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Abstract. In this study we investigated whether automatic refinement of manually
segmented MR breast lesions improves the discrimination of benign and malignant
breast lesions. A constrained maximum a-posteriori scheme was employed to
extract the most probable lesion for a user-provided coarse manual segmentation.
Standard shape, texture and contrast enhancement features were derived from
both the manual and the refined segmentations for 10 benign and 16 malignant
lesions and their discrimination ability was compared. The refined segmentations
were more consistent than the manual segmentations from a radiologist and a
non-expert. The automatic refinement was robust to inaccuracies of the manual
segmentation. Classification accuracy improved on average from 69% to 82% after
segmentation refinement.

1 Introduction

The development of computer aided diagnostic systems for MR mammography relies on
the collection of ground truth information of the breast lesion’s image position and extent.
Currently, a radiologist’s segmentation is the accepted gold standard for this definition.
Manual segmentation is, however, very labour-intensive and prone to inaccuracies. The
workload of radiologists often prohibit building large annotated databases.

While humans can rapidly perceive image objects, the exact definition of the object
boundary is time consuming, especially for contrast-enhanced image sequences. Fully
automatic segmentation, on the other hand, has proven more difficult than expected.
We therefore aim to develop a semi-automatic method that reduces the segmentation
workload significantly, that is also applicable for weakly enhancing structures and that
can readily be applied to registered images.

A few automatic and semi-automatic segmentation algorithms have been proposed
for the extraction of breast lesion from dynamic contrast-enhance MR images. Lucas-
Quesada et al. [1] recommended segmentation of MR breast lesions by manually thresh-
olding the similarity map, generated from the normalized cross-correlation between the
time-intensity plot of each voxel and a reference plot derived from a small user defined
region of interest (ROI). This method compared favourably to a multispectral analysis
method, where 20 to 30 manually selected lesion voxels were used to generate a le-
sion cluster in the 2D pre- to post-contrast intensities space by means of the k-nearest
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neighbour algorithm. Note that the multispectral analysis method may have been disad-
vantaged by exploiting only limited data from the temporal domain, while the temporal
correlation method was dependent on a single reference enhancement curve. Jacobs et
al. [2] employed a k-means related clustering algorithm for extracting 4D feature vectors
of adipose, glandular and lesion tissue from T1- and T2-weighted images and 3D fat-
suppressed T1-weighted pre- and post-contrast images. Lesion classification was based
on the angular separation from the adipose feature vector. Adipose and glandular ref-
erence feature vectors were provided by the user. Extraction of lesion outlines was not
attempted. Fischer et al. [3] clustered the intensity enhancement profiles employing self-
organizing Kohonen maps. The cluster results were shown to the user for interrogation
of the dynamic sequences. No segmentation was attempted.

Our segmentation refinement method aims to extract the most probable lesion object
of the contrast-enhanced MR image sequence from the data provided by the manual
segmentation and prior knowledge about the segmentation process. The problem was
posed as a two-class classification problem where the training data were provided by
the manual segmentation. The segmentation decision was based on a constrained maxi-
mum a-posteriori probability (MAP) estimation in order to account for the imbalanced
number of lesion and background voxels. The class conditional probability density func-
tions were directly estimated from the temporal domain of the data samples. Sparsely
sampled distributions were avoided by reducing the temporal dimensions with principle
component analysis.

In the spatial domain, we observed that regions of non-enhancing tissue (like small
heterogeneities, necrotic centres or fatty regions) were generally included in the manually
segmented lesions. A MAP estimation solely based on the temporal domain would
therefore lead to misclassifications. Instead, we rearranged the MAP estimation such
that the ratio of prior class probabilities can be viewed as a threshold for the likelihood
ratio. The segmentation process was then modelled by extract the biggest connected and
filled lesion object for a given thresholded likelihood ratio map. The lesion candidate
with the highest average a-posteriori probability that changed in size by less than a given
limit was then selected as the most probable lesion. No assumptions were made about
the edge strength or the shape or the enhancement profile of the lesion to avoid removing
valuable information for the discrimination of benign and malignant lesions.

The aim of this study was two-fold. Firstly to assess the robustness and consistency
of the segmentation refinement in comparison to the manual segmentations from an
expert and a non-expert. Secondly, we compared the classification accuracy based on
the segmentation refinement to that based on manual segmentation.

