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Abstract. The performance of automatic segmentation algorithms often de-
pends critically upon a number of parameters intrinsic to the algorithm. Appro-
priate setting of these parameters is a pre-requisite for successful segmentation,
and yet may be difficult for users to achieve. We propose here a novel algo-
rithm for the automatic selection of optimal parameters for medical image seg-
mentation. Our algorithm makes use of STAPLE (Simultaneous Truth and Per-
formance Level Estimation), a previously described and validated algorithm for
automatically identifying a reference standard by which to assess segmentation
generators. We execute a set of independent automated segmentation algo-
rithms with initial parameter settings, on a set of images from any clinical ap-
plication under consideration, estimate a reference standard from the segmenta-
tion results using STAPLE, and then identify the parameter settings for each
algorithm that maximizes the quality of the segmentation generator result with
respect to the reference standard. The process of estimating a reference standard
and estimating the optimal parameter settings is iterated to convergence.

1 Introduction

The analysis of medical images is a critical process, enabling applications ranging
from fundamental neuroscience, to objective evaluation of interventions and drug
treatments, to monitoring, navigation and assessment of image guided therapy. Seg-
mentation is the key process by which raw image acquisitions are interpreted. Inter-
active segmentation is fraught with intra-rater and inter-rater variability which limits
its accuracy, while also being costly and time-consuming. Automatic segmentation
holds out the potential of dramatically increased precision, and reduction in time and
expense. However, the performance of automatic segmentation algorithms often de-
pends critically upon a number of parameters intrinsic to the algorithm. Such pa-
rameters may control assumptions regarding tissue intensity characteristics, spatial
homogeneity constraints, boundary smoothness or curvature characteristics or other
prior information. Appropriate setting of these parameters by users is often a pre-
requisite for successful segmentation, and yet may be difficult for users to achieve
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due to the potentially nonlinear effects and interactions between different parameter
settings which are challenging for human operators to optimize over. Furthermore,
the selection of parameters based on a synthetic phantom may not be appropriate for
clinical applications since the normal and pathological appearance of subjects from
any particular clinical population may be quite different from that readily captured in
a phantom.

To overcome these problems, we present here an approach to estimate the true
segmentation from several automatic or semi-automatic segmentation algorithms and
optimize their free parameters for a category of medical images. The ground-truth
estimation is done by an Expectation-Maximization algorithm, called STAPLE (Si-
multaneous Truth and Performance Level Estimation), presented in [1]. In that work,
a collection of expert-segmented images was given to STAPLE and a probabilistic
estimate of the true segmentation was computed along with the performance level
measurement of each expert. The idea here is to employ this method in order to ob-
tain the optimal values for the parameters of different automated segmentation algo-
rithms and to evaluate their performance compared with the estimated true segmenta-
tion. This is significantly important in medical application such as neuroscience and
surgical planning, since the users often face difficulty to find good parameter settings
and yet their results are utilized for the research studies and disease therapies.

The paper is organized as follows: In Section 2, we outline our evaluation and pa-
rameter optimization methodology. The ground-truth estimation, the optimization
algorithm, and the assessment metric used in this study are described in this section.
The optimization and evaluation of the four algorithms for brain tissue segmentation
as well as the obtained results are presented in Section 3, and finally the conclusion
and further work are brought in Section 4.

2 Methods

The proposed method is an iterative process with two main stages: ground-truth esti-
mation and parameter setting which can be performed on a specific case or a collec-
tion of subjects:

a) Optimization on One Subject:

To find the best parameters for each subject, we first need to estimate a ground truth
and performance level on a training dataset segmented using the algorithms under
study. In this stage, the segmented images from different algorithms are given to
STAPLE which computes simultaneously a probabilistic estimate of the true seg-
mentation and a measure of the performance level represented by each segmentation
algorithm. Then, we optimize the performance of each algorithm with respect to the
estimated ground truth. Given a set of algorithms with optimized parameters, we re-
compute the ground truth and re-optimize the parameters until the ground truth esti-
mate converges. At the end of this stage we have the optimized segmentation algo-
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rithms, an estimated true segmentation, and the levels of performance for each algo-
rithm on one experimental data.

