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Abstract. In MRI, image intensity inhomogeneity is an adverse phenomenon
that increases inter-tissue overlapping and hampers quantitative analysis. This
study provides a powerful fully automated intensity inhomogeneity correction
method that makes no a prior assumptions on the image intensity distribution
and is able to correct intensity inhomogeneity with high dynamics. Besides
using intensity features, as in most of the existing methods, spatial image
features are also incorporated into the correction algorithm. A force is
computed in each image point so that distribution of multiple features will
shrink in the direction of intensity feature. Extensive regularization of those
forces produces smooth inhomogeneity correction estimate, which is gradually
improved in an iterative correction framework. The method was tested on
simulated and real MR images for which gold standard segmentations were
available. The results showed that the method was successful on uniform as
well as on low and highly dynamic intensity uniformity images.

1 Introduction

Image intensity inhomogeneity, also referred to as bias field, intensity nonuniformity
or shading, is perceived as a smooth intensity variation across the image. In MRI,
intensity inhomogeneity may be caused by a number of factors, such as poor radio
frequency coil uniformity, static field inhomogeneity, radio frequency penetration,
gradient-driven eddy currents, and overall patient anatomy and position [1, 2]. The
problem is especially cumbersome because inhomogeneity depends on the measured
object and therefore cannot be eliminated or reduced by scanner calibration. A
common solution is to conduct retrospective inhomogeneity correction, which is a
necessary pre-processing step in many automatic image analysis tasks, e.g. in
segmentation or registration, and especially if quantitative analysis is the final goal.

The most intuitive approach for intensity inhomogeneity correction is image
smoothing or homomorphic filtering [3, 4, 5]. These methods are based on the
assumption that intensity inhomogeneity is a low frequency signal which can be
suppressed by high pass filters. However, since the imaged objects themselves usually
contain low frequencies, filtering methods often fail to produce meaningful
correction. Iterative optimisation that maximises the frequency content of the
distribution of tissue intensity has been proposed in [6]. Dawant et al. [7] manually
selected some points inside white matter and estimated the bias field by fitting splines
to the intensities of these points. Styner et al. [8] modelled each tissue simply by its
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mean intensity value. A parametric bias field is fitted to the image in an iterative
process, which requires initialisation in a form of class means and special masks that
have to be defined for each type of images. Information minimisation technique [9]
has proved to be very robust and accurate approach in which bias field is modelled by
polynomials and applied to acquired image in an optimisation process. The method
based on fuzzy C-means [10] minimises the sum of class membership function and
the first and second order regularisation terms that ensure the smooth bias field.
Ahmed et al. [11] used a fuzzy C-means algorithm and combined bias field with
adaptive segmentation. Other segmentation-based methods use expectation-
maximisation algorithm to compute the bias field from the residue image by either
spatial filtering [12] or by weighted least-squares fit of the polynomial bias model
[13]. These methods interleave classification and bias field estimation [12] and also
the estimation of class-conditional intensity distribution [13] but require initialisation,
which is not trivial and practical. Besides, the assumption on normality of intensity
distribution of individual tissues may often not be valid, especially when correcting
pathological data.

In this paper we propose a novel fully automated bias correction method that
makes no assumption on the distribution of image intensities and provide non-
parametric correction. As most of the existing methods, the method is based on
intensity features but also additional spatial image features are incorporated to
improve bias correction and to make it more dynamic.

2 Method

Corruption of intensity homogeneity in MR imaging is a multiplicative phenomenon
that is most commonly described by the following model,

( ) ( ) ( ) ( )u x v x s x n x= + , (1)

in which the acquired image u(x) is a combination of the uncorrupted image v(x),
corrupted by the multiplicative bias field s(x), and statistically independent noise n(x).
The problem of correction of intensity inhomogeneity is to estimate v(x), given the
acquired image u(x).

The proposed method can be outlined in four steps:

S1. Calculate probability distribution p(.) of image features
S2. Estimate the forces that will shrink p(.) in the direction of intensity feature
S3. Estimate the bias correction field
S4. Perform partial correction and stop if predefined number of iterations is reached.

Otherwise go to S1.

The above steps are described in more detail in the following sections.
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2.1 Probability Distribution Calculation

Probability distribution of image features p(i,d) is determined by binning the
intensities (i) and the corresponding second spatial derivatives (d) into a discrete two-
dimensional feature space. Second derivatives are obtained by convoluting the
original image by the Laplacian operator, which was implemented as a 3×3 kernel and
applied separately for each slice.

The purpose of using additional image features in a form of second derivatives is
to additionally separate tissue clusters in the feature space [14]. This is especially
important when image intensities are not enough discriminating features, i.e. when
intensity distributions of distinct tissues overlap significantly. This adverse and
unfortunately quite frequent phenomenon in MRI is the main source of error in
segmentation and inhomogeneity correction methods.