2 Materials

For this initial work we selected 18 patients from the symptomatic database of the UK
multi-centre study of MRI screening in women at genetic risk of breast cancer (MARIBS)
where patient motion was small enough allow interpretation of the images. The patients
had in total 10 benign and 16 malignant histologically proven lesions. The images came
from three centres of the MARIBS study and were all acquired according to the agreed
protocol (3D gradient echo sequence on a 1.5T MR system with TR=12ms, TE=5ms,
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flip angle=35o, field of view of 340mm, 1.33x1.33x2.5mm3 voxel size, coronal slice
orientation, 90s acquisition time, 0.2mmol Gd-DTPA, see [4]).

The lesions were manually segmented by an experienced radiologist and a non-
expert. The radiologist segmented the lesions by defining contours on the coronal slices
of a selected post- to pre-contrast difference image. The radiologist had access to pre-
vious radiological reports to ensure that the correct lesion was segmented. Views of all
original and all difference images of the dynamic sequence were provided. The non-
expert segmented the lesions by employing region growing techniques from ANALYZE
(Biomechanical Imaging Resource, Mayo Foundation, Rochester, MN, USA) with man-
ual corrections if necessary. Generally, the same intensity threshold was applied to all
slices while the seed voxel was moved. No information about the lesion location was pro-
vided to the non-expert. Eight missed lesions were segmented after comparison with the
radiologist’s segmentations. All manual segmentations were conducted without knowl-
edge of the pathological results.

3 Methods

3.1 Data-Preprocessing

The image data was preprocessed by subtracting the mean of the two pre-contrast images
from each post-contrast image. The sequence of subtracted images was then normalized
to zero mean and unit variance for each 3D lesion ROI.

Many of the multispectral segmentation algorithms assume that the intensity distri-
butions of the separate objects can be approximated with multivariate Gaussian distribu-
tions. There is, however, no reason to expect that the temporal data of MR mammograms
conform to this assumption. Therefore we performed density estimations with Gaussian
kernels and a bandwidth selected according to [5]. We reduced the dimensionality of the
preprocessed data by principle component analysis to reduce sparseness.

3.2 Segmentation

The segmentation refinement aimed to extract the most probable connected lesion object
of a 3D region of interest (ROI) for a given manual segmentation. The ROI was defined
as the rectangular box extending the manual segmentation by 7mm in each direction.
The problem was posed as a two-class classification problem where the training data
was provided by the manual segmentation. The segmentation decision was based on the
maximum a-posteriori probability (MAP) estimation in order to account for the unequal
number of lesion and background voxels within the ROI.

Assuming equally likely image features x and taking the prior class probability
P (Ck) for class Ck into account, the most probable segmentation refinement is given
by maximizing the a-posteriori probabilities, i.e. argmaxkP (Ck|x) = P (x|Ck)P (Ck)
where P (x|Ck) was estimated from the manual segmentation. For a two class problem
the discrimination function y(x) can be written as

y(x) =
P (x|C1)
P (x|C2)

with x ∈
{

C1 if y(x) > θ
C2 otherwise

where θ =
P (C2)
P (C1)

. (1)
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Equation (1) emphasizes that the ratio of the prior probabilities act as a threshold (θ) on
the likelihood ratio. Instead of estimating θ from the number of lesion and background
voxels in the manual segmentation, we propose to use θ for implicitly incorporating
prior knowledge about the segmentation process.

Assuming that one connected lesion was manually segmented per ROI we firstly
extracted for a given threshold θ the biggest connected object. Thereafter we applied
morphological closing and hole filling operations to model the observation that manually
segmented lesions generally include non-enhancing regions. A set of lesion candidates
was then generated by varying the threshold θ. Assuming that the manual segmentation
is similar in size to the actual lesion object, we selected all candidates that had a volume
change of less than a certain percentage compared to the manual segmentation. Of this
subset we finally choose the object with the maximum average a-posteriori probability for
the whole lesion. We tested ten threshold variations, namely MAP: θ = V (C2)/V (C1)
with volume V (Ck) estimated from input segmentation, Tp: connected filled lesion that
changed volume by less than p% while maximizing the average posterior probability,
tested for p ∈ {0, 10, 20, 30, 40, 50, 60}, Tmax: lesion with maximal average posteriori
probability and ML: maximum likelihood decision θ = 0 .

Coarse input segmentations were simulated by approximating the manual segmenta-
tion by an ellipse on each 2D slice. The sensitivity to the size of the initial segmentation
was assessed by changing the size of these ellipses by s% for all cases or by randomly
selecting a size change s%, with s ∈ {−33,−20, 0, 25, 50}.

Segmentations were compared by means of the overlap measure O = V(A ∩ B) /
V(A ∪ B) where A and B are two segmented lesion regions; A ∩ B (A ∪ B) are the
intersection (union) of region A and B; and V (C) is the volume of region C.