b) Optimization on a Collection of Subjects:

The goal of this step would be to expand the capability of the approach to optimize
parameters of each algorithm across N training subjects, for N > 1.This is achieved by
changing the quality measure to be the mean of the performance level across all
cases. Each optimization step is performed based on the impact of the parameter
across the N cases rather than just one case. This would give us optimized parameters
for a set of subjects, finding a tradeoff in settings across all of the subjects. It might
do worse than possible if we optimized just for one case, but on average leads to a
better result over all the subjects.

In fact, our approach is technically an instance of a generalized expectation maxi-
mization algorithm, where we have extra parameters (the segmentation algorithm
parameters) for which no closed form maximization exists and so an approximate
local maximization strategy is used.

2.1 STAPLE

STAPLE takes a collection of segmentations of an image, and constructs a probabil-
istic estimate of the true segmentation and a measure of the performance level of each
segmentation generator [1]. This algorithm is an instance of the Expectation-
Maximization (EM) in which the segmentation decision at each voxel is directly ob-
servable, the hidden true segmentation is a binary variable for each voxel, and the
performance level, achieved by each segmentation method is represented by sensitiv-
ity and specificity parameters [1]. At each EM iteration, first, the hidden true seg-
mentation variables are replaced with their conditional probabilities and are estimated
given the input segmentation and a previous estimate of the performance level. In the
second step, the performance parameters are updated. This process is iterated until the
convergence is reached. STAPLE is also capable of considering several types of spa-
tial constrains, including a statistical atlas of prior probabilities for the distribution of
the structure of interest which we make use of it in our approach.

2.2 Performance Metric

The “ideal” performance point represents true positive rate (7P) of 1 and false posi-
tive rate (FP) of 0. With the TP and FP obtained by comparing each segmentation
with the estimated ground truth, a performance metric can be defined based on the
weighted Euclidean distance from this point:

Performance = 1—\/wz(1—TP)2 +(1-w)’FP? M

The weighting factor, w, is set equal to the foreground prevalence. When the fore-
ground occupies a small portion of the image (small w), TP is very sensitive to the
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number of foreground errors, while FP is relatively insensitive to the errors in the
background. Weighting the errors makes the overall error almost equally sensitive to
the errors in the foreground and background.

2.3 Optimization Method

Numerous optimization algorithms exist in the literature and each might be invoked
in our application provided that it is able to find the global optimum and can be ap-
plied to discrete optimization problems.

Here, we make use of simultaneous perturbation stochastic approximation (SPSA)
method [2]. It requires only two objective function measurements per iteration re-
gardless of the dimension of the optimization problem. These measurements are made
by simultaneously varying in a proper random fashion of all the parameters. The
random shift of parameters is controlled by a set of SPSA algorithm coefficients
which must be set for each algorithm under-optimization. The error function here, is
1-Performance computed for each segmentation from equation (1). Note that the
behavior of the error in terms of the parameter should be known in order to correctly
set the acceptable range of parameters.

3 Experiments and Results

We have applied our method to the problem of tissue segmentation of human’s brain,
which has received continues attention in medical image analysis, focusing on white
mat classification.

3.1 Human Brain Tissue Segmentation Algorithms

We considered four algorithms including two research segmentation algorithms and
two well-known packages which are briefly described in the following:

SPM - SPM uses a modified maximum likelihood “mixture model” algorithm for its
segmentation, in which each voxel is assigned a probability of belonging to each of
the given clusters [3]. Assuming a normal distribution for the intensity of the voxels
belonging to each cluster, the distribution parameters are computed. These parameters
are then combined with a given priority map to update the membership probabilities.
The smoothing parameter applied to affine registration is considered as the parameter
to be optmimally set.