2.2 Force Estimation

In order to obtain an estimation of forces Fx for each image point x that will shrink the
probability distribution p(i,d) of an image u(x) in the direction of intensity feature i,
we first define a global energy, say E, as a measure of probability distribution
dispersion. For this purpose we use the Shannon entropy H,

,

( ( )) ( , ) log ( , )
i d

E H u x p i d p i d= = −∑ .  (2)

The entropy H is usually computed as above by summation of the uncertainties log
p(i,d) in the feature space domain but since we are seeking a contribution of each
image point x to the global entropy we will compute the entropy alternatively by
summation of the uncertainties over the image domain x of a size X,

1
( ( )) log ( ( ), ( ))

x

E H u x p i x d x
X

= = − ∑ . (3)

We can now derive point energy, say Ex, which is the contribution of each image point
x to the global energy E,

1
log ( ( ), ( ))

x
E p i x d x

X
= − . (4)

Ex is, therefore, a contribution of image point x to the dispersion of probability
distribution p(i,d). Corresponding point force Fx that will shrink the probability
distribution p(i,d) in the direction of intensity feature i can, thus, be obtained by
deriving the point energy Ex over the intensities and changing the sign to plus,

( )1
log ( ( ), ( ))

x
F p i x d x

X i

∂
=

∂
. (5)

Forces Fx are computed by a Sobel operator in the feature space for all feature pairs
(i,d) and then mapped to the points with corresponding features in the image space.
The obtained forces can be viewed upon as votes for point intensity changes that
would result in less disperse probability distribution.
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2.3 Bias Correction Estimation

To control the speed of the iterative bias correction and to make it independent of the
shape of feature probability distributions, point forces Fx are first normalized in
magnitude. The normalized forces are then regularized in the image domain by a
sufficiently wide Gaussian kernel g. This yields smooth field of normalized forces
that is used to derive an estimation of multiplicative bias correction field s-1(x),

1 ( ) 1 *
(| |)

x

x

F
s x f g
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 
 

, (6)

where µ(|Fx|) denotes mean of absolute force, f a predefined magnitude of forces, and
* a convolution. A degree of smoothness of bias correction field s-1(x) is determined
by the standard deviation σg of the Gaussian kernel g.

2.4 Partial Correction

Partial bias correction is performed in each iteration, say nth, by applying bias
correction field s-1(x) to the input image un(x) so that mean intensity (brightness) and
standard deviation (contrast) of the input image are preserved,

1 0

1 0 1
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The size of partial correction depends on the predefined force magnitude f and the
standard deviation σg that controls the regularization step, i.e. the smoothness of the
bias correction field.

3 Results

Removal of background in MRI images is essential in nearly all methods because
background represents air voxels that are not corrupted by the multiplicative bias field
and would therefore hamper inhomogeneity correction of the neighbouring tissue
voxels. To mask out dark air voxels we remove all voxels with intensities smaller than
the predefined intensity threshold, which is the simplest and most commonly used
approach [9, 6, 13].

To demonstrate and evaluate the performance of proposed method, we applied it
to several simulated and real magnetic resonance images of the human brain.

In the first set of images, variations of digital brain phantom acquired from
Brainweb-MRI Simulator [15] were considered: six pairs of volumes with 3%
Gaussian noise, including T1-, T2- and PD-modalities, normal and Multiple Sclerosis
(MS) lesion cases. Each pair comprised shading free volume and its corrupted version
with 40% intensity inhomogeneity. The resolutions were 181×217×181 voxels, sized
1×1×1mm3.

In the second set of images, extra bias fields with higher degree of dynamics were
added to the images from the first set. Bias fields were generated by cubic B-spline
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interpolation between equally spaced nodes at every 50 voxels in each direction. Node
values (multiplication factors) were randomly distributed on the interval between 0.8
and 1.2.

Third set consisted of six volumes, three of a normal volunteer (256×256×25
voxels 8bit) and three of a tumour patient (256×256×20 voxels, 8bit, slice thickness
of 5mm, in plane resolution of 1×1mm). White and grey matter manual segmentations
were available [16].

Volumes of the second set were used to show the capability of our method to
successfully cope with bias fields, which have high degree of dynamics. Changing the
size of the regularization kernel has a direct impact on the estimated fields. Reducing
kernel size makes the fields more locally flexible, but looses a part of its
regularization functionality. The effect of regularization kernel size on the shape of
reconstructed bias field is shown in Fig. 1. Image (a) indicates the position of the bias
field profiles shown on the images (b) and (c). Solid lines indicate generated bias field
and broken lines the corresponding reconstruction after inhomogeneity correction.
Standard deviations of the regularization kernels were set to 30 mm in case (b) and to
90 mm in case (c). In the first case high correlation between applied and reconstructed
bias fields was found, while the in second case the correlation was poor due to too
high regularization.

