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Abstract. This paper presents a novel approach to analyze the shape of ana-
tomical structures. Our methodology is rooted in classical physics and in par-
ticular Poisson’s equation, a fundamental partial differential equation [1]. The
solution to this equation and more specifically its equipotential surfaces display
properties that are useful for shape analysis. We demonstrate the solution of this
equation on synthetic and medical images. We present a numerical algorithm to
calculate the length of streamlines formed by the gradient field of the solution
to this equation for 3D objects. We used the length of streamlines of equipoten-
tial surfaces to introduce a new function to characterize the shape of objects. A
preliminary study on the shape of the caudate nucleus in Schizotypal Personal-
ity Disorder (SPD) illustrates the power of our method.

1 Introduction

Shape analysis methods play a key role in the study of medical images. They enable
us to go beyond simple volumetric measures to provide a more intuitive idea of the
changes an anatomical structure undergoes. There are mainly three classes of shape
analysis methods. The first class relies on a feature vector, such as spherical harmon-
ics or invariant moments [2, 3], as a representation of shape and tries to discriminate
between classes of shapes using clustering methods such as principal component
analysis. These methods are usually numerically stable and relevant statistics can be
computed from them. However, their interpretation is often difficult and they rarely
provide an intuitive description of the shape. The second class of methods is based on
a surface boundary representation of the object and the study of the mechanical de-
formations required to transform one object into another [4, 5]. This popular tech-
nique is very intuitive, but relies on registration methods which are difficult to im-
plement and not always reliable. Calculating significant statistics from the
deformation also poses a challenge. The third class makes use of medial representa
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tions which provide insightful information about the symmetry of the object. Unfor-
tunately, the medial models still need to be registered with each other before any sta-
tistics can be derived [6-8]. In clinical studies, different classes of methods are often
combined in order to obtain intuitive and statistically significant results, see for ex-
ample [9].

In this paper, we propose a novel shape analysis method based on Poisson’s equa-
tion with a Dirichlet boundary condition. This equation, most known in electrostatics,
has very interesting properties for the study of shape. Most notably, its solution is al-
ways smooth, has one sink point and can be made independent of the scale of the
original object. Our approach is to extract one scalar value and use this number to
compare different classes of objects.

Section 2 provides details on Poisson’s equation and how it can be used for shape
analysis. Section 3 illustrates and validates the method on synthetic objects and finally
Section 4 presents a preliminary case study of the caudate in Schizotypal Personality
Disorder.

2 Methods

2.1 Poisson’s Equation

Poisson’s equation is fundamental to mathematical physics and has been widely used
over a range of phenomena. Examples include electrostatic fields, gravitational fields,
thermo-dynamic flows and other applications. Mathematically, Poisson’s equation is a
second-order elliptic partial differential equation defined as:

Au=-1 D

Poisson’s equation is independent of the coordinate system and characterizes the en-

tire domain (volume in 3D) not only its boundary. Functions u satisfying Poisson’s

equation are called potential functions. These functions have many mathematical
properties related to the underlying geometry of the structure. Among the properties
are the following:

1. The shape of the potential function is correlated to the geometry of the structure.
This correlation gives a mathematical meaning to the medical concept of anatomi-
cal sublayers.

2. In the special case of Dirichlet conditions on the outer surface of a closed homoge-
neous domain, the potential function converges smoothly to a single sink point.
Moreover, a unique streamline can be drawn from each point of the boundary to
the sink point by following the gradient field of the potential function.

3. The pattern of streamlines is independent of the value of the potential on the
boundary and is closely related to the shape of the domain.

The length of each streamline can be calculated by summing the Euclidean dis-
tances between neighboring points along the streamline. For example, in electrostat-
ics, this length is called the ‘electric displacement’.