FSL - The segmentation algorithm in this package is based on a hidden Markov
random field (HMRF) model [4]. It starts with an initial estimation step to obtain
initial tissue parameters and classification, followed by a three-step EM process
which updates the class labels, tissue parameters and bias field iteratively. During the
teratn MRF-MAP (maximum a posteriori) approach is used to estimate class labels,
mp is applied to estimate the bias field, and the tissue parameters are estimated by
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maximum likelihood (ML). We used the MRF neighborhood beta value as the con-
trolling parameter for optimization.

k-NN Classification — The k-Nearest Neighbor (k-NN) classification rule is a tech-
nique for nonparametric supervised pattern classification. Given a training data set
consisting of N prototype patterns and the corresponding correct classification of each
prototype into one of C classes, a pattern of unknown class, is classified as class C if
most of the closest prototype patterns are from class C. The algorithm we used is a
fast implementation of this basic idea[5]. The number of training data patterns, their
position and K, the number of nearest neighbors to consider, are the controlling fac-
tors of this method which the latter, K is considered here as the parameter to be opti-
mized.

EM - This method is an adaptive segmentation, which uses an Expectation Maximi-
zation (EM) algorithm [6]. It simultaneously labels and estimates the intensity
inhmogeneities artifacts in the image. It uses an iterated moving average low-pass
filter in bias field estimation which its width is considered as the parameter for our
study. We set the number of EM iteration steps to 10 according to [6].

3.2 Training and Test Data

We applied the approach on five sets of T1-weighted MR brain images with resolu-
tion of 0.9375x0.9375x1.3 mm’, each consists of 124 slices. The images were first
filtered by a multi-directional flux-diffusion filter, implemented in 3D Slicer [7].
Next, the non-brain tissues are removed from the images by brain extraction tool
(BET) in the FSL package which uses a deformable model to fit the brain’s surface
[8]. The average of the semi-automatic segmentation of 82 cases was used as the atlas
for STAPLE.

3.3 Optimization Results

In Table I, the optimization results for each of the four algorithms are shown. In the
first step (iteration 0), each algorithm has been run with the default value of its pa-
rameter. With the estimated ground-truth in Iteration i, each algorithm goes through
the optimization loop and the obtained optimal values are set for the next ground-
truth estimation (iteration i+1). The iteration stops when the parameters converge.
Once the optimized parameters are found for one case randomly selected from the
pool of datasets, we use these values as the initial parameter setting for optimizing on
a collection of datasets. The k-NN algorithm is an exception to this, as discussed later.
The sensitivity (p) and specificity (g) obtained from STAPLE, are given in Table I as
the performance measures.

EM - As seen in Table I, this algorithm gains a high performance score from
STAPLE. The error rate versus its parameter, i.e. the width of the low-pass filter for
bias field estimation in pixels, is shown in Fig. 1(a) for one of the cases under study.
The minimum error corresponds to relatively large value of 90 which reflects the low
RF coil artifact in the image. A similar trend was observed for other cases.
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Table 1. The sensitivity (p) and specificity (g) of each segmentation algorithms are given for
the iterations of optimization process. In Iteration 0, STAPLE runs given the four segmenta-
tions extracted by each method with the corresponding initial parameters. The new parameters
are obtained with respect to the estimated ground-truth in iteration 0. In Iteration 1, the
STAPLE runs with the obtained parameters and a new ground-truth and (p,q) pairs are estima-
ted. No changes in parameters occurs in the next optimization, so we stop. Note that for opti-
mization on five cases, the mean and the standard deviation of (p,q)’s over all cases are given
in the Table.

