacts with
source sites to process the requests. In this paper, we propose the Content Aggrega-
tion Middleware (CAM). The CAM is an efficient content aggregation system de-
signed to be a base for many WSS’s. Using the CAM, a service provider can easily
develop and deploy a high performance WSS system supporting a large number of
clients and source sites.

We identify several requirements for a WSS site. First, a WSS site should support
a high level of performance. The performance requirement in a WSS site is a lot
higher than in ordinary Web sites. It should manage much larger number of requests
from clients spread over the Internet. Additionally, it should handle a huge number of
source sites and interactions with them. Second, it should support high dynamics of
Internet environment. In a fully Internet-connected environment, real world events
can be quickly reflected and propagated to systems. Once generated, the information
will go through frequent changes. Third, a WSS site should deal with many source
sites, which are highly heterogeneous.

The CAM has been designed to meet the above requirements of a WSS site. It pro-
vides a WSS with a content gathering substratum effective in gathering and process-
ing data from many different source sites. Using the CAM, WSS provider can build
up a new service without involving the details of complicated content aggregation
procedures, and thus concentrate on developing the service logic. The CAM simpli-
fies the complex procedure of interacting with content providers through a formalized
service contract (SC). Also, it effectively masks the high level of heterogeneity
among different source sites. In addition, it is a high performance system much relax-
ing the burden of performance concerns in system development. Below, we describe
the novel characteristics of the proposed content aggregation system.

First, the CAM is a source data caching system along with basic data processing
capabilities. It caches data in the form of source data, e.g., the unit of database fields
as stored in content providers' databases. For value-added service, fine-grained con-
trol on the cached contents gathered is required. Source data caching makes such
fine-grained control possible. For data processing, basic functions such as content
conversion, filtering, and query processing, are provided.

Second, it is a high performance system. As mentioned, a WSS should handle a
high rate of requests from lots of clients. In addition, it should be capable of manag-
ing a lot of interactions with source sites to keep the freshness of cached data. With a
source data caching, keeping cached data up-to-date can be done efficiently. Also, to
manage a large volume of data efficiently, it uses main memory as a primary storage.

Third, the CAM is equipped with real-time update capability. To keep the fresh-
ness of cached contents, any modification on the data at source sites is propagated to
the CAM as soon as possible. The update mechanism is based on server invalidation
scheme; upon modification, the source site initiates invalidation and modification of
the cached data in the CAM. In this way, the delay to the data update can be short-
ened.

Fourth, a wrapper is used to deal with the heterogeneity of the source sites. The
CAM gathers contents from many different source sites. So, handling the different

Content Aggregation Middleware (CAM) 197

sites in a uniform way is critical to the CAM system. By deploying a wrapper module
to each source server, the CAM can handle different source sites in a uniform way.

In this paper, we present the design and implementation of the CAM. We also
show some measurement results to demonstrate the performance of the system. The
current version of our system is designed for WSS interacting with typical Web sites.
Thus, Web sites adopting new technologies such as XML and Web Services, are not
considered in this paper. We believe that such emerging Web technologies can be
easily incorporated to our system.

tra
ve

l in
for

mati
on

Internet

Travel Consolidator
Service

client A

cruise sites
 c1,c2,...

car-rental sites
r1,r2,...

travel information

hotel sites
h1,h2,...

web sites
d1,d2,..

vacation sites
v1,v2,...

airline sites
a1,a2,...

H

C

D

V

R

client

Fig. 1. An Example of Web Syndication Services – Travel Consolidator Service

This paper is organized as follows. The CAM architecture is described in Section

2. A few challenging issues are discussed in Section 3. In Section 4, system perform-
ance is discussed. We discuss related work in Section 5. Finally, we conclude our
work in Section 6.

2 Content Aggregation Middleware (CAM) Architecture

A WSS can be constructed with a front-end WSS logic and a back-end CAM (See
Fig. 2). The WSS logic implements service specific application logic. It is usually
implemented as Web applications using JSP, Servlet, etc. It interacts with clients via
Web server or application server to receive requests and deliver results. It also inter-
acts with the CAM to request or to receive data required to construct result pages.

