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Abstract. We address the privacy preserving association rule mining problem in
a system with one data miner and multiple data providers, each holds one trans-
action. The literature has tacitly assumed that randomization is the only effective
approach to preserve privacy in such circumstances. We challenge this assump-
tion by introducing an algebraic techniques based scheme. Compared to previous
approaches, our new scheme can identify association rules more accurately but
disclose less private information. Furthermore, our new scheme can be readily
integrated as a middleware with existing systems.

1 Introduction

In this paper, we address issues related to production of accurate data mining results,
while preserving the private information in the data being mined. We will focus on
association rule mining. Since Agrawal, Imielinski, and Swami addressed this prob-
lem in [1], association rule mining has been an active research area due to its wide
applications and the challenges it presents. Many algorithms have been proposed and
analyzed [2—4]. However, few of them have addressed the issue of privacy protection.
Borrowing terms from e-business, we can classify privacy preserving association
rule mining systems into two classes: business to business (B2B) and business to cus-
tomer (B2C), respectively. In the first category (B2B), transactions are distributed across
several sites (businesses) [5, 6]. Each of them holds a private database that contains nu-
merous transactions. The sites collaborate with each other to identify association rules
spanning multiple databases. Since usually only a few sites are involved in a system
(e.g., less than 10), the problem here can be modelled as a variation of secured multi-
party computation [7]. In the second category (B2C), a system consists of one data
miner (business) and multiple data providers (customers) [8, 9]. Each data provider
holds only one transaction. Association rule mining is performed by the data miner on
the aggregated transactions provided by data providers. On-line survey is a typical ex-
ample of this type of system, as the system can be modelled as one data miner (i.e., the
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survey collector and analyzer) and millions of data providers (i.e., the survey providers).
Privacy is of particular concern in this type of system; in fact there has been wide media
coverage of the public debate of protecting privacy in on-line surveys [10]. Both B2B
and B2C have wide applications. Nevertheless, in this paper, we will focus on studying
B2C systems.

Several studies have been carried out on privacy preserving association rule mining
in B2C systems. Most of them have tacitly assumed that randomization is an effec-
tive approach to preserving privacy. We challenge this assumption by introducing a
new scheme that integrates algebraic techniques with random noise perturbation. Our
new method has the following important features that distinguish it from previous ap-
proaches:

— Our system can identify association rules more accurately but disclosing less pri-
vate information. Our simulation data show that at the same accuracy level, our
system discloses private transaction information about five times less than previous
approaches.

— Our solution is easy to implement and flexible. Our privacy preserving mechanism
does not need a support recovery component, and thus is transparent to the data
mining process. It can be readily integrated as a middleware with existing systems.

— We allow explicit negotiation between data providers and the data miner in terms
of tradeoff between accuracy and privacy. Instead of obeying the rules set by the
data miner, a data provider may choose its own level of privacy. This feature should
help the data miner to collaborate with both hard-core privacy protectionists and
persons comfortable with a small probability of privacy divulgence.

The rest of this paper is organized as follows: In Sect. 2, we present our models, re-
view previous approaches, and introduce our new scheme. The communication protocol
of our system and related components are discussed in Sect. 3. A performance evalua-
tion of our system is provided in Sect. 4. Implementation and overhead are discussed in
Sect. 5, followed by a final remark in Sect. 6.

2 Approaches

In this section, we will first introduce our models of data, transactions, and data miners.
Based on these models, we review the randomization approach — a method that has
been widely used in privacy preserving data mining. We will point out the problems
associated with the randomization approach which motivates us to design a new privacy
preserving method, based on algebraic techniques.

2.1 Model of Data and Transactions

Let I be a set of n items: I = {ay,...,a,}. Assume that the dataset consists of m
transactions 1, . . ., t,,, where each transaction ¢; is represented by a subset of I. Thus,
we may represent the dataset by an m x n matrix T' = [a1,...,an] = [t1, ..., tm]" .
Let (T),;; denote the element of T" with indices ¢ and j. Correspondingly, for a vector v,

! We denote the transpose of matrix 7" as 7"
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Table 1. Transaction Matrix

its ith element is represented by (v);. An example of matrix 7" is shown in Table 1. The
elements of the matrix depict whether an item appears in a transaction. For example,
suppose the first transaction contains items agg and a47. Then the first row of the matrix
has (T')1,20 = (T')1,47 = 1 and all other elements equal to 0.

