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Abstract. We present a new method for detecting the interface, or edge,
structure present in diffusion MRI. Interface detection is an important
first step for applications including segmentation and registration. Ad-
ditionally, due to the higher dimensionality of tensor data, humans are
visually unable to detect edges as easily as in scalar data, so edge de-
tection has potential applications in diffusion tensor visualization. Our
method employs the computer vision techniques of local structure filter-
ing and normalized convolution. We detect the edges in the tensor field
by calculating a generalized local structure tensor, based on the sum of
the outer products of the gradients of the tensor components. The local
structure tensor provides a rotationally invariant description of edge ori-
entation, and its shape after local averaging describes the type of edge.
We demonstrate the ability to detect not only edges caused by differences
in tensor magnitude, but also edges between regions of different tensor
shape. We demonstrate the method’s performance on synthetic data, on
major fiber tract boundaries, and in one gray matter region.

1 Introduction

The problem of interface detection in diffusion tensor imaging (DTI) is more
complicated than the problem of interface detection in scalar images. This is
because there are two types of interface. In DTI data, one would like to detect
both interfaces due to changes in tensor orientation and interfaces due to changes
in tensor magnitude. Furthermore, it would be ideal to control the relative effects
of tensor magnitude and tensor orientation information on the output interfaces.

Potential applications of interface detection in MRI diffusion data are both
the same as those in scalar data, and different. Segmentation and registration
are two applications that are already known from scalar data. An application
that is different is the detection of interfaces that may not be apparent to the
human eye. In scalar data, a radiologist is the gold standard for interface de-
tection. However with tensor data, the higher dimensionality of the data and
the limitations of any tensor visualization technique may confound human edge
detectors. Consequently it is truly useful to study methods of edge detection in
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tensor fields, not just to automate tasks that could be laboriously performed by
a human, but to actually enable localization of the interfaces at all.

There are many anatomical interfaces of interest in DTI. The most obvious
are tract boundaries, for example the medial and lateral borders of the optic
radiation. Another interface that is obvious is the border between the near-
isotropic diffusion tensors in cerebrospinal fluid and neighboring tensors, for
example those in white matter which have a more anisotropic shape. A very
interesting and less obvious type of interface is that within gray matter. For
example, it would be clinically interesting if borders of thalamic nuclei were
directly detectable.

Related work on tensor interfaces includes one study which presents a method
very similar to ours, but without addressing the difference between magnitude
and orientation interfaces [4]. Their application is level set motion in a tensor
field, and their results while nice show mainly interfaces due to tensor magnitude
and do not address any anatomical features of interest. An earlier investigation
of tensor field edge detection defines the tensor field gradient and its generalized
correlation matrix, then applies these to point detection in DTI [14]. Another
approach to defining edges using local structure in DTI was presented in the
context of adaptive filtering [11]. Other interface detection in DTI includes the
implied interfaces at the borders of tractographic paths [1,2,16]. Finally, any
type of segmentation will output interfaces. Work on DTI segmentation includes
two methods that have been presented for automatic segmentation of nuclei in
thalamic gray matter. The first technique groups voxels using a combined tensor
similarity and distance measure [20]. The second method classifies voxels based
on their connection probabilities to segmented cortical regions [2]. Both methods
produce beautiful results but to our knowledge there has been no work which
looks at the local interface structure within the thalamus.

In this paper we present an extension of the method of local structure es-
timation to tensor-valued images using normalized convolution for estimating
the gradients. We produce a new local structure tensor field which describes the
interfaces present in the original data. We use the method of normalized convo-
lution to reduce the overall dependence of our results on the magnitude of the
tensors, in order to enable detection of both magnitude and orientation inter-
faces. We present results of our method on synthetic tensor data and anatomical
diffusion tensor data.

2 Materials and Methods

2.1 Data Acquisition

DT-MRI scans of normal subjects were acquired using Line Scan Diffusion Imag-
ing [6] on a 1.5 Tesla GE Echospeed system. The following scan parameters were
used: rectangular 22 cm FOV (256x128 image matrix, 0.86 mm by 1.72 mm in-
plane pixel size); slice thickness = 3 mm; inter-slice distance = 1 mm; receiver
bandwidth = +/-6 kHz; TE = 70 ms; TR = 80 ms (effective TR = 2500 ms);
scan time = 60 seconds/section. Between 20 and 40 axial slices were acquired
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covering the entire brain. This protocol provides diffusion data in 6 gradient
directions as well as the corresponding T2-weighted image. All gradients and
T2-weighted images are acquired simultaneously, and thus do not need any rigid
registration prior to the tensor reconstruction process. Tensors are reconstructed
as described in [17].

