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Abstract. Attribute noise can affect classification learning. Previous
work in handling attribute noise has focused on those predictable at-
tributes that can be predicted by the class and other attributes. However,
attributes can often be predictive but unpredictable. Being predictive,
they are essential to classification learning and it is important to handle
their noise. Being unpredictable, they require strategies different from
those of predictable attributes. This paper presents a study on iden-
tifying, cleansing and measuring noise for predictive-but-unpredictable
attributes. New strategies are accordingly proposed. Both theoretical
analysis and empirical evidence suggest that these strategies are more
effective and more efficient than previous alternatives.

1 Introduction

Real-world data are seldom as perfect as we would like them to be. Except in
the most structured environment, it is almost inevitable that data contain er-
rors from a variety of corrupting processes, such as acquisition, transmission and
transcription [11, 13]. The corrupted data, namely noise, usually have adverse im-
pact on interpretations of the data, models created from the data, and decisions
made based on the data [7]. Since a manual process is laborious, time consuming
and itself prone to errors, effective and efficient approaches that automate noise
handling are necessary [8].

This paper handles noise in the context of classification learning, which plays
an active role in machine learning. In classification learning, data are com-
posed of instances. Each instance is expressed by a vector of attribute values
and a class label. We further differentiate attributes into three types: unpredic-
tive, predictive-and-predictable and predictive-but-unpredictable. Unpredictive
attributes are futile for or irrelevant to predicting the class. They can be dis-
carded by feature selection methods prior to the learning. Predictive attributes
are useful for predicting the class, among which predictable ones can be pre-
dicted by the class and other attributes while unpredictable ones cannot. We
argue that since predictive attributes contribute to classification learning, it is
important to handle their noise. However, because predictable attributes and
unpredictable attributes have different natures, they require different strategies
for noise handling. For convenience of expression, an ‘attribute’ throughout this
paper implies a predictive attribute unless otherwise mentioned.
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Generally, there are two types of noise, attribute noise and class noise. Most
previous efforts are engaged in handling class noise, such as for contradictory
instances (the same instances with different class labels) or misclassifications (in-
stances labeled with a wrong class). Various achievements have been reported [2—
6, 14,15]. In comparison, much less attention has been paid to attribute noise.
Ironically, attribute noise tends to happen more often in the real world. For ex-
ample, if noise comes from entry mistakes, it is very likely that the class has
fewer errors since the people involved know that it is the ‘important’ value and
pay more attention to it [11].

Among few publications on handling attribute noise, an important contribu-
tion is LENS [7]. It aims at presenting a ‘complete’ understanding that helps
identify, correct or prevent noise by modelling the generation of clean data, the
generation of noise and the process of corruption, under the assumption that the
noise generation and the corruption process have learnable underlying structures.
If the assumption does not hold, the authors indicate that LENS has limited util-
ity. Different from LENS, another often-cited achievement, polishing [12], deals
with attribute noise without knowing its underlying structures. As we will detail
later, polishing excels in handling noise for predictable attributes. A predictable
attribute is one that can be predicted by the class and other attributes. We sug-
gest that attributes in real-world applications can frequently be otherwise. It is
because normally attributes are collected as long as they contribute to predict-
ing the class. Whether or not one attribute itself can be predicted is often not a
concern.

Hence, with all due respect to previous achievements, we suggest that the
picture of handling attribute noise is incomplete. It is an open question how
to address unpredictable attributes when their underlying noise structures are
unavailable. These understandings motivate us to explore appropriate strate-
gies that identify, cleanse and measure noise for predictive-but-unpredictable at-
tributes. In particular, Section 2 introduces the background knowledge. Section 3
proposes sifting to identify noise. Section 4 discusses deletion, uni-substitution
and multi-substitution to cleanse the identified noise. Section 5 studies literal
equivalence and conceptual equivalence to measure noise. Section 6 empirically
evaluates our new strategies. Section 7 gives a conclusion and suggests further
research topics.