Anitemset B C [ is k-itemset if B contains k items (i.e., | B| = k). The support of
B is defined as

_ {teTBCt}

m

supp(B) (1)

A k-itemset B is frequent if supp(B) > min_suppy, where min_suppy, is a prede-
fined minimum threshold of support. The set of frequent k-itemsets is denoted by Ly.
Technically speaking, the main task of association rule mining is to identify frequent

itemsets.

2.2 Model of Data Miners

There are two classes of data miners in our system. One is legal data miners. These
miners always act legally in that they perform regular data mining tasks and would
never intentionally breach the privacy of the data. On the other hand, illegal data miners
would purposely discover the privacy in the data being mined. Illegal data miners come
in many forms. In this paper, we focus on a particular sub-class of illegal miners. That
is, in our system, illegal data miners are honest but curious: they follow proper protocol
(i.e., they are honest), but they may keep track of all intermediate communications and
received transactions to perform some analysis (i.e., they are curious) to discover private
information [11].

Even though it is a relaxation from Byzantine behavior, this kind of honest but
curious (nevertheless illegal) behavior is most common and has been widely adopted as
an adversary model in the literatures. This is because, in reality, a workable system must
benefit both the data miner and the data providers. For example, an online bookstore (the
data miner) may use the association rules of purchase records to make recommendations
to its customers (data providers). The data miner, as a long-term agent, requires large
numbers of data providers to collaborate with. In other words, even an illegal data miner
desires to build a reputation for trustworthiness. Thus, honest but curious behavior is an
appropriate choice for many illegal data miners.

2.3 Randomization Approach

To prevent the privacy breach due to the illegal data miners, countermeasures must
be implemented in data mining systems. Randomization has been the most common
approach for countermeasures. We briefly view this method below.
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We consider the entire mining process to be an iterative one. In each stage, the data
miner obtains a perturbed transaction from a different data provider. With the random-
ization approach, each data provider employs a randomization operator R(-) and applies
it to one transaction ¢ which the data provider holds. Fig. 1 depicts this kind of system.

Upon receiving transactions from the data providers, the legal data miner must first
perform an operation called support recovery which intends to filter out the noise in-
jected in the data due to randomization, and then carry out the data mining tasks. At
the same time, an illegal (honest but curious) data miner may perform a particular pri-
vacy recovery algorithm in order to discover private data from that supplied by the data
providers.

Clearly, the system should be measured by its capability in terms of supporting the
legal miner to discover accurate association rules, while preventing illegal miner from
discovering private data.

2.4 Problems of Randomization Approach

Researchers have discovered some problems with the randomization approach. For ex-
ample, as pointed in [8], when the randomization is implemented by a so called cut-
and-paste method, if a transaction contains 10 items or more, it is difficult, if not im-
possible, to provide effective information for association rule mining while at the same
time preserving privacy. Furthermore, large itemsets have exceedingly high variances
on recovered support values. Similar problems would exist with other randomization
methods (e.g., MASK system [9]) as they all use random variables to distort the origi-
nal transactions.
Now, we will explore the reasons behind these problems.

— First, we note that previous randomization approaches are transaction-invariant. In
other words, the same perturbation algorithm is applied to all data providers. Thus,
transactions of a large size (e.g., |t| > 10) are doomed to failure in privacy protec-
tion by the large numbers of the real items divulged to the data miner. The solution
proposed in [8] has ignored all transactions with a size larger than 10. However, a
real dataset may have about 5% such transactions. Even if the average transaction
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size is relatively small, this solution still prevents many frequent itemsets (e.g., with
size of 4 or more) from being discovered.