The CAM has a modular structure, which consists of four components: Content
Provider Wrapper (CPW), Content Provider Manager (CPM), Memory Cache Man-
ager (MCM), and Memory Cache (MC). CPW runs on content provider sites and
enables the CAM to access different content providers in an identical way. The other
components are on the WSS site. CPM communicates with content providers and
receives contents. MCM manages MC, which stores and manages the retrieved data.

198 S.M. Kim et al.

2.1 Processing Flow

The CAM mainly deals with two kinds of requests: content update request and con-
tent access request. The request processing flows are shown in Fig. 2.

Content Provider

Memory Cache Manager (MCM)

Content Provider Manager (CPM)

Web Application Server
(Web Applications)

contents update &
swap

modify
event

format convert DBMS

system monitor &
log

Front-end interface (JDBC/ODBC)

update listen &
content provider monitor

Content Provider Wrapper (CPW)

service requests from clients

content update request

update

cache control & manage

CAM

contents access request

contents store and retrieve

Web Server

Memory Cache (MC)

WSS Logic

Fig. 2. CAM Architecture

The update process is initiated when data is modified in the content provider's da-
tabase. The content provider detects and notifies the update event, including table ID,
field names, and modified values, to CPW. CPW receives the notification message.
Then, it converts the data according to the converting information and sends the con-
verted result to CPM. CPM receives the update message and forwards it to MCM.
Finally, MCM replaces the data in the MC with the new data in the update message.

The content access process is initiated when clients request a service. Web applica-
tions implementing WSS logic retrieve data from MC and generate a service result.
The Web applications access MC via a popular database interface such as JDBC or
ODBC

2.2 Deployment of WSS and the CAM

In order to start a WSS with the CAM, content providers as well as the WSS provider
need to participate in service deployment process. First, both the WSS provider and
participating content providers should agree on how to interact with each other. Sec-
ond, content providers need to install and configure a CPW. We use Service Contract
(SC) to simplify the configuration process. The SC represents a collection of well-
defined and externally visible rules which both human and machine can understand
[4]. It is used as an enforcement mechanism for proper interactions between the CAM
and content providers. The structure of the SC is shown in Fig. 3.

Content Aggregation Middleware (CAM) 199

Service Contract

contract identification

participants

contract property

content transfer protocol

security

error handling

legal stipulation

Content Conversion Table

Fig. 3. Structure of the Service Contract

After the SC is filled up and a CPW is installed in a content provider server, the
content provider and the CAM configure their systems according to the SC. Since the
SC contains the specification for all the interaction rules, the configuration is simply
done by feeding the SC into the systems. At the content provider site, the CPW first
parses the SC and then sets up related components such as the communication inter-
faces.The CAM also parses the SC. Then, it notifies CPM's monitoring module and
update-listening module of the new content provider. If needed, it also forwards con-
figuration information such as valid actions, protocols, and addresses, to each mod-
ule. Based on this information, the modules prepare themselves for the new content
provider. Note that, in the proposed architecture, the re-configuration is easily done
dynamically by feeding a new SC into the CAM and the contracted content provider.

3 Design Challenges

3.1 Instant Update Mechanism

It is important to keep the data in the CAM up-to-date. Thus, any modifications of
contents in the content provider’s database should be promptly reflected to those in
the CAM. In addition, the update mechanism should be efficient since a high number
of update requests are expected.

The update scheme is based on server-push. The content provider server instantly
identifies any modification in the database, and initiates an update in the CAM by
sending out an invalidation message. Thus, an update is propagated to the CAM with
very small delay. When sending an invalidation message, we piggyback the message
with the modified field and value. Thus, an update can be completed with one mes-
sage.