3.3 Feature Extraction

The size of our dataset limits the number of feature candidates that can reasonably
be assessed. We therefore restricted ourselves to the 10 least correlated features of 27
previously reported 3D features used in this context [6,7,8]. These were selected by
hierarchical clustering the feature vectors derived from the radiologist’s segmentation
according to their correlation. The 10 selected features were the following: Irregular-
ity was determined by irr = 1 − Vin/V where Vin is the volume within the effective
radius (3V/(4π))1/3. Eccentricity was determined by ecc =

√
a2 − b2/a where 2a

(2b) was the longest (shortest) axis, of the ellipsoid approximating the lesion shape.
Rectangularity was defined as rec = V/Vrec where Vrec is the volume of the small-
est enclosing rectangular box. Entropy of Radial Length Distribution was calculated
as erl =

∑20
n=1 Pnlog(Pn), where Pn is the probability that a surface vertex has an

Euclidean Distance to the lesion’s centre of gravity that lies within the nth increment
of the distribution. Peripheral-Central and Adjacent-Peripheral Ratio were derived
from partitioning the lesion and its immediate surrounding into 4 equally sized regions
(central, middle, peripheral, adjacent) with boundaries kept in similar shape as the le-
sion itself. The ratios were given by pcr = MITR(peripheral)/MITR(central) and
apr = MITR(adjacent)/MITR(peripheral) where MITR is the maximum inten-
sity time ratio as defined in [4]. Slope Factor m was derived from non-linearly fitting
the general saturation equation Ia/((T1/2/t)m + 1) to the average intensity difference
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It − I0 of the lesion where It is the intensity at time t after contrast infusion and I0
is the pre-contrast intensity. Texture parameters were derived from the average Spatial
Gray-Level Dependence matrix (one voxel distance, average of 9 directions) of the first
post-contrast image intensities with values scaled from 1 to 40. Spatial Correlation
is defined as cor =

∑ ∑
(i − µx)(j − µy)P (i, j)/(σxσy) where µx =

∑
iPx(i),

µy =
∑

jPy(j), σ2
x =

∑
(i − µx)2Px(i), σ2

y =
∑

(j − µx)2Px(j). Angular Second

Moment is given by asm =
∑ ∑

[P (i, j)]2. Difference Average was calculated by
dia =

∑ ∑
kPx−y(k).

3.4 Classification

Single features were combined using stepwise linear discriminate analysis. The ability of
combined features to discriminate between benign and malignant lesions was quantified
by receiver operating characteristics (ROC) analysis. The ROC curve is defined by the
fraction of false positives (1-specificity) to the fraction of true positives (sensitivity)
for various thresholds on the decision criterion. The classification performance was
summarized by the area under the ROC curve (AROC) for leave-one-out tests on a per-
lesion basis. The statistical significance of the difference between ROC curves was tested
using the ROCKIT program from Metz et al. [9].

4 Results

4.1 Data Preprocessing

The background (lesion) distributions of the original data were statistically significantly
different (Lilliefors test, 5% level) from Gaussian normal distributions in 100% (67%)
of all cases. The first two principle components of the preprocessed enhancement curves
describe on average 98% of the variation in the data (range [91,100]%). The background
(lesion) distributions of these two component were statistically significantly different
from Gaussian normal distributions in 98% (69%) of all cases.

4.2 Segmentation

Fig. 1 illustrates for two neighbouring example slices the 3D segmentation refinement.
It can be observed that the MAP refinement (contours in row 2) of the initial coarse
segmentation (row 1) underestimated the extent of the lesion when compared with the
radiologist’s segmentation (row 6). The ML refinement (row 5) overestimated the lesion.
The T0 (row 3) and Tmax (row 4) refinements produced almost identical results that are
reasonable improvements to the radiologist’s segmentation.

The average lesion size was statistically significantly bigger (paired t-test, P<0.001)
for the radiologist’s segmentation than for the non-expert (4.11ml vs 2.77ml). The aver-
age overlap between the two manual segmentations improved statistically significantly
(paired t-test, P<0.01) after T0 refinement for all scenarios (from 59% to [64,68]%).