— Second, previous approaches are ifem-invariant. All items in the original trans-
action ¢ have the same probability of being included in the perturbed transaction
R(t). No specific operation is performed to preserve the correlation between differ-
ent items. Thus, a lot of real items in the perturbed transactions may never appear
in any frequent itemset. In other words, the divulgence of these items does not
contribute to the mining of association rules.

Note that invariance of transactions and items is inherent in the randomization ap-
proach. This is because in this kind of system, the communication is one-way: from data
providers to the data miner. As such, a data provider cannot obtain any specific guidance
on the perturbation of its transaction from the (legal) data miner. Consequently, lack of
communication between data providers prevents a data provider from learning the cor-
relation between different items. Thus, a data provider has no choice but to employ a
transaction-invariant and item-invariant mechanism.

This observation motivates us to develop a new approach that allows two-way com-
munication between the data miner and data provider. We describe the new approach in
the next subsection.

2.5 Our New Approach

Fig. 2 shows the infrastructure of our system. The (legal) data miner .S contains two
components: DM (data mining process) and PG (perturbation guidance). When a data
provider C; initializes a communication session, PG first dispatches a reference Vj, to
C;. Based on the received Vj, the data perturbation component of C; transforms the
transaction ¢ to a perturbed one R(¢) and transmits R(¢) to PG. PG then updates V,
based on the recently received R(t) and forwards R(¢) to the data mining process DM.

The key here is to properly design Vj, so that correct guidance can be provided to
the data providers on how to distort the data transactions. In our system, we let V}, be
an algebraic quantity derived from 7. As we will see, with this kind of V},, our system
can effectively maintain accuracy of data mining while significantly reduce the leakage
of private information.

3 Communication Protocol and Related Components

In this section, we will present the communication protocol and the associated com-
ponents in our system. Recall that in our system, there is a two-way communication
between data providers and the data miner. While only little overhead is involved, this
two-way communication substantially improves performance of privacy preserving dis-
covered association rules.

3.1 The Communication Protocol

We now describe the communication protocol used between the data providers and data
miners. On the side of the data miner, there are two current threads that perform the
following operations iteratively after initializing V}:
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Thread of registering data provider: Thread of receiving data transaction:
R1. Negotiate on the truncation level &  T1. Wait for a (perturbed) data transac-
with a data provider; tion R(t) from a data provider;

R2. Wait for a ready message from a data ~ T2. Upon receiving the data transaction
provider; from a registered data provider,
R3. Upon receiving the ready message — Update V}, based on the newly
from a data provider, received perturbed data trans-
— Register the data provider; action;
— Send the data provider current Vj; — Deregister the data provider;
R4. Go to Step R1; T3. Goto Step T1;

For a data provider, it performs the following operations to transfer its transaction to the
data miner:

P1. Send the data miner a ready message indicating that this provider is ready to con-
tribute to the mining process.

P2. Wait for a message that contains V}, from the data miner.

P3. Upon receiving the message from the data miner, compute R(¢) based on ¢ and V}.

P4. Transfer R(t) to the data miner.

3.2 Related Components

It is clear from the above description that the key components of our communication
protocol are (a) the method of computing V}; and (b) the algorithm for perturbation
function R(-). We discuss these components in the following. Negotiation is also criti-
cal. The details of negotiation protocol can be found in [12].

Computation of Vj. Recall that Vj, carries information from the data miner to data
providers on how to distort a data transaction in order to preserve privacy. In our system,
V is an estimation of the eigenvectors of A = T'T. Due to space limit, we refer users
to [12] about the justification of V}, on providing accurate mining results.

As we are considering dynamic case where data transactions are dynamically fed to
the data miner, the miner keeps a copy of all received transactions and need to update
it when a new transaction is received. Assume that the initial set of received transac-
tions 7% is empty” and every time when a new (distorted) data transaction, R(t), is
received, T* is updated by appending R(¢) at the bottom of 7. Thus, 7 is the matrix
of perturbed transactions. We derive Vj, from 7.