The instant identification of content modification is done based on a trigger
mechanism in the content provider’s database. Using a trigger mechanism, the update
process can be done very efficiently. It is so since fine grained invalidation is possible

200 S.M. Kim et al.

due to the use of the mechanism where changes can be detected in the unit of a field.
Trigger mechanisms are provided in many popular DBMS’s such as Oracle, DB2,
and MySql .

Communication Module

update event
+ modified data

Content
Converter

Event
Listener

invalidation msg
+ modified data

Java Virtual Machine

Content
Conversion

Table

update
request

(1)

(3) (4) (5)

(6)

Content
Provider's
Database

Triggers

Event
Reporter

Catalog
table (2) modified

data

CPMContent Provider
Handler

Content Provider Interface

invalidation msg
+ modified data(8)

(9)

Logger
&

Monitor

Logging message
to SDBM

Cache
Updaterupdate

request

(7)

MCM

CPW

WSS
Logic

Web ServerWeb Application Server

customer requests

content
retrieval

swapping
manager

Disk Storage

Memory Cache
(Main Memory)

Fig. 4. Instant Update Mechanism and Its Procedure

Currently, time-to-live (TTL) based schemes are most popularly used as a cache
consistency mechanism in the Internet [8]. However, TTL-based schemes are not
proper for the CAM since they cannot quickly propagate updates to a cache. Prompt
propagation of updates may be achieved if a cache frequently polls changes in servers
in a very small interval. However, this will incur excessive overhead to the cache. On
the contrary, server-push style approaches can more quickly reflect changes in origi-
nal data.

Fig. 4 shows the detailed structure of CPW and the whole update process from da-
tabase modification at content provider server to actual update at the CAM. When an
update occurs at the content provider’s database (1), the trigger routine activates a
trigger, here we named it as Event Reporter. (2). The Event Reporter sends the modi-
fied information to CPW (3). The update information is received by the Event Lis-
tener module in CPW. Then, Content Converter converts the schema and format of
the received information (4) by referring to Content Conversion Table, if needed (5).
The Content Converter makes an update message with the converted information (6).
Then, the Communication Module sends the message to the CAM (7). As soon as
CPM receives the update message, it forwards the message to MCM (8). Lastly,
MCM constructs a proper query message based on the received message and commits
the update transaction on MC, logging this event if required (9).

Content Aggregation Middleware (CAM) 201

3.2 Template-Based, Safe Wrapper Mechanism

In CPW design, safety should be importantly considered since it runs in foreign (i.e.,
content providers) servers. It may access confidential data, crash, or generate an error
disturbing the server system.

For safety, we propose a dynamically customizable wrapper. In our approach, a
generic wrapper template is composed and used for every content provider. Since
there is only one template, certifying the safety of the wrapper becomes easy. For
instance, the safety can be certified by the third part agency. Once certified, the safety
of the wrapper is assured for every content provider. Each wrapper instance is gener-
ated from the template along with an SC. The instance will act as specified in the SC.
Note that the SC is signed by the WSS provider as well as the content provider.

We implement the wrapper using Java. Java-based implementation is advantageous
in several ways. First, the module can be installed in any computing environment
running Java Virtual Machine (JVM). Second, faults in a wrapper module do not
affect the reliability of a content provider system. Faults in the wrapper module
propagate only to the virtual machine. Third, by using the powerful access control
mechanism of JAVA, content providers can prevent a wrapper from accessing their
resources.

4 Performance Evaluation

The performance of the CAM prototype is evaluated using a prototype. For high
performance, the CAM prototype was implemented mostly in C++ on Linux plat-
form. Most of the MCM's functions, including system monitoring and logging, have
been implemented. In the current prototype, the number of requests for each content
object and that of messages from each content provider are monitored and logged.
The current version of MC has been implemented by customizing the third party main
memory database, ”Altibase” [9]. This helps us quickly implement the prototype. To
help content providers set up database triggers, we plan to provide templates and
samples of the triggers for different DBMS’s. For the time being, those for the Oracle
DBMS are provided

4.1 Experimental Environment

We assume that the CAM is deployed on a single node. The performance will in-
crease when the CAM is deployed on multiple nodes. For the simplicity of measure-
ment, clients and content providers are connected to the CAM via 100M local area
networks. Each node has a Pentium III 1Ghz CPU and 512MB main memory except
the node for the CAM which has 2GB main memory. Red Hat Linux 7.2 is used as
the operating system, and Sun JAVA 1.3 is used as the JVM. Apache 1.3.20 and
Tomcat 3.2.3 is used for the Web server and the application server, respectively. In
the rest of this section, we assume that all the cached contents fit in the main memory.

