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Abstract. Multivariate statistical learning techniques that analyse all voxels si-
multaneously have been used to classify and describe MR brain images. Most
of these techniques have overcome the difficulty of dealing with the inherent
high dimensionality of 3D brain image data by using pre-processed segmented
images or a number of specific features. However, an intuitive way of mapping
the classification results back into the original image domain for further inter-
pretation remains challenging. In this paper, we introduce the idea of using
Principal Components Analysis (PCA) plus the maximum uncertainty Linear
Discriminant Analysis (LDA) based approach to classify and analyse magnetic
resonance (MR) images of the brain. It avoids the computation costs inherent
in commonly used optimisation processes, resulting in a simple and efficient
implementation for the maximisation and interpretation of the Fisher’s classifi-
cation results. In order to demonstrate the effectiveness of the approach, we
have used two MR brain data sets. The first contains images of 17 schizo-
phrenic patients and 5 controls, and the second is composed of brain images of
12 preterm infants at term equivalent age and 12 term controls. The results in-
dicate that the two-stage linear classifier not only makes clear the statistical dif-
ferences between the control and patient samples, but also provides a simple
method of analysing the results for further medical research.

1 Introduction

Multivariate pattern recognition methods have been used to classify and describe
morphological and anatomical structures of MR brain images [5, 8, 17]. Most of
these approaches analyse all voxels simultaneously, and are based on statistical
learning techniques applied to either segmented images or a number of features pre-
selected from specific image decomposition approaches. Although such pre-
processing strategies have overcome the difficulty of dealing with the inherent high
dimensionality of 3D brain image data, an intuitive way of mapping the classification
results back into the original image domain for further interpretation has remained an
issue.
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In this paper, we describe a new framework for classifying and analysing MR
brain images. It is essentially a linear two-stage dimensionality reduction classifier.
First the MR brain images from the original vector space are projected to a lower
dimensional space using the well-known PCA and then a maximum uncertainty LDA-
based approach is applied next to find the best linear discriminant features on that
PCA subspace. The proposed LDA method is based on the maximum entropy co-
variance selection method developed to improve quadratic classification performance
on limited sample size problems [15].

In order to demonstrate the effectiveness of the approach, we have used two MR
brain data sets. The first contains images of 17 schizophrenic patients and 5 controls;
and the second is composed of brain images of 12 preterm infants at term equivalent
age (mean post-menstrual age [PMA] at birth 29 weeks, mean PMA at MR image
acquisition 41 weeks), and 12 term born controls (mean PMA at birth 40.57 weeks,
mean time of image acquisition day 4 of postnatal life). The results indicate that the
two-stage linear classifier not only makes clear the statistical differences between the
control and patient samples, but also provides a simple method of analysing the re-
sults for further medical research.

2 Principal Component Analysis (PCA)

Principal Component Analysis has been used successfully as an intermediate dimen-
sionality reduction step in several image recognition problems. It is a feature extrac-
tion procedure concerned with explaining the covariance structure of a set of vari-
ables through a small number of linear combinations of these variables. In other
words, PCA generates a set of orthonomal basis vectors, known as principal compo-
nents (or most expressive features [12]), that minimizes the mean square reconstruc-
tion error and describes major variations in the whole training set considered [4]. For
this representation to have good generalisation ability and make sense in classification
problems, we assume implicitly that the distributions of each class are separated by
their corresponding mean differences.

However, there is always the question of how many principal components to retain
in order to reduce the dimensionality of the original training sample. Although there
is no definitive answer to this question for general classifiers, Yang and Yang [16]
have proved recently that the number of principal components to retain for a best
LDA performance should be equal to the rank of the total covariance matrix com-
posed of all the training patterns.

3 Linear Discriminant Analysis (LDA)
The primary purpose of the Linear Discriminant Analysis is to separate samples of

distinct groups by maximising their between-class separability while minimising their
within-class variability.
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Let the between-class scatter matrix S, and within-class scatter matrix S,, be de-
fined as

g N

g
Sy =Y N,E-DF-0" and 5, =D (x;-%)x,; -5, (1

P =1 j=l

where x; ; is the n-dimensional pattern j from class 7z;, N; is the number of train-
ing patterns from class 7;, and g is the total number of classes or groups. The vec-
tor X; and matrix §; are respectively the unbiased sample mean and sample covari-
ance matrix of class 7; [4]. The grand mean vector X is given by