In particular, the computation of Vj is done in the following steps. Using singu-
lar value decomposition (SVD) [13], we can decompose A* = T*'T* as (2) where
diagonal matrix X* = diag(s?,...,s2) and s7 > ... > s2.

A =T"T* =V 3=y (2)
V*is an n X n unitary matrix composed of the eigenvectors of A*.

2 T* may also be composed of some transactions provided by privacy-careless data providers.
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Vi, is composed of the first k& vectors of V* (i.e., eigenvectors corresponding to the
largest k eigenvalues of A*). In other words, if V* = [vq, ..., v,], then

Vk:[vl,...,vk] (3)

Thus, we call Vj, as the k-truncation of V*. Several incremental algorithms have been
proposed to update V;, when a new (distorted) data transaction is received by the data
miner [14, 15]. The computing cost of updating V}, is addressed in Sect. 5.

Note that £ is a given integer less than or equal to n. As we will see in Sect. 4, k can
play a critical role in balancing accuracy and privacy. We will also show that by using
V in conjunction with R(-), to be discussed next, we can achieve desired accuracy and
privacy.

Perturbation Function R(-). Recall that once a data provider receives a perturbation
guidance Vj, from the data miner, the provider applies a perturbation function, R(-),
to its data transaction, ¢. The result is a distorted transaction that will be transmitted
to the data miner. The computation of R(t) is defined as follows. First, for the given
Vi, the data transaction, ¢, is transformed by t =tV Vk’ . Note that the elements in ¢
may not be integers. Algorithm Mapping is employed to integerize . In the algorithm,
pt 1s a pre-defined parameter. Finally, to enhance the privacy preserving capability, we
need to insert additional noise into R(¢). This is done by Algorithm Random-Noise
Perturbation.

Algorithm Mapping Algorithm Random-Noise Perturbation
for every element (¢); in t do for every item a; ¢ t do
if (t); > 1 — p, then Choose a real number j uniformly at
(R(t)); =1 random on [0, 1]
else if ) > 1 — p,, then
(R(t)); =0 (R(t))i =1
end if end if
end for end for

Now, computation of R(t) has been completed and it is ready to be transmitted to the
data miner.

We have described our system — the communication protocol and its key compo-
nents. We now discuss the accuracy and privacy metrics of our system.

4 Analysis on Accuracy and Privacy

In this section, we will propose the metrics of accuracy and privacy with analysis of
the tradeoff between them. We will derive a upper bound on the degree of accuracy in
the mining results (frequent itemsets). An analytical formula for evaluating the privacy
metric is also provided.

4.1 Accuracy Metric

We use the error of support of frequent itemsets to measure the degree of accuracy in
our system. This is because general objective of association rule mining is to identify all
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frequent itemsets with support larger than a threshold min_supp. There are two kinds
of errors: false drops, which are undiscovered frequent itemsets and false positives,
which are itemsets wrongly identified to be frequent. Formally, given itemset I, let
the support of I; in the original transactions T" and the perturbed transactions R(T") be
supp(I;) and supp’(I;), respectively. Recall that the set of frequent h-itemsets in 7 is
L;,. With these notations, we can define those two errors as follows:

Definition 1. For a given itemset size h, the error on false drops, p1, and the error on
false positives, ps, are defined as

p1 = max (supp(I;) — supp' (1)), )
I;€Ly

p2 = max (supp'(I;) — supp(I;)). ®)
I;ZLy

We define the degree of accuracy as the maximum of p; and ps on all itemset sizes.

Definition 2. The degree of accuracy in a privacy preserving association rule mining
system is defined as -y = maxy,>1 max(p1, p2).

With this definition, we can derive an upper bound on the degree of accuracy.
Theorem 1. v < 2.61807,,/m, where o; is the ith eigenvalue of A = T'T.

The proof can be found in [12].

This bound is fairly small when m is sufficiently large, which is usually the case
in reality. Actually, our method tends to enlarge the support of high-supported itemsets
and reduce the support of low-supported itemsets. Thus, the effective error that may
result in false positives or false drops is much smaller than the upper bound. We may
see this from the simulation results later.