202 S.M. Kim et al.

4.2 Workload and Measures

The performance of the CAM prototype is evaluated via three different measures: (1)
browse, (2) update, (3) mixed throughputs. The browse throughput is measured when
requests are only from clients, while the update throughput is measured when re-
quests are only from content providers. The mixed throughput is measured when the
two types of requests are issued.

To measure the performance of browse request processing, we use a transactional
Web benchmark: TPC Benchmark™ W (TPC-W) [13]. It is commonly used to meas-
ure the performance of a database-backed web serving system. We slightly modified
the TPC-W benchmark. Originally, there are two kinds of interactions in the TPC-W
specification: browsing and ordering. We use only browse interactions in our experi-
ment since the browsing interaction is composed of database retrieval operations.
Note that database scale factor is used to specify the scale of the measured web serv-
ing system. To measure the update throughput, we made our own utility called update
request generator. It generates and sends multiple update requests simultaneously,
emulating the situation where several content providers update their contents at the
same time.

4.3 Performance Evaluation

We measure the throughput and response time when database scale is 10k or 100k.
Fig. 5 shows the throughput of five browsing interactions. Throughput is represented
in WIPS - the number of interactions processed per second. The total WIPS, i.e., the
summation of the WIPS for five interactions, is 77 and 8 when database scale is 10k
or 100k, respectively. The response time measured from the same experiments shows
that all requests are processed in 0.23 and 1 second when database scale is 10k or
100k, respectively.

Fig. 6 (a) shows the throughputs as the number of threads in the update request
generator increases from one to ten; the number of threads represents the number of
content providers sending updates simultaneously. We run the experiments when the
update message size is 64 and 256 bytes. Although the update size would be arbitrary,
we assume that the sizes of frequently changed database fields are not large. The
number 64 is chosen since it is the smallest power of two larger than 38, which is the
maximum digit of numeric variable in Oracle database. Similarly, 256 is the closest
number to 255 which is the default size of char type in Oracle. The figure shows that
the CAM processes about 400 requests per second. The number of active content
providers or update message size has a negligible effect on the performance.

To measure the mixed throughput, we kept sending a fixed number of update re-
quests per second via the update request generator, and then measured the browse
throughput via TCP-W. Fig. 6 (b) shows the results. For simplicity, the throughput is
represented as the total WIPS. Note that from the previous experiments, the browse
only throughput, i.e., browse throughput without any update, is 77 and the update
only throughput is 411.

Content Aggregation Middleware (CAM) 203

0

5

10

15

20

25

home
interac tion

new
produc t

produc t
detail

search
reques t

s earc h
produc t

interaction name

W
IP

S
(w

eb
 in

te
ra

ct
io

ns
/s

ec
)

0

5

10

15

20

25

home
interac tion

new
produc t

produc t
detail

s earch
reques t

search
produc t

interaction name

W
IP

S
(w

eb
 in

te
ra

ct
io

ns
/s

ec
)

(a) 10k database scale (b) 100k database scale

Fig. 5. Browsing Throughput

365 , 13
350 , 17

324 , 22

280 , 33

227 , 44

202 , 51

157 , 60

129 , 67
105 , 71

0

77

0 4
u

11
pdate throughput (requests/ sec)

br
ow

se
 th

ro
ug

hp
ut

 (
re

qu
es

ts
/s

ec
)

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

of active content providers

of

 re
qu

es
ts

 /
 s

ec

mes s age s ize -
64by tes
mes s age s ize -
256by tes

(a) (b)

Fig. 6. (a) Update Throughput, (b) Mixed Throughput

5 Related Work

Content aggregation tools such as Agentware [10], Active Data Exchange [11], and
Enterprise Content Management Suite [12] help to retrieve and aggregate contents
from multiple information sources. However, those tools are for an intra-
organizational use, while the CAM is designed for inter-organizational use.