2 Background Knowledge: Polishing

Polishing [12] is an effective approach to handling noise for predictable attributes.
When identifying noise for an attribute A, polishing swaps A with the original
class, and uses cross validation to predict A’s value for each instance. Those
values that are mis-predicted are identified as noise candidates. It then replaces
each noise candidate by its predicted value. If the modified instance is supported
by a group of classifiers learned from the original data, the modification is re-
tained. Otherwise, it is discarded. Polishing assumes that since one can predict
the class by attribute values, one can turn the process around and use the class
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Table 1. Prediction accuracies of classes and attributes in polishing’s data. For in-
stance, mushroom has 100.0% in the ‘Class’ column indicating that the prediction accu-
racy for its class is 100.0%. Mushroom has 10 in the column [90%,100%)] of ‘Attributes’
indicating that it has 10 attributes whose prediction accuracies fall into [90%,100%)].

Dataset Class Attributes
[90%,100%] [70%,90%) [50%,70%) [0%,50%)

mushroom|100.0%| 10 4 5 3
soybean 91.5%| 27 3 3 2
led-24 100.0% 7 0 17 0
vote 96.3% 3 10 3 0
audiology | 77.9%| 58 9 0 2
promoters | 81.1% 0 0 3 54

together with some attributes to predict another attribute’s values as long as
this attribute is predictive.

However, this ‘turn around’ can be less justifiable when unpredictable at-
tributes are involved. For example, the often-cited monk’s problems from the
UCT data repository [1] have 6 attributes Aj,..., Ag and a binary class. One
underlying concept is (A4 = 1 and A5 = 3) or (A2 # 3 and A5 #4) = C = 1;
otherwise C' = 0. Accordingly As is a predictive attribute. Although the class
can be predicted with 100% accuracy by C4.5trees [9] using 10-fold cross valida-
tion, the prediction accuracy for As is only 35% because it has multiple values
mapped to a single class. Directed by such a low accuracy, the noise identification
has a strong potential to be unreliable. More datasets involving predictive-but-
unpredictable attributes will be shown in Section 6.

Polishing has reported favorable experimental results. Nonetheless, they ap-
ply to predictable attributes. For each of polishing’s datasets, Table 1 summarizes
prediction accuracies for its class and attributes®. In all datasets except ‘promot-
ers’, highly predictable attributes dominate the dataZ?. In many cases, attributes
are even more predictable than the original class. The ‘promoters’ data, which
are not dominated by predictable attributes, produce a less favorable result for
polishing.

These observations by no means devalue polishing’s key contribution to han-
dling predictable attributes. Nonetheless they raise the concern of polishing’s
suitability for unpredictable attributes and inspire our further study.

3 Identifying Noise

We propose a sifting approach to identifying noise for unpredictable attributes.
For a predictable attribute, there exists a value whose probability given an in-

! We summarize them because many datasets have too many attributes to be listed
individually. For instance, audiology has 69 attributes. Each accuracy results from
C4.5trees using 10-fold cross validation, as polishing did.

2 For the ‘vote’ dataset, although 17 attributes fall in [50%,70%], these attributes are
randomly-added unpredictive attributes.
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stance is high enough to dominate alternative values. For an unpredictable at-
tribute, there is often no such dominating value. Instead, multiple values may
be valid given an instance.

To identify noise for an attribute, polishing predicts what the clean value
is and identify other values suspicious. This strategy is less appropriate if the
attribute is unpredictable. For example, we have instances to represent apples
and berries. One attribute is color. Apples can be green, yellow or red. Berries
can be blue, black or red. If green apples happen to have a slightly higher occur-
rence, polishing will identify valid instances like < -- -, yellow, apple, - -- > and
< ---,red,apple, - - - > suspicious since the predicted color of an apple is green.

Neither is it adequate to individually identify noise for each attribute,
where an attribute is separated from the others, swaped with the class and
predicted by other possibly noisy attributes. Suppose an instance to be <
-+ black,apple,--- >. When the attribute ‘color’ is under identification, its
value ‘black’ will be identified suspicious since it should be ‘green’ given ‘apple’.
Meanwhile, when the attribute ‘fruit’ is under identification, its value ‘apple’ will
be identified suspicious since it should be ‘berry’ given ‘black’. Thus both values
are identified. However, it is very likely that only one is real noise. The original
instance can be a ‘black berry’ or a ‘green apple’. This compounded suspicion is
caused by identifying noise according to noisy evidence.