Fig. 2 shows how thresholding the likelihood ratio and changing the size of the
initial segmentations affected the overlap measure O. Applying a threshold to keep
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Fig. 1. Two example slices showing each (left to right) mean pre-contrast image and difference
images after subtracting the mean pre-contrast image from 1st, 2nd, 3rd or 4th post-contrast image.
Overlayed contours show (top to bottom) initial segmentation (E-20%), refinements of E-20% by
MAP, T0, Tmax or ML criterion (see section 3.2); and radiologist’s segmentation.
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Fig. 2. Average overlap of refined and manual segmentation for (left) radiologist’s and (right)
non-expert’s segmentation. Values along x-axis represent initial overlap (orig) and overlap after
refinement with 10 threshold variations (MAP, T0-60, Tmax, ML) described in 3.2. Refinement
was tested for manual segmentation (M) or for ellipsoidal approximations of manual segmentation
that either all changed in size by s% (Es%) or that randomly changed in size (Erandom%).

volume changes to a minimum (T0) provided on average the biggest overlap of all
refinement strategies apart from input scenario E50%. Refinements of the ellipsoidal
approximations (Es%) produced generally smaller mean overlaps than refinements of the
manual segmentations (M). The maximal possible average overlap when thresholding
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the likelihood ratio was 73% and 86% for the two manual segmentations. Optimal
thresholding of the temporal correlation maps (created with respect to the most enhancing
5x5 ROI within the lesion) resulted in a maximal mean O of 60% for both manual
segmentations.

4.3 Classification

We compared the classification performance of features derived from manually seg-
mented lesion to that from refined segmentations. A combination of 3 refinement strate-
gies (MAP, T0, ML) and 5 initial segmentations (M, E-33%, E0%, E50%, Erandom%)
was tested (see section 3.2). Tp (p > 0) and Tmax refinements were not assessed because
their overlaps were either very similar to T0 or were very small. The assessment was
based on the area under the ROC curve (AROC) created from leave-one-out tests.

The best feature extracted from the radiologist’s segmentation was Texture Corre-
lation with an AROC of 0.57. After segmentation refinement, the best feature changed
to Peripheral-Central Ratio (pcr) with average AROC values of 0.40, 0.66, 0.74 for
MAP, T0 and ML, respectively. The best feature for the non-expert’s segmentation was
already pcr (AROC=0.69) and remained so after refinement (mean AROC 0.42, 0.71,
0.82 for MAP, T0 and ML). The pcr mean values of benign and malignant lesions were
statistically significantly different (pooled t-test, 5% level) in 90% of all input scenarios
after T0 and ML refinement.

To avoid overfitting the data, we combined not more than two features during stepwise
linear discriminate analysis. This resulted in AROC of 0.57 and 0.70 for features extracted
from the radiologist’s and the non-expert’s segmentation, respectively. Classification
based on the refined segmentations provided AROC values between 0.57 and 0.89, of
which none was statistically significantly worse (ROCKIT, 5% level) than the results
of the manual segmentation. The best results were achieved with the ML refinement
strategy. It produced in all cases the highest AROC (mean 0.80, range [0.69,0.89]). For
half of the initial segmentations it was statistical significantly better at the 5% level than
the manual segmentations. The second best results were produced by T0 with AROC

values between 0.53 to 0.76 (mean 0.70). MAP was on average not better than the manual
segmentation (mean 0.64, range [0.52,0.77]).

5 Conclusion

We have shown that the refinement of manual segmentations based on thresholding the
likelihood ratio map can significantly improve the discrimination of benign and ma-
lignant breast lesions from contrast-enhanced MR images. Simplification of the lesion
delineation by 2D ellipses and change of lesion size before refinement did not lead
to inferior classification results. The consistent classification success of the maximum-
likelihood refinement strategy was surprising, given its low overlap measures and ap-
parent overestimation of the lesions extent, and requires further investigations.

The overlap between a manual segmentation and its refinement was on average signif-
icantly higher for the non-expert. This is likely due to region growing being more similar
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to the refinement technique than manual outlining. Classification results improved to a
similar level for both manual segmentations after segmentation refinement.

Thresholding optimized for maximal overlap provided higher results for the likeli-
hood map than for the temporal correlation map. This could be because the probabilistic
approach removed the dependency on a single reference enhancement curve.

Computerized segmentation methods are generally evaluated against radiologist’s
manual segmentations. It is, however important to assess the effects of the segmenta-
tion on the ultimate goal, in this case the ability to discriminate benign and malignant
MR breast lesion. To our knowledge, such a study has not been published, apart from
evaluating the enhancement characteristics of region subsampling methods [10,11].

Classification of MR breast lesion based on step-wise linear discriminant analysis of
extracted features from lesion segmentations has been reported previously [6,7,8]. These
studies achieved classification accuracies of 72%, 79% (without leave-one-out tests) and
87%, respectively, when combining two features. Our classification results were on the
lower end when based on features from the manual segmentations (69%) but improved
to 78% and 85% after maximum-likelihood segmentation refinement. In future work, we
will study how much segmentation refinement and registration improves classification
for a large dataset.
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