   
 
 
 
 
 
 
 
 

 
a     b      c  

Fig. 1. Image (a) shows the profile position, (b) and (c) the applied (solid curve) and
reconstructed bias field (broken curve) for the regularization of 30 and 90 mm, respectively

Quantitative evaluation was performed by computing the coefficient of joint
variations (cjv) [9] between grey (GM) and white matter (WM) of the brain, which
were segmented in all three sets of images. Cjv is computed from standard deviations
(σ) and mean values (µ) of the voxel intensities belonging to the two matters,

( ) ( )
( , )

( ) ( )

GM WM
cjv GM WM

GM WM

σ σ
µ µ

+
=

−
. (8)

The measure is independent of the changes in contrast and brightness and measures
the intensity inhomogeneity in the sense of minimizing the intensity overlapping
between two tissues.

In Table 1 the results of inhomogeneity correction in the first set of images are
given. The four columns describe the volume properties (modality, bias field and
pathology) and starting, final and ideal cjv values. The method successfully corrected
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the first six volumes and did not induce any artefacts into the second half of the
inhomogeneity free volumes.

Table 1. Coefficient of joint variations of grey and white matter for the first dataset

Volume  cjv start[%] cjv end[%] cjv ideal[%]
T1  40% 69.3 51.7 51.6
T2  40% 106.4 83.4 83.2
PD 40% 163.0 62.8 64.9
T1  40% MS lesions 68.0 51.0 50.9
T2  40% MS lesions 123.8 74.5 74.9
PD 40% MS lesions 195.6 64.9 66.9
T1  0% 51.6 51.9 51.6
T2  0% 83.2 83.4 83.2
PD 0% 64.9 65.5 64.9
T1  0% MS lesions 50.9 51.2 50.9
T2  0% MS lesions 74.9 75.0 74.9
PD 0% MS lesions 66.9 67.7 66.9

Table 2. Coefficient of joint variations of grey and white matter for the second dataset

Volume   (df – dynamic field)  cjv start[%] cjv end[%] cjv ideal[%]
T1  40%  × df 86.8 51.7 51.6
T2  40%  × df 107.7 84.5 83.2
PD 40%  × df 228.5 64.7 64.9
T1  40% MS lesions × df 84.8 51.0 50.9
T2  40% MS lesions × df 128.1 75.8 74.9
PD 40% MS lesions × df 276.3 66.6 66.9
T1  0%  × df 78.5 51.9 51.6
T2  0%  × df 93.1 84.7 83.2
PD 0%  × df 125.6 67.2 64.9
T1  0% MS lesions × df 76.6 51.2 50.9
T2  0% MS lesions × df 98.7 76.6 74.9
PD 0% MS lesions × df 141.8 69.4 66.9

The results of inhomogeneity correction in the second set of images are given in
Table 2. The proposed method successfully corrected the inhomogeneities with high
dynamics. Final cjv values did not match the ideal ones as perfectly as in the first set,
because the induced bias fields could not be exactly reconstructed by Gaussian
convolution. Parameters were fixed for all experiments with f = 0.02, σg = 30 mm,
number of iterations was 30. Size of the histogram was 256 (i) by 400 (d) bins.

Table 3 shows the results on real MR volumes of the third set. The volumes
without intensity inhomogeneity were not known so that the extent of the achieved
correction cannot be determined. The Last column states relative change of cjv value,
where it can be seen that improvement was achieved in all volumes.
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Table 3. Coefficient of joint variations of grey and white matter for the real volumes

Volume  cjv start[%] cjv end[%] cjv change[%]
T1  normal 138.0 132.6 -3.9
T2  normal 90.7 89.0 -1.9
PD normal 77.8 70.4 -9.6
T1  tumour 175.7 169.4 -3.6
T2  tumour 169.3 159.6 -5.7
PD tumour 133.8 117.3 -12.4

4 Conclusion

The proposed fully automated bias correction method makes no assumption on the
distribution of image intensities and provides non-parametric correction. No a priori
knowledge such as digital brain atlases or reference points is needed. Spatial image
features are incorporated in addition to commonly used intensity features, which give
the method enough information to successfully correct even highly dynamic bias
fields.

The method performed well on all tested images. The second set of images with
artificially generated dynamic bias fields showed a possible advantage over many
other methods that incorporate more rigid correction models. The performance of the
proposed method depends on the overlap between the probability distributions of
image features, which should be small. The proposed correction framework, however,
enables straightforward incorporation of additional image features that could yield
additional discriminative power and improve the correction performance on the
images of poor quality.
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