Accordingly sifting evaluates whether the pattern presented by a whole in-
stance is suspicious instead of judging isolated values. It identifies an instance
suspicious only when this instance does not satisfy any pattern that is learned
with certain confidence from the data. We name this strategy ‘sifting’ because
it takes the set of learned patterns as a sifter to sift instances. Instances that
match any pattern may go through while the remaining are identified suspicious.
By this means, an unpredictable attribute is not forced to comply with a single
value. Instead, its multiple valid values can be allowed. For instance, colors of
green, yellow and red are all allowable for an apple since we can learn those pat-
terns. A black apple will be identified suspicious since its pattern is very unlikely,
and this anomaly is efficiently identified in one go.

Algorithm 1 shows an implementation of sifting. Please be noted that we
are dealing with situations where the underlying structure of noise (if there is
any at all) is not available. This implies that if there is any learnable pattern,
it reflects the knowledge of clean data. Furthermore, the learned patterns are in
terms of classification rules (with the class, but not any attribute, on the right
hand side).

We expect sifting to obtain a subset of instances with a high concentration
of noise. We then forward this subset to the next process: cleansing.

4 Cleansing Noise

One should be very cautious when coming to cleanse an instance. For example,
the data can be completely noise-free but an inappropriate rule learner is em-
ployed. Hence, we suggest that noise cleansing is conducted only when the data’s
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Algorithm 1: Identifying noise for unpredictable attributes

Input: possibly noisy dataset D; a rule learner L;
Output: a set of suspicious instances 1.5}
Begin
RS = a set of rules that L learns from D;
foreach Instance I; € D
flag = 0;
foreach Rule R; € RS
if I; satisfies R; {flag = 1; break;}
if flag==0 {push I; into IS;}
End

genuine concept is learnable; practically, only when a high prediction accuracy
is achievable.

For predictive attributes, it is sensible to only permit changes towards the
predicted values, as polishing does. For unpredictable attributes, usually no value
can be predicted with such a high accuracy as to exclude alternative values.
Accordingly, we study three cleansing approaches, deletion, uni-substitution and
multi-substitution.

As delineated in Algorithm 2, deletion simply deletes all identified noisy
instances. At first sight, it most likely causes information loss. Nevertheless,
this intuition needs to be verified. Uni-substitution cleanses an instance by the
rule that minimizes the number of value changes. If there are multiple such
rules, uni-substitution filters them by their quality indicators® and chooses a
single one to cleanse the suspicious instance. Hence uni-substitution maintains
the original data amount. Multi-substitution is the same as uni-substitution
except at the final stage. If finally several rules are still equally qualified, multi-
substitution produces multiple cleansed instances, each corresponding to a rule,
and substitutes all of them for the suspicious instance. In this way, it may increase
the data amount. But it has a merit that retrieves all valid values.

5 Measuring Noise

It is important to measure how noisy the corrupted data are if compared against
its clean version. Otherwise, it is difficult to evaluate the effectiveness of a noise
handling mechanism. A common measurement is literal equivalence [12,15]. We
believe that it is often of limited utility and propose conceptual equivalence in-
stead.

5.1 Literal Equivalence

Suppose C'D is a clean dataset and is corrupted into a noisy dataset N D. When
measuring noisy instances in N D, literal equivalence conducts a literal compar-
ison. Two common mechanisms are match-corresponding and match-anyone.