In addition, a synthetic dataset was created in matlab for the purpose of
demonstrating edge detection based on orientation differences. The dataset con-
sisted of a circle of nonzero diffusion tensors in a “sea” of background 0-valued
tensors. The left half of the circle contained tensors whose major eigenvectors
pointed vertically, while tensors in the right half of the circle had horizontal
principal directions. The purpose of this test data is to demonstrate the results
of the method on magnitude and orientation differences in the tensor field.

2.2 Local Image Structure

In two dimensions, local structure estimation has been used to detect and de-
scribe edges and corners [5]. The local structure in 2D is described in terms of
dominant local orientation and isotropy, where isotropy means lack of dominant
orientation. In three dimensions, local structure has been used to describe land-
marks, rotational symmetries, and motion [7,3,8,12,13]. In addition to isotropy,
it describes geometrical properties which have been used to guide the enhance-
ment and segmentation of blood vessels in volumetric angiography datasets [10,
15], bone in CT images [18], and to the analysis of white matter in DTI [17].

Let the operator
∑

a denote averaging in the local neighborhood a about the
current spatial location. Then the local structure tensor for a scalar neigborhood
can be estimated by ∑

a

∇I∇IT (1)

For multi-valued (vector) data, this formula extends straightforwardly to
∑

k

∑

a

∇Ik∇IT
k =

∑

a

∑

k

∇Ik∇IT
k (2)

where k indicates the component. For a tensor field with components Dkl the
generalized local structure is then estimated by

T =
∑

a

∑

kl

∇Dkl(∇Dkl)T (3)

2.3 Normalized Convolution

Normalized convolution (NC) was introduced as a general method for filtering
missing and uncertain data [9,19]. In NC, a signal certainty, c, is defined for
the signal. Missing data is handled by setting the signal certainty to zero. This
method can be viewed as locally solving a weighted least squares (WLS) problem,
where the weights are defined by signal certainties and a spatially localizing
mask. Here we estimate image gradients using normalized convolution.
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A local description of a signal, f , can be defined using a weighted sum of basis
functions bk. Let B denote a matrix where these basis functions are stacked as
column vectors. In NC the basis functions are spatially localized by a positive
scalar mask denoted the “applicability function,”or a. Minimizing

∥
∥
∥
∥WaWc(Bθ − f))

∥
∥
∥
∥ (4)

results in the following WLS local neighborhood model:

f0 = B(B∗WaWcB)−1B∗WaWcf, (5)

where Wa and Wc are diagonal matrices containing a and c respectively, and B∗

is the conjugate transpose of B.
The coordinates θ describing the local signal f0 = Bθ are

θ = (B∗WaWcB)−1B∗WaWcf (6)

The estimated coordinates are used in this paper to describe the gradient
from planar basis functions, b1 = 1, b2 = x, b2 = y, and b2 = z, where x,
y, z are local spatial coordinates. Since normalized convolution calculates the
coordinates of data described locally using this basis, the last three coordinates
correspond to the derivative in x, y, and z respectively.

2.4 Subvoxel Gradient Estimation

We can effectively calculate the gradient on a higher-resolution grid than the
voxel resolution, using the separation of data and certainty to our advantage.
The goal of using a higher-resolution grid is to increase the ability to detect edges
that may be close together on the original grid. To “expand” the initial grid, we
insert zero-valued tensors between data points. The operation of the rest of the
algorithm is unchanged, since those points are simply treated as uncertain in the
gradient computation. Empirically this gives improved results over a two-step
process of first interpolating the tensor data and second calculating the local
structure.

2.5 Procedure

First, for each DTI dataset local structure estimation was performed as described
above using gradients from normalized convolution. We employed the trace of the
diffusion tensors as the certainty measure. This method emphasizes tensor shape
edges over diffusion-magnitude edges and aims to suppress border effects. Then
regions of interest were expanded as described above for detection of spatially
close edges, and the local structure estimation was run on these regions.