3 1 g _ 1 g N
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=l j=1
where N is the total number of samples, that is, N =N, + N, + ---+Ng . It is im-

portant to note that the within-class scatter matrix S,, defined in (1) is essentially the

standard pooled covariance matrix multiplied by the scalar (N — g), that is

8
S, =D (N, =D)S; =(N-g)$,,. 3)
i=1

The main objective of LDA is to find a projection matrix P, that maximizes the

ratio of the determinant of the between-class scatter matrix to the determinant of the
within-class scatter matrix (Fisher’s criterion), that is

| P"s, P
P, =argmax

P @

It has been proved [4] that if S, is a non-singular matrix then the Fisher’s crite-

rion is maximised when the column vectors of the projection matrix B, are the

eigenvectors of § V_VIS » with at most g —1 nonzero corresponding eigenvalues. This is

the standard LDA procedure.

However, the performance of the standard LDA can be seriously degraded if there
are only a limited number of total training observations N compared to the dimen-
sion of the feature space n. Since the within-class scatter matrix S, is a function of
(N —g) or less linearly independent vectors, its rank is (N —g) or less. Therefore,
SM/
if N isnot at least five to ten times (n+ g) [7].

is a singular matrix if N is less than (n+ g), or, analogously, might be unstable
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4 The Maximum Uncertainty LDA-Based Approach

In order to avoid the singularity and instability critical issues of the within-class scat-
ter matrix S,, when LDA is applied in limited sample and high dimensional prob-
lems, we have proposed a new LDA approach based on a straightforward stabilisation
method for the §,, matrix [14].

4.1 Related Methods

In the past, a number of researchers [1, 2, 9, 10] have proposed a modification in
LDA that makes the problem mathematically feasible and increases the LDA stability
when the within-class scatter matrix S,, has small or zero eigenvalues.

The idea is to replace the pooled covariance matrix S, of the scatter matrix S,

(equation (3)) with a ridge-like covariance estimate of the form
S,(k)=S,+kl, 5)

where I isthe n by n identity matrix and k 20. However, a combination of S,

and a multiple of the identity matrix / as described in equation (5) expands all the
S, eigenvalues, independently of whether these eigenvalues are either null, small, or

even large [14].

Other researchers have imposed regularisation methods to overcome the singular-
ity and instability in sample based covariance estimation, especially to improve the
Bayes Plug-in classification performance [3, 6, 13]. According to these regularisation
methods, the ill posed or poorly estimated S, could be replaced with a convex com-

bination matrix S » () of the form

S,(N=0-S,+(AI, 6)

where the shrinkage parameter y takes on values 0<y <1 and could be selected to

maximise the leave-one-out classification accuracy. The identity matrix multiplier
would be given by the average eigenvalue 4 of S, calculated as

c (S, )
_1 z tr o

where the notation “tr” denotes the trace of a matrix.

The regularisation idea described in equation (6) has the effect of decreasing the
larger eigenvalues and increasing the smaller ones, thereby counteracting the biasing
inherent in sample-based estimation of eigenvalues [3]. However, such approach
would be computationally expensive to be used in practice because it requires the
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calculation of the eigenvalues and eigenvectors of an n by n matrix for each training
observation of all the classes in order to find the best mixing parameter ¥ .

4.2 The Proposed Method

The proposed method considers the issue of stabilising the S, estimate with a multi-
ple of the identity matrix by selecting the largest dispersions regarding the §, aver-

age eigenvalue.

Since the estimation errors of the non-dominant or small eigenvalues are much
greater than those of the dominant or large eigenvalues [4], we have used the follow-
ing selection algorithm [14] to expand only the smaller and consequently less reliable
eigenvalues of §,, and keep most of its larger eigenvalues unchanged:

i. Find the @ eigenvectors and A eigenvalues of S, where S, = S, /IN —gl;
ii. Calculate the S, average eigenvalue A using equation (7);

iii. Form a new matrix of eigenvalues based on the following largest dispersion
values

A= diag[max(4,, ), max(4,, Ao, max(4,, B (8a)
iv. Form the modified within-class scatter matrix
S, =5,(N-g)=(@AD )N -g). (8b)

The proposed LDA is constructed by replacing S,, with S, in the Fisher’s crite-
rion formula described in equation (4). It is a straightforward method that overcomes
both the singularity and instability of the within-class scatter matrix S, when LDA is
applied in small sample and high dimensional problems. It also avoids the computa-
tional costs inherent to the aforementioned shrinkage processes.