3 Normally the rule learner attaches quality indicators to each rule. For example, we
employ C4.5rules that attaches each rule with confidence, coverage and advantage.
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Algorithm 2: Cleansing noise for unpredictable attributes

Input: a set of suspicious instances IS identified by a rule set RS in a possibly noisy dataset D;
Output: a cleansed dataset D;

Begin
if cleanse == deletion
D=D-1IS;
return D;

foreach Instance I; € 1.9

foreach Rule R; € RS
changes = numbers of attribute values to be changed to make I; satisfy R;;

candidates = set of rules with the smallest changes;
// Further filter by rules’ quality
if |candidates| > 1 {candidates = rules in candidates with highest confidence;}
if |candidates| > 1 {candidates = rules in candidates with highest coverage;}
if |candidates| > 1 {candidates = rules in candidates with highest advantage;}

if cleanse == uni-substitution
I' = change I; to satisfy the first rule” in candidates;
D =D —{L};
D=D+{I'};
if cleanse == multi-substitution
D =D - {Li};

foreach Rule R, in candidates
I’ = change I; to satisfy R.;
D=D+{I'};
return D;
End

“ Or a randomly-chosen rule in candidates. Since normally the order of the rules
implies some overall ranking made by the learner, we here have always chosen the
first one.

Match-corresponding. For the ith instance in N D, I;, match-corresponding
compares it with the ith instance I in C'D. If I; matches I, I; is clean. Otherwise
1; is noisy. Although it is straightforward, match-corresponding has very limited
function. The reason is that it is sensitive to the order of instances. As illustrated
in Figure 1, (a) is a clean dataset with n instances I; to I,,. Suppose that there
are no identical instances. Now we shift as in (b) each instance one location left
so that I; takes the location of I;_; for any i € [2,n] and I; takes the location of
I,,. The datasets (a) and (b) are the same. But match-corresponding will judge
(b) as 100% noise since no instance matches its corresponding one in (a).

@| L, 1L, oo I T | ®| L1, «ee 1 1|

n—-1 "n n

Fig. 1. Match-corresponding is sensitive to the order.

Match-anyone. For an instance I; in ND, as long as it can match anyone of
CD’s instances, match-anyone deems it clean. Only if it does not appear in CD
at all will I; be judged noisy. Although it is less censorious, match-anyone can be
insensitive to information loss. An extreme example is that an algorithm obtains
a rule complying with a single clean instance I; and cleanses all other instances
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into I as in (b) of Figure 2. Although (b) has significantly lost information of
(a), match-anyone still judges the cleansing superb with 100% success.

@ | 1,1, see 1 1 | ®| 1,1, e 1 I

Fig. 2. Match-anyone is insensitive to information loss.

5.2 Conceptual Equivalence

Other mechanisms of literal equivalence may well exist. However, all measure-
ments involving literal comparison suffer from a problem that they confine the
data’s legitimacy to the clean dataset at hand. Usually a dataset is only a sample
of the whole population. Instances can legitimately exist in the whole population
but do not appear in certain samples. This motivates us to propose conceptual
equivalence, which we expect to be more elegant and capable in measuring noise.
Suppose a clean dataset C'D is corrupted and is then cleansed into a dataset
CD'. Suppose the target concepts learned from CD and CD’ are Conceptcp
and Conceptcpr respectively. In order to evaluate how well C'D’ resembles CD,
conceptual equivalence will cross-exam how well C'D’s data support Conceptcp:
and how well C'D"’s data support Conceptcp. The better both data support each
other’s concept, the less noise in C'D’ and the higher the conceptual equivalence.
The process is illustrated in Figure 3.

learn learn

Cross X €xam

Fig. 3. Conceptual equivalence conducts cross-exam.

6 Experiments

Experiments are conducted to test three hypotheses for unpredictable attributes:
(1) our new strategy identifies noise more accurately and efficiently than polish-
ing; (2) if the data’s genuine concept is learnable and hence cleansing is allowed,
our new strategy cleanses noise more effectively than polishing; and (3) concep-
tual equivalence is more appropriate than literal equivalence to measure noise.
Please be noted that we do not claim that our new strategies outperform polish-
ing for predictable attributes. Instead, the niche of our methodology lies within
unpredictable attributes.