4.2 Privacy Metric

In our system, the data miner cannot deduce the original ¢ from ¢ = ¢V} V! because
Vi, V), is a singular matrix with det(V,V})) = 0 (i.e., it does not have an inverse matrix).
Since t — t — R(t), t cannot be deduced from R(t) deterministically. To measure the
probability that an item in ¢ is identified from R(t), we need a privacy metric.

A privacy metric, privacy breach, is proposed in [8]. It is defined by the posterior
probability Pr{a; € t|t'} that an item could be recovered from the perturbed transac-
tion. Unfortunately, this metric is unsuitable in our system settings, especially to Inter-
net applications. Consider a person taking an online survey of the commodities he/she
purchased in the last month. A privacy breach of 50% (which is achieved in [8]) does
not prevent privacy divulgence effectively. For instance, for a company who uses spam
mail to make advertisement, a 50% probability of success (correct identification of a
person who purchased similar commodities in the last month) certainly deserves a try
because a wrong estimation (a spam mail sent to a wrong person) costs little.

We propose a privacy metric that measures the number of “unwanted” items (i.e.,
items not contribute to association rule mining) divulged to the data miner. For an item
a; that does not appear in any frequent itemset (i.e., a; ¢ |J Lx), the divulgence of a;
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(i.e., a; € R(t)) does not contribute to the mining of association rules. Due to survey
results in [10], a person has a strong will to filter out such “unwanted” information (i.e.,
information not effective in data mining) before divulging private data in exchange of
data mining results. We evaluate the level of privacy by the probability of an “unwanted”
item to be included in the transformed transaction. Formally, the level of privacy is
defined as follows:

Definition 3. Given a transaction t, an item a; € t appears in a frequent itemset in t
if there exists a frequent itemset I; such that a; € I; C t. Otherwise we say that a; is
infrequent in t. We define the level of privacy as

0 = Pr{a; € R(t)|a; is infrequent in t} (6)
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Fig. 3 shows a simulation result on all 2-itemsets. The z-axis is the support of item-
sets in original transactions. The y-axis is the support of itemsets in perturbed transac-
tions. The figure intends to show how effectively our system blocks the unwanted items
from being divulged. If a system preserves privacy perfectly, we should have y equal to
zero when z is less than min_supps. The data in Fig. 3 shows that almost all 2-itemsets
with support less than 0.2% (i.e., 233, 368 unwanted 2-itemsets) have been blocked.
Thus, the privacy has been successfully protected. Meanwhile, the supports of frequent
2-itemsets are exaggerated. This should help the data miner to identify frequent itemsets
from additional noises.

Formally, we can derive an upper bound on the level of privacy.

Theorem 2. The level of privacy in our system is bounded by

_— 7
0%4_...4_0121 )

where o; is the ith eigenvalue of A = T'T.

The proof can be found in [12].
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By Theorems 1 and 2, we can observe a tradeoff between accuracy and privacy.
Note that o; is sorted in descending order. Thus a larger k results in more “unwanted”
items to be divulged. Simultaneously, the degree of accuracy (whose upper bound is in
proportion to o7, ;) decreases.

4.3 Simulation Results on Real Datasets

We will present the comparison between our approach and the cut-and-paste random-
ization operator by simulation results obtained on real datasets. We use a real world
dataset BMS Webview 1 [16]. The dataset contains web click stream data of several
months from the e-commerce website of a leg-care company. It has 59,602 transactions
and 497 distinct items.

We randomly choose 10,871 transactions from the dataset as our test band. The
maximum transaction size is 181. The average transaction size is 2.90. There are 325
transactions (2.74%) with size 10 or more. If we set min_supp = 0.2%, there are 798
frequent itemsets including 259 one-itemset, 350 two-itemsets, 150 three-itemsets, 37
four -itemsets and two 5-itemsets.