5 Experimental Results

In order to demonstrate the effectiveness of the approach, we have used two MR
brain data sets. The first contains images of 17 schizophrenic patients and 5 controls
and the second is composed of brain images of 12 preterm infants at term equivalent
age and 12 term controls.

Before registration, the MR brain images of each subject in the schizophrenia da-
taset have been stripped of extra-cranial tissue [18]. All MR images are then regis-
tered to the MNI brainweb atlas using the non-rigid registration described in [11].
Finally, the registered images have been resampled with a voxel size of 1x1x1 mm’.
After registration and resampling the schizophrenia dataset consists of 181x217x181
= 7,109,137 voxels. An analogous procedure has been adopted for the infant images
consisting of 256x256x114 = 7,471,104 voxels.
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Throughout all the experiments, we have used for the schizophrenia analysis a total
of 13 training examples, i.e. all the 5 controls and 8 schizophrenia patients randomly
selected. The remaining 9 schizophrenia subjects have been used for classification
testing. The infant training and test sets have been composed of 8 and 4 images re-
spectively. For instance, the PCA schizophrenia transformation matrix is composed of
7,109,137 (= number of voxels) rows and 12 (= total of training samples — 1) col-
umns, where each column corresponds to a principal component. The LDA trans-
formation matrix is composed of 12 rows and 1 (= number of groups — 1) column.
Using these PCA plus LDA transformation matrices, every original image composed
of 7,109,137 voxels has been reduced to a one-dimension vector on the final (or most
discriminant [12]) feature space.

Figures 1 and 2 show the projected schizophrenia and infant data on the most ex-
pressive and discriminant features. White circles and squares represent the training
sample of the controls and schizophrenia (or infant) examples used. The black circles
and squares describe the corresponding subjects selected for testing. As can be seen,
although the two and three most expressive features explain more than 50% of the
total sample variance, the classification superiority of the two-stage dimensionality
reduction technique based on a maximum uncertainty LDA approach is clear in both
applications.

Another result revealed by these experiments is related to the linear discriminant
feature found by the maximum uncertainty approach. In fact, this one-dimensional
vector corresponds to a hyper-plane on the original space which direction describes
statistically the most discriminant differences between the controls and the patients
images used for training. A procedure of moving along this most discriminant feature
and mapping back into the image domain might provide an intuitive interpretation of
the results.

Figures 3 and 4 show respectively the schizophrenia and infant five points chosen
from left to right on the most discriminant feature space and projected back into the
image domain using the corresponding transpose of the LDA and PCA linear trans-
formations previously computed. In Figure 3, although the differences are very sub-
tle, the visual analysis of the example sagittal, axial, and coronal slices suggests that
the regions of the normal brains are slightly better represented than the ones observed
on the schizophrenia images. In looking at the preterm analysis illustrated in Figure 4,
there is enlargement of the lateral ventricular system in the preterm infants at term
equivalent age compared to the term control group. This is a common finding at term
equivalent age among infants who have been born prematurely [19,20].

6 Conclusion

In this paper, we introduced the idea of using PCA plus the maximum uncertainty
LDA-based approach to classify and analyse MR brain images. It avoids the compu-
tation costs inherent in the commonly used optimisation processes, resulting in a
simple and efficient implementation for the maximisation and interpretation of the
Fisher’s criterion.
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Fig. 1. Schizophrenia sample data projected on the most expressive and discriminant” features.

W b Exprassve Fasires i-339%) Hus. Crprostive Moa.aes | G540

[ | a0

a i -
O | ] e
0 :

Fig. 2. Infant sample data projected on the most expressive and discriminant” features.

" The vertical value of each point is illustrative only and represents its corresponding index in the sample

set.
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Fig. 3. Visual analysis of the schizophrenia most discriminant feature.
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Fig. 4. Visual analysis of the preterm most discriminant feature.

The two-stage dimensionality reduction technique is a straightforward approach
that considers the issue of stabilising the ill posed or poorly estimated within-class
scatter matrix with a multiple of the identity matrix. Although the experiments car-
ried out were based on small MR data sets, we believe that such recent multivariate
statistical advances for targeting limited sample and high dimensional problems can
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provide a new framework of characterising and analysing the high complexity of MR
brain images.
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