6.1 Data and Design

We choose a dataset from the UCI data repository [1] if it satisfies the following
conditions. First, its genuine concept is documented. We do not use this infor-
mation during any stage of identifying or cleansing. It only helps us check the
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types of attributes and verify our analysis. Second, its genuine concept is learn-
able, that is, the prediction accuracy is high. Otherwise, we will not be able to
differentiate the clean from the noisy. Third, the attributes are predictive but
unpredictable. Here we deem an attribute unpredictable if its prediction accu-
racy is significantly lower than the class. Fourth, there are no numeric attributes.
Our approaches can apply to numeric attributes if discretization is employed.
However, discretization may introduce extra intractable noise and compromises
our understanding of the experimental results. The resulting 5 (3 natural, 2 syn-
thetic) datasets’ statistics and prediction accuracies for the class and attributes
are in Table 2.

We use C4.5rules [9] as the rule learner for both noise identification and
cleansing. Since originally polishing employs C4.5trees, we re-implement pol-
ishing using C4.5rules to ensure a fair comparison. Each attribute is randomly
corrupted, where each value other than the original value is equally likely to be
chosen. A noise level of % indicates that % instances are corrupted. Each orig-
inal dataset is corrupted into four levels: 10%, 20%, 30% and 40% respectively.

Table 2. Experimental datasets.

Data Size|Class|Attribute Prediction accuracy (%)

set No. No. Class Attributes

car 1728 4 6 92.4(29.3, 30.7, 23.2, 46.8, 36.6, 52.4

monksl| 432| 2 6 96.5(51.2, 48.1, 41.0, 23.1, 35.9, 44.7

monks3| 432| 2 6 100.0(23.1, 51.2, 41.2, 28.5, 35.4, 44.2

ttt? 958 2 9 85.1|51.0, 48.9, 50.8, 49.6, 62.7, 49.1, 49.8, 49.3, 51.0
nursery [12960| 5 8 97.1(42.8, 27.7, 24.2, 25.5, 37.5, 50.8, 34.4, 75.9

¢ The ttt dataset represents the tic-tac-toe dataset.

6.2 Identification

The identification performance is measured by F1 measure [10], a popular mea-
sure used in information retrieval that evenly combines precision and recall of
the identification. Precision p reflects the purity of identification. It equals the
number of truly noisy instances identified divided by the total number of identi-
fied instances. Recall r reflects the completeness of identification. It equals to the
number of truly noisy instances identified divided by the total number of truly
noisy instances. F'1(p, r) equals to jﬁ, which falls in the range [0, 1]. The higher
a method’s F'1 measure, the better this method simultaneously maximizes both
precision and recall. The results for all 20 cases (5 datasets, each with 4 levels
of corruption) are depicted in Figure 4. No matter whether one uses match-
corresponding or uses match-anyone?, sifting achieves a higher F'1 measure in
almost all cases. This indicates that sifting outperforms polishing in identifying
noise for unpredictable attributes.

4 Conceptual equivalence does not apply here since no data have been cleansed yet.
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Fig.4. The F1 measure measures sifting and polishing’s identification. Each co-
ordinate represents an experimental case. Its z component represents polishing’s
F'1 measure and its y component represents sifting’s F'1 measure. Hence, any coordi-
nate above the y = x line indicates a case where sifting achieves a higher F'1 measure
than polishing does.

6.3 Cleansing

The cleansing performance under literal and conceptual equivalence is studied
here.

Under literal equivalence. Figure 5 records correction accuracy of uni-
substitution and polishing® in each of 20 cases, which equals to the number
of correctly cleansed instances divided by the total number of identified in-
stances. Although uni-substitution achieves higher correction accuracies more
often than not, the results also confirm our belief that literal equivalence tends
to improperly reflect the cleansing performance. Correction accuracies under
match-corresponding are always low (below 10%) since match-corresponding is
sensitive to the instances’ order and is over censorious. Correction accuracies
under match-anyone are far higher since match-anyone can be insensitive to
information loss and has a potential to exaggerate the cleansing efficacy.
However, ttt is an exception that obtains a low accuracy even under match-
anyone. Its clean data encode the complete set of legal 3x3 board configurations
at the end of tic-tac-toe games and contain 958 instances. But the corruption
does not have the legitimacy in mind and has 3% = 19683 configurations at
choice. Few can be restored to completely match a clean instance. This raises
another type of situation where literal equivalence can not manage well.