Optimization on one case Optimization on five cases
Alg. Iter. O Iter. 1 Iter. 0 Iter. 1

Window Len. 8 12 12 10
SPM |p 0.6866 0.6843 0.5912+0.1085 0.6014+0.0999
q 0.9996 0.9995 0.9943+0.0073 0.9966+0.0062

MREF 0.3 0.2 0.2 0.1
FSL |p 0.9017 0.9135 0.8149+0.1664 0.8498+0.1892
q 0.9990 0.9983 0.9960+0.0068 0.9955+0.0063

K 9 6 15 12
k-NN | p 0.9983 0.9554 0.9497+0.0480 0.9574+0.0482
q 0.9937 0.9988 0.9986+0.0020 0.9987+0.0020

Filter Width 31 90 90 90
EM |p 0.9000 0.9899 0.9890+0.0164 0.9857+0.0191
q 1.0000 0.9990 0.9955+0.0043 0.9951+0.0052

k-NN - This algorithm also gets a good performance score. However the resulting
optimum K, number of neighbors to be considered, is smaller than its default value 9
which is inconsistent with the fact that the error rate in k&-NN method is inversely
proportional to K. This can be investigated by looking at Fig. 1(b) in which the error
vs. the parameter K is illustrated. Although, the graph shows a minimum at K = 6
(which might be due to excluding specific prototypes), the error is very sensitive to
the choice of K in that region. A better parameter setting is to set K>12 to avoid the
transition region (Note that the upper limits for K is the smallest number of proto-
types, selected by the user for each tissue class). In order to prevent the optimization
algorithm from stopping in such unwanted minima, one can define the optimization
goal as a combination of the error and the error sensitivity to the parameter.

FSL - The optimum value for MRF neighborhood beta is obtained to be 0.2 when
considering one subject and 0.1 for our collection of subjects. As seen in Fig. 1(c), the
error rate is a well-behaved function of the parameter, however contrary to EM and k-
NN methods, the error rate increases as the optimization algorithm proceeds. This is
due to the fact that the estimated ground-truth converges to EM and k-NN results, and
therefore the difference between the segmentation by FSL and the estimated ground-
truth increases more and more.

SPM - This algorithm underestimates the white matter tissue compared to the pre-
vailing algorithms (EM and k-NN), and thus, a low performance level is assigned to it
by STAPLE. Furthermore, the selected parameter is not able to push the segmentation
results to the estimated ground-truth, though the improvement is apparent in Fig.2 (e).
The algorithm gets even lower performance level in the second run, as can be ob-
served in Fig. 1(d).
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Fig. 1. The error rates versus the parameter for (a) EM (b) &-NN (c) FSL and (d) SPM algo-
rithms after the first and second ground-truth estimations. The overall error rate obtained for
EM and k-NN algorithms decreases as the estimated ground-truth approaches the results of
these two algorithms.

The effect of parameter adjustment can be observed in Fig.2, where the segmenta-
tions with the default and optimized parameters are illustrated.

4 Conclusion and Further Work

In this paper, we presented a novel approach for the automatic selection of optimal
parameters for segmentation. This algorithm is an iterative process with two main
stages: ground-truth estimation and parameter setting. Two widely-used packages,
SPM and FSL, and two research algorithms, k-NN and EM were considered for the
optmization. We applied these algorithms on a set of 3D MR images of brain to seg-
ment the white matter tissue. The optimal parameters were obtained first for a single
case and then for a collection of five cases. The process of estimating a ground-truth
and estimating the optimal parameter settings converges in a few iterations. The pro-
posed approach was shown to provide improved segnmentation results compared with
algorithms with default parameter setting.
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final SPM

original MRI estimated ground-truth

Fig. 2. The optimized segmentations are improved as compared to the initial segmentations.
White matter segmentations obtained from different algorithms before and after optimization
along with the original MR image and the final estimated ground truth. Some of the errors in
the initial segmentation corrected by the proposed algorithm are highlighted by arrows.

Further work is under way to apply this approach to more medical images, to seg-
mentation of other structures. Removing the artifacts in the images such as that high-
lighted in Fig. 2 with a circle, is another important step to improve the final ground-
truth estimation.
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