Recently, a number of researches have proposed techniques for dynamic data cach-
ing [5, 6, 7]. These techniques have been proposed mainly as the scalability solution
for ordinary Web services, noting that the generation of dynamic data becomes a
major bottleneck. The CAM is different in that it focuses on the provision of a WSS,
which is a new type of cross-organizational data services, based on the cached infor-
mation. The CAM is also different from others in that other caches can be considered
as reverse proxies that are used within the contexts of specific servers, whereas the
CAM is closer to a proxy that operates along with a number of content providers.

204 S.M. Kim et al.

6 Conclusion

A WSS system is composed of a WSS service logic and the content aggregation sub-
system. The content aggregation is the common core of many WSS’s, while the ser-
vice logic is service specific and differs from a service to another. We proposed a
high performance content aggregation middleware called the CAM. The CAM pro-
vides a WSS with a content gathering substratum effective in gathering and process-
ing data from many different source sites. Using the CAM, WSS provider can build
up a new service without involving the details of complicated content aggregation
procedures, and thus concentrate on developing the service logic.

The CAM is a source data caching system and makes possible fine-grained control
of gathered contents. It is a high performance system capable of handling a high rate
of request from lots of clients and content providers. Also, it uses main memory as a
primary storage to efficiently manage a large volume of data. The CAM is equipped
with real-time update capability to keep the freshness of cached contents. It is
equipped with a wrapper to deal with the heterogeneity of the source sites.

In this paper, we described the design and implementation of the CAM. We also
showed the performance of the CAM prototype. We currently plan to further improve
the performance of the system.

References

1. T. Rutkowski,http://www.ngi.org/trends/TrendsPR0002.txt, Bianual strategic note, Center
for Next Generation Internet, February, 2000

2. http://www.shopping.com/, price comparison service site
3. http://www.expedia.com/, travel consolidator service
4. Asit Dan and Francis Parr, The Coyote approach for Network Centric Service Applica-

tions: Conversational Service Transactions, a Monitor and an Application, High Perform-
ance Transaction Processing (HPTS) Workshop, Sep, 1997

5. Khaled Yagoub and Daniela Florescu and Cezar Cristian Andrei and Valerie Issarny,
Building and Customizing Data-intensive Web Site using Weave, Proc. of the Int. Conf.
on Very Large Data Bases (VLDB), Cairo, Egypt, Sep, 2000

6. K. Selcuk Candan and Wen-Syan Li and Qiong Luo and Wang-Pin Hsiung and Divyakant
Agrawal, Enabling Dynamic Content Caching for Database-Driven Web Sites, Proceed-
ings of SIGMOD'2001,pages 532 – 543, California, USA, May, 2001

7. Qiong Luo and Jeffrey F. Naughton, Form-based proxy caching for database-backed web
sites, Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Roma, Italy , Sep, 2001

8. Balachaner Krishnamurthy and Jennifer Rexford,Web Protocols and Practice - HTTP/1.1,
Networking Protocols, Caching and Traffic Measurement, Addison-Wesley, 2001

9. http://www.altibase.com, Altibase Main Memory Database
10. http://www.agentware.net/, AgentWare (integrating the internet) - AgentWare Syndicator
11. http://www.activedatax.com/, Active Data Exchange - active data Syndicator
12. http://www.reddot.com/, RedDot Solutions - Content Import Engine
13. http://www.tpc.org/tpcw/default.asp, TPC benchmark W specification version 1.4, Feb.,

2001

http://www.shopping.com/
http://www.expedia.com/

	1 Introduction
	2 Content Aggregation Middleware (CAM) Architecture
	3 Design Challenges
	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