In Figure 1, we illustrate the solution of Poisson’s equation for simple two dimen-
sional domains, a circle (Figure 1a) and a square (Figure 1b). In both examples, the
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initial conditions on the boundary were set to u = 100. The solution represents a lay-
ered set of equipotential curves making a smooth transition from the outer contour to
the center. The equipotential curves for a circle are simply smaller circles. However,
the equipotential curves inside a square smoothly change shape as they approach the
sink point. This change is illustrated in Figure l1a where two streamlines connect the
sink point to two equipotential points inside the circle. Figure 1b shows similar
streamlines inside the square. Inside a circle the ‘electric displacement’ along an
equipotential curve is constant. Inside a square, this displacement varies due to the
shape of the boundary. Note however, that the variation of displacement decreases
from one equipotential level to another while moving towards the sink point. We used
this concept of displacement as the basis of our approach to apply Poisson’s equation
for the analysis of shape of anatomical structures.

Fig. 1. a) potential function inside a circle with streamlines of two equipotential points. b) po-
tential function inside a square with streamlines of two equipotential points.

2.2 Calculating the Displacement

Since there are many standard numerical methods for solving Poisson’s equation (1),
we will not discuss in this work the numerical solution of Poisson’s equation for 3D
MRI. We refer the reader to [10] for details on numerical solutions of standard partial
differential equations. We will focus instead on the computation of the displacement
for each point in the given domain.

Because all streamlines converge to one unique sink point, P, we can design a
downwinding algorithm to calculate the displacement at a voxel P, by summation of
the Euclidean distances between consecutive voxels along the streamline connecting
P,to P.

First, P_ is found by solving the following equation:

llgrad(w)l| =0 2)
The displacement D at a voxel P, is then defined as:
D(P,) =2L, (3)

L,is the Euclidean distance between consecutive voxels P, and P, on the streamline
connecting P, to the sink point. Depending on the direction of the gradient field at

voxel P, L, can have one of the following values:
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I’l], hz, h3, (hIZ + hZZ)I/Z’ (hIZ + hjZ)//Z’ (h22 + hjZ)//Z or (hIZ + h22 + hjZ)//Z;
h,is the voxel width, &, the voxel height and 4, the slice thickness.

The direction of the gradient is assessed using a simple transformation from a
Cartesian to a spherical coordinate system. The azimuth 6 and the elevation ¢ of the
gradient are calculated at P, and used to determine L. The coordinates of the follow-
ing voxel on the streamline, P, ,, can be computed using;

X,,, = X, + L,.sin@,cos0, ; (4)
Yin =Y; + Li.sin@sinG;;
z,, =z + L, sind,

L, is added to the current D(P) using (3), the procedure is then repeated at P, until
the sink point P, is reached. Figure 2 presents the displacement maps of a circle and

square.
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Fig. 2. Displacement map of a circle (left) and a square (right).

2.3 Analysis of Shape Using Poisson’s Equation

Earlier, we demonstrated that the dynamics of change of the equipotential surfaces in-
side the domain while approaching the center is related to the domain geometry. To
evaluate this process we first define the normalized drop of potential E at an equipo-
tential surface S, as:

E= (U() - Ui)/(Uo - Ug)s (5)

U,, U, and U, are the potentials on the boundary, at the sink point and on the current
equipotential surface respectively. E characterizes the amount of energy needed to
transform the surface boundary into the current equipotential surface.

We then introduce v, the coefficient of variance of the displacement along the cur-
rent equipotential surface S;:

V(E) = stdev(D(S,))/mean(D(S,)) (6)

Function V(E), which we call the “shape characteristic”, displays some very interest-
ing properties:

1. It is independent of the potential on the outer boundary.

2. It is independent of the overall volume and defined exclusively by the shape.

3. A given value v corresponds to a known drop of potential E.
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4. The slope of v(E) dramatically decreases on a well-determined interval for each
specific shape. We call the ‘critical point’ the point P.(E., v.) where the curvature
of v(E) changes sign. This point characterizes the shape in a unique way.

Thus, the shape of a structure can be represented, through the “shape characteris-
tic”, by one unique point P(E., v.) independent of both the initial conditions on the
outer boundary and the volume of the structure. This point defines the amount of en-
ergy, needed for the structure to lose its initial shape and to deform into a new one
comparable to a sphere.