Under conceptual equivalence. There can be different ways to calculate
conceptual equivalence. Table 3 reports the results of our implementation.
We first learn classification rules from clean data and use them to classify

5 Correction accuracy here does not apply to deletion or multi-substitution since they
do not maintain the original data amount.
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Fig. 5. Under literal equivalence, the correction accuracy(%) measures polishing and
uni-substitution’s cleansing. Each coordinate represents an experimental case. Its =
component represents polishing’s correction accuracy and its y component represents
uni-substitution’s correction accuracy. Hence, any coordinate above the y = x line
indicates a case where uni-substitution achieves a higher correction accuracy than
polishing does. The axis value ranges of (a) and (b) are different. The correction accu-
racies under match-corresponding are far lower than those under match-anyone.

cleansed data, obtaining a classification accuracy acc;. We then learn classi-
fication rules from cleansed data and use them to classify clean data, obtaining
another classification accuracy accs. Because acc; and accy can be associated
with different data sizes (size; and sizes respectively)®, their weighted mean
= Zle(acci X size;)/ Zle size; is used to indicate the degree of conceptual
equivalence as in (a). Graphs are drawn in (b) and (c) to better reflect the trend
of the values. The pattern in (b) corresponds to ‘car’, which is representative
of other three datasets, monksl, monks2 and nursery. The pattern in (c) cor-
responds to ‘ttt’, which is a little different from others because of ttt’s special
nature as we have explained in the previous section.

Compared with corrupted data, all of deletion, uni-substitution and multi-
substitution achieve higher conceptual equivalence across all datasets at all noise
levels. This suggests that our handling helps improve the quality of the corrupted
data. Compared among themselves, there is no significant difference. An inter-
esting observation is that, despite the risk of losing information, deletion works
surprisingly well. A closer look reveals that deletion gains this advantage mainly
through large datasets like nursery. This suggests that when the available data
well exceed the amount that is needed to learn the underlying concept, appro-
priately deleting suspicious noise may not harm the genuine reflection of the
concept while may effectively eliminate the chance of introducing new noise. As
for multi-substitution, we have observed that multiple candidates do not often
happen. It is because our process of filtering is very fine as given in Algorithm
2. One can make it coarser and may observe more differences between multi-
substitution and uni-substitution.

5 For example, if multi-substitution is used, the size of cleansed data can be bigger
than that of clean data.
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Table 3. Cleansing performance under conceptual equivalence (%).

Noise|Data Cor| Del| Mul| Uni| Pol| Rev 100
level |set 08 |
car 94.8| 97.1| 97.6] 97.8| 95.6 97.0
monks1{98.4{100.0{100.0{100.0{100.0|100.0
10% |monks3|98.3/100.0{100.0|100.0{100.0{100.0
ttt 97.3| 98.0] 97.8| 97.8| 98.4| 99.3
nursery |96.6| 99.3| 99.2| 99.2| 99.0| 99.1
car 92.2] 96.8| 96.8| 96.8| 95.1| 95.9

96

94t

92

90 r

Conceptual equivalence

88

monks1[96.6]100.0/100.0/100.0|100.0{100.0 %5 10 15 20 25 30 5 40 45
20% |monks3[96.7/100.0{100.0{100.0{100.0{100.0 Corruption level (%)

ttt 92.9| 94.3| 94.1] 93.4| 93.1| 94.7

nursery|(93.7| 99.0| 98.8| 98.8| 97.9| 98.8 (b) car

car 86.9| 93.9| 93.0f 93.0| 91.6| 93.9

monks1{93.8/100.0/100.0{100.0{100.0{100.0 100
30% |monks3|93.9] 99.5| 99.4| 99.4| 99.5| 99.5
ttt 87.8] 89.9] 88.5| 88.6| 87.6| 89.3
nursery |90.4| 98.5| 95.5| 95.6| 96.9| 98.0
car 87.4| 91.71 92.7| 92.5| 89.5| 91.1
monks1|91.3| 99.2| 98.8| 98.8| 99.7| 97.8
40% |monks3(94.4| 99.9| 98.4| 98.4|100.0 99.9
ttt 82.3| 87.5| 86.4| 86.4| 83.9| 85.6
nursery|87.3| 97.3| 96.5| 96.6| 94.3| 96.6 8 T 15 20 25 30 35 40 a5