As a compromise between privacy and accuracy, the cutoff parameter K, of cut-
and-paste randomization operator is set to 7. The truncation level k£ of our approach is
set to 6. Since both our approach and the cut-and-paste operator use the same method
to add random noise, we compare the results before noise is added. Thus we set p,, = 0
for both our approach and the cut-and-paste randomization operator.

—— Our perturbation algorithm

— Our perturbation algorithm {
'+ Previous approach: cut-and-paste

 Previous approach: cut-and-paste

/o,

degree of accuracy (%)
Degree of Privacy

01 02 03 04 05 06 07 08 09 1 ] 01 02 03 04 05 08 07 08 09 1

Py Py

Fig. 4. Accuracy Fig. 5. Privacy

The solid line in Fig. 4 shows the change of degree of accuracy (max{p1, p2}) of our
approach with the parameter p;. The dotted line shows the degree of accuracy while cut-
and-paste randomization operator is employed. We can see that our approach reaches
a better accuracy level than the cut-and-paste operator. A recommendation made from
the figure is that p; € (0.7,0.8) is suitable for hard-core privacy protectionists while
oy € (0.2,0.3) is recommended to persons care accuracy of association rules more than
privacy protection.

The relationship between the level of privacy and p; in the same settings is presented
in Fig. 5. The dotted line shows the level of privacy of the cut-and-paste randomization
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operator. We can see that the privacy level of our approach is much higher than the cut-
and-paste operator when p; > 0.1. Thus our approach is always better on both privacy
and accuracy issues when 0.1 < ¢ < 1.

5 Implementation

A prototype of the privacy preserving association rule mining system with our new
scheme has been implemented on web browsers and servers for online surveys. Visitors
taking surveys are considered to be data providers. The data perturbation algorithm is
implemented as custom codes on web browsers. The web server is considered to be the
data miner. A custom code plug-in on the web server implements the PG (perturbation
guidance) part of the data miner. All custom codes are component-based plug-ins that
one can easily install to existing systems. The components required for building the
system is shown in Fig. 6.

Privacy Preserving Mining of Visitor - .
Association Rules Data Provider g LOCT R
Web Server Assoc1qt19n Rule ¢ :
Mining _ Perturbation Guidance
Secure Communication Database Component Component
S ﬁm

Fig. 6. System implementation

The overhead of our implementation is substantially smaller than previous
approaches in the context of online survey. The time-consuming part of the “cut-and-
paste” mechanism is on support recovery, which has to be done while mining associ-
ation rules. The support recovery algorithm needs the partial support of all candidate
items for each transaction size, which results in a significant overhead on the mining
process.

In our system, the only overhead (possibly) incurred on the data miner is updating
the perturbation guidance V},, which is an approximation of the first k right eigenvectors
of A* = T*'T*. Many SVD updating algorithms have been proposed including SVD-
updating, folding-in and recomputing the SVD [14, 15]. Since T* is usually a sparse
matrix, the complexity of updating SVD can be considerably reduced to O(n). Besides,
this overhead is not on the critical time path of the mining process. It occurs during
data collection instead of data mining process. Note that the transfered “perturbation
guidance” V, is of the length kn. Since k is always a small number (e.g., k£ < 10), the
communication overhead incurred by “two-way” communication is not significant.

6 Final Remarks

In this paper, we propose a new scheme on privacy preserving mining of association
rules. In comparison with previous approaches, we introduce a two-way communication
mechanism between the data miner and data providers with little overhead. In particular,
we let the data miner send a perturbation guidance to the data providers. Using this
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intelligence, the data providers distort the data transactions to be transmitted to the
miner. As a result, our scheme identifies association rules more precisely than previous
approaches and at the same time reaches a higher level of privacy.

Our work is preliminary and many extensions can be made. For example, we are
currently investigating how to apply a similar algebraic approach to privacy preserving
classification and clustering problems. The method of SVD has been broadly adopted
to many knowledge discovery areas including latent semantic indexing, information
retrieval and noise reduction in digital signal processing. As we have shown, singular
value decomposition can be an effective mean in dealing with privacy preserving data
mining problems as well.
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