3 Experiments on Synthetic Data

In addition to the 2D examples given in Section 2, we created two simple phantoms
with different shapes to test our algorithm. The first phantom is a single 3D tube, the
second is a tubular tree. Poisson’s equation was solved, and then the displacement
map was calculated. Figure 3 shows the resulting potential functions and displace-
ment maps for a cross section of both objects.

Fig. 3. Potential functions and (middle) and displacement maps (right) for two simple synthetic
objects

A graph of the shape characteristic function, v(E), is shown in Figure 4. Notice v is
0 for the circle as expected. For the other phantoms, v is a monotically decreasing
function, i.e., as the equipotential surface approaches the sink point, the shape char-
acteristic approaches zero.
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Fig. 4. Shape characteristic v as a function of E for four phantoms.

4 Shape Analysis of the Caudate Nucleus

The caudate nucleus is an essential part in the “cognitive” circuitry connecting the
frontal lobe to subcortical structures of the brain. Pathology in any of the core compo-
nents of this circuitry may result in neurological disease such as schizophrenia[l1, 12]
and schizotypal personality disorder (SPD) . Previous studies have shown volumetric
and shape differences of the caudate between normal controls and SPD subjects [13,
14]. In this paper we propose to validate our methodology by applying our shape
analysis method to the data used in [13, 14] and verify the previously observed shape
differences.

4.1 Methods

Fifteen right-handed male subjects with Schizotypal Personality Disorder (SPD) with
no previous neuroleptic exposure and fourteen normal comparisons subjects (NC),
underwent MRI scanning. Subjects were group matched for parental socioeconomic
status, handedness and gender. MRI images were acquired with a 1.5T GE scanner,
using a SPoiled Gradient Recalled (SPGR) sequence yielding to a (256x256x124)
volume with (0.9375x0.9375x1.5mm) voxel dimensions. The scans were acquired co-
ronally. The caudates were drawn manually and separated by an Anterior/Posterior
boundary. Details of the segmentation procedure can be found in [14].

We applied our novel method to the entire caudate to investigate any difference in
shape between normal controls and SPD subjects. Poisson’s equation was solved for
each left and right caudate. Afterwards, the displacement maps were calculated using
the algorithm presented in Section 2. An example caudate nucleus and its corre-
sponding potential function and displacement map are shown in Figure 5. The func-
tion v was then computed for each structure. We used E_ = 30% as ‘critical’ value to
calculate the corresponding v.. We applied a Mann-Whitney non-parametric test to
compare the values of v, between the two groups. Figure 6 presents a plot graph of v,
for our data set.
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Fig. 5. 3D rendering of the caudate nucleus (left), sagittal cross section displaying the potential
function (middle) and displacement map (right).

4.2 Results and Discussion

Our test revealed a statistically significant difference in the head of the right caudate
for the value v, (p< 0.03) between NC and SPD. No significant group differences (p<
0.167) in the head of the left Caudate were found.
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Fig. 6. Plot of the ‘critical’ value v, (E =0.3) of the caudate for 14 SPD and 15 controls.

Previous analysis of the same data set revealed a group difference in volume on
both sides and a shape difference on the right side using the ‘“shape index” meas-
ure[13, 14]. We are glad to report that our method confirms the results previously
published.

5 Conclusion

We have developed a novel method for shape analysis of anatomical structures. Our
method is based on using the solution of Poisson’s equation to assess the dynamics of
change of shape of the equipotential surfaces inside the structure. We have developed
an algorithm for calculating the displacement maps defined by the length of the
streamlines generated by the gradient field of the potential function. We used these
maps to introduce a new function, called ‘shape characteristic’, which characterizes in
a unique way the shape of a structure. Our method was validated on synthetic 2D and
3D and on real medical data. Our results on the shape of the caudate nucleus in SPD
correlate nicely with the literature. This suggests that our method can be used as a
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powerful tool to correlate shape of anatomical structures with different factors such as
aging or diseases. The “shape characteristic” is one of many tools one can build based
on Poisson’s equation. In future work, we propose to design more intuitive shape
analysis techniques based on this equation and its solutions.
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