95

90

85

Conceptual equivalence

Mean 92.6] 97.1] 96.7| 96.6| 96.1| 96.8 Corruption level (%)
Geomean [92.5| 97.0| 96.6] 96.6] 96.0| 96.7
(a) summary (c) ttt

Note: Each method’s conceptual equivalence is calculated between the clean data and
the data processed by this method. ‘Cor’ is corruption; ‘Del’ is deletion; ‘Mul’ is
multi-substitution; ‘Uni’ is uni-substitution; ‘Pol’ is polishing; and ‘Rev’ is the revised
version of polishing that is supplied with sifting’s identification. The ‘Mean’ row and
‘Geomean’ row record its arithmetic mean and geometric mean across different
datasets.

Compared with polishing, all of our cleansing methods achieve higher con-
ceptual equivalence more often than not. Their arithmetic and geometric means
are also higher than polishing’s. Nevertheless, we do not jump to the conclusion
that polishing’s cleansing, which is sophisticated, is inferior. It is possible that
the disadvantage of its identification is passed on to its cleansing. Hence, we im-
plement a revised version of polishing whose cleansing is supplied with sifting’s
identification. Thus we can have a pure comparison between the cleansing per-
formances. The experimental results show that revised polishing either improves
on polishing or maintains polishing’s high conceptual equivalence (like 100%) in
18 out of 20 cases. This from another perspective verifies that sifting is effective.

The revised polishing thus can obtain competitive conceptual equivalence.
However, in terms of efficiency, our new strategies are superior to polishing.
Suppose the number of instances and attributes to be I and A respectively.
Suppose the rule learning algorithm’s time complexity and the number of learned
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rules to be O(L) and R respectively. For each attribute, polishing conducts
cross validation to predict its value for each instance. It then recursively tries
out different combinations of attribute changes for each instance. It reaches a
prohibitive time complexity of O(ALI) + O(I24). In comparison, our cleansing
needs to learn a rule set for once and match each instance against this rule
set. Thus it has a time complexity of O(L) + O(IR). Hence our methods are
far more efficient than polishing, which has been verified by the experimental
running time and is important in the real world where large data are routinely
involved.

7 Conclusion

This paper handles predictive-but-unpredictable attributes in noisy data sources.
To identify noise, we have proposed sifting. To cleanse noise, we have suggested
that unless the genuine concept can be reliably learned, one should be very
cautious to modify an instance. When the genuine concept is learnable, we
have studied three cleansing approaches, deletion, uni-substitution and multi-
substitution. To measure noise, we have argued that literal equivalence is often
inadvisable and proposed conceptual equivalence. Both theoretical analysis and
empirical evidence have demonstrated that our strategies achieve better efficacy
and efficiency than previous alternatives.

The knowledge acquired by our study, although preliminary, is informative.
We expect it to contribute to completing the picture of attribute noise handling.
However, a single study seldom settles an issue once and for all. More efforts are
needed to further advance this research field. We name three topics here.

First, whether an attribute is predictable or unpredictable is a matter of
degree. In our current research, we deem an attribute unpredictable when its
prediction accuracy is significantly lower than the class. Further research to work
out more sophisticated thresholds or heuristics would be interesting. Second,
although we take polishing as straw man, sifting does not claim to outperform
polishing for predictable attributes. Instead, sifting and polishing are parallel,
each having its own niche to work. Hence it is sensible to combine them. A work
frame might be: (1) use feature selection to discard unpredictive attributes; (2)
decide whether a predictive attribute is predictable; (3) if it is predictable, use
polishing to handle its noise; and if it is unpredictable, use sifting to handle its
noise. Lastly, it would be enchanting to extend our research beyond classification
learning, such as to association learning where patterns exist but attributes are
seldom predictable.
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