The choice of applicability function depends on the width of the edges of
interest. Here we use a Gaussian function, and experiments were performed with
standard deviations between one and two mm, and neighborhood sizes (in voxels)
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Fig. 1. Simulated data to show unwanted bias in local interface estimation in tensor
data close to data borders. The leftmost image shows the input tensor data. The middle
image is the local structure tensor estimated without normalized convolution, i.e. with
no knowledge of data certainty. Note the unwanted responses on the border of the data,
and how this affects the estimation of the interface between the to regions close to the
border. The rightmost image shows the shape of the local structure tensors estimated
with normalized convolution. Note that the interface is now correctly estimated between
regions of tensor data and no border effects are present.

from 9 by 9 by 9 to 21 by 21 by 11. We aimed to match the variance to the size of
the features of interest and to the data resolution. The neighborhood sizes were
chosen to allow the Gaussian to fall smoothly to near zero at the boundaries. In
order to perform subvoxel gradient estimation we found that inserting one or two
zero voxels between known data points was useful. In practice, creating a larger
grid than that gave little improvement and was computationally expensive.

3 Results

Here we demonstrate the performance of the method on synthetic data and we
show selected results from diffusion tensor MRI data.

First we present an experiment showing the performance of the method on the
synthetic data described in Section 2.1. The goal is to show that the algorithm
will react only to edges that are accompanied by local confidence in the data.

Figure 1 demonstrates the result: the input tensors have both magnitude-type
and orientation-type edges, but only the orientation-type edges are detected
by the local structure estimation with normalized convolution. The certainty
outside of the “circle” is proportional to the tensor trace which is zero there, so
the method does not recognize the border of the circle. It detects only the edge
caused by differences in tensor shape.

Figure 2 shows slices through the trace of the local structure tensor at many
levels in an axial DTI dataset. Anatomical borders, including the following
list, are detected. Note the bilateral cingulate bundles running in an anterior-
posterior direction in the top middle slice. In the top right and lower left slice
the corpus callosum can be seen. The anterior and posterior limbs of the internal
capsule are seen in the lower left slice. Additionally the optic radiation and some
brainstem structure can be seen in the lower right slice.



Interface Detection in Diffusion Tensor MRI 365

Fig. 2. Trace of the local structure tensor at several levels in an axial DTI dataset.
Before filtering, the data was masked with a rough segmentation of the brain. Dark
regions inside the brain, however, are not from masking but rather are regions of low
edge magnitude.

One motivation for this work was interest in measuring the structure, if any,
that is present in gray matter regions of a diffusion tensor dataset. The obvi-
ous choice for initial investigation is the thalamus because it is home to many
nuclei which have characteristic connections to the rest of the brain, and hence
some characteristic tensor orientation. We investigated the local structure in
the thalamic region in three diffusion tensor datasets. The results were qualita-
tively similar and on some slices visually corresponded to the expected nuclear
anatomy. One such slice is shown here alongside a 3D diagram of the thalamus
and its nuclei.

4 Discussion

We have demonstrated a novel method for tissue interface detection in diffusion
tensor MRI. By using a certainty field to define the importance of each tensor
data point, it is possible to control the behavior of the edge detection, be insen-
sitive to missing data, and produce subvoxel measurements. Another feature of
this approach is that masks defining anatomical regions can be applied to the
certainty field, removing the impact of surrounding tissue structures without
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Fig. 3. DTI tissue interface detection in the region of the thalamus. The leftmost image
is an axial diffusion-weighted MRI image. The white square outlines the location of the
middle image, which displays the magnitude of the trace of the local structure tensor
in the thalamic region. The ventricles have been masked and show in black (at the top
and bottom of the image), while regions outside of the thalami with higher trace show
as white. The image on the right is a diagram of the nuclei of the thalamus, adapted
from www.phys.uni.torun.pl/ duch/ref/00-how-brain/. In the images the letters A, P,
M, and L signify anterior, posterior, medial, and lateral, respectively.

obtaining erroneous responses from the interface of the segmentation border.
This is important since these border effects may be magnitudes stronger than
the changes of interest inside the structures. Here we choose to employ the ten-
sor trace as the certainty measure, but it would be informative to compare the
behavior of the method using other measures.

The presented method is able to detect boundaries of tracts such as the optic
radiation, corpus callosum, cingulate bundles, and internal capsule. In addition
preliminary results demonstrate some detectable structure in the gray matter
region of the thalamus, but it is not clear at this point that these interfaces
represent borders between thalamic nuclei.
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