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Abstract. Clustering results could be comprehensible and usable if in-
dividual groups are associated with characteristic descriptions. However,
characterization of clusters followed by clustering may not always pro-
duce clusters associated with special features, because the first clustering
process and the second classification step are done independently, de-
manding an elegant way that combines clustering and classification and
executes both simultaneously.
In this paper, we focus on itemsets as the feature for characterizing
groups, and present a technique called “itemset classified clustering,”
which divides data into groups given the restriction that only divisions
expressed using a common itemset are allowed and computes the op-
timal itemset maximizing the interclass variance between the groups.
Although this optimization problem is generally intractable, we develop
techniques that effectively prune the search space and efficiently com-
pute optimal solutions in practice. We remark that itemset classified
clusters are likely to be overlooked by traditional clustering algorithms
such as two-clustering or k-means, and demonstrate the scalability of our
algorithm with respect to the amount of data by the application of our
method to real biological datasets.

1 Introduction

Progress in technology has led to the generation of massive amounts of data, in-
creasing the need to extract informative summaries of the data. This demand has
led to the development of data mining algorithms, such as clustering [14, 22, 9,
1, 5, 20], classification [4, 15], and association rules [2, 10, 13]. Recent technologi-
cal progress in biology, medicine and e-commerce marketing has generated novel
datasets that often consist of tuples represented by features and an objective nu-
meric vector. For understanding what causes individual groups of data similar
in terms of vectors, it is helpful to associate features with each group. A typical
example from molecular biology is association of gene-controlling mechanisms
with genes having analogous expression patterns. Such novel data motivate us
to develop itemset classified clustering.
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1.1 Motivating Example

We here present a motivating example for showing the difference between tradi-
tional approach and our method called “itemset classified clustering.”

Consider eight tuples t1, ..., t8 in Table 1. Each tuple contains feature items
i1, ..., i5 and objective attributes a1 and a2. Fig. 1(A) shows objective vectors
(a1, a2) of the tuples represented by white circles. Each tuple is at regular interval
on the same square. For example, tuple t2 locates at (1, 2).

Fig. 1. Motivating Example of Itemset Classified Clustering

Table 1. Example Table

Feature Items Objective
Attributes

i1 i2 i3 i4 i5 a1 a2

t1 0 0 1 0 0 1 3
t2 1 0 0 1 1 1 2
t3 0 0 0 1 1 1 1
t4 1 1 0 0 1 2 1
t5 1 1 0 0 1 3 1
t6 1 1 0 0 1 3 2
t7 0 0 0 1 0 3 3
t8 0 1 0 1 1 2 3

Let us form clusters by dividing the tuples
into two groups, S and S̄, so that the division
optimizes a proper measure. As the measure,
one may utilize various values such as the
diameter or the connectivity of a group, we
here use interclass variance extended to the
multi-dimension, which is common measure
grounding in statistics to evaluate clusters.
For simplicity, we call this multi-dimensional
version just interclass variance in this pa-
per. Let c(S) denote the centroid of objective
vector of S; namely,

∑
x∈S x/|S|. Interclass

variance is defined as: |S| ∣∣c(S) − c(S ∪ S̄)
∣
∣2+

|S̄| ∣∣c(S̄) − c(S ∪ S̄)
∣
∣2. One of the solutions that maximize interclass variance is

indicated by dotted straight line (S1) in Fig. 1(B). Line (S1) divides the tuples
into cluster S = {t1, t2, t3, t8} and cluster S̄ = {t4, t5, t6, t7}.

To understand the reason why tuples in each cluster are close, traditional
clustering-classification approach such as conceptual clustering [12] attempts to
find classifiers that are able to exactly classify the clusters using, say, additional
feature items i1, ..., i5. In Table 1, “1” denotes the presence of an item in each
tuple, while “0” denotes the absence. For instance, tuple t2 includes item i1,
i4 and i5. In Fig. 1(C), solid black circles indicate tuples that contain itemset
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{i4, i5}. Note that three out of four circles on the left of (S1) include the itemset,
while none of the four on the right does. From this observation, one may derive
the classifier that circles contain {i4, i5} if and only if they are on the left of
(S1), which holds seven out of eight cases, namely 87.5% accuracy. However, use
of optimal clustering, such as the division by (S1), may not be able to identify a
clustering so informative that each cluster is associated with its special feature
items.

For identification of such beneficial clusters, our itemset classified clustering
computes optimal clusters under the restriction that allows only splits expressible
by a common itemset. We call such clusters classified clusters. (S2) in Fig. 1(D)
indicates an example of classified cluster because the group {t4, t5, t6} is equal
to the set of tuples that contain both i1 and i2. In other words, classifier {i1, i2}
has 100% accuracy for cluster {t4, t5, t6}. {t1} is another example of classified
cluster because the cluster is associated with the special classifier {i3} ((S3) in
Fig. 1(D)). In these classified clusters, the set of tuples whose interclass variance
is larger would be better cluster. For example, {t4, t5, t6} split by (S2) is better
classified cluster than {t1} split by (S3). Note that the classified clusters are
overlooked by two-clustering in Fig. 1(B), and the groups would not be found
by general clustering algorithms such as k-means clustering.

One may wonder that the itemset associated with any optimal classified
cluster is a closed pattern [21], which is a maximal itemset shared in common
by transactions including the itemset. However, this claim is not true. For in-
stance, {i1, i2}, which is not a closed pattern, classifies optimal classified clus-
ter {t4, t5, t6}. Its superset {i1, i2, i5} is a closed pattern and it also classifies
the same optimal cluster; however, its inclusion of i5 is superfluous, because
neither of its subsets having i5, namely {i1, i5} and {i2, i5}, identifies any op-
timal classified cluster. This observation indicates that {i1, i2} better classifies
the optimal cluster. On the other hand, the closed pattern {i4, i5} corresponds
to non-optimal cluster {t2, t3, t8}. Consequently, itemsets for optimal classified
clusters and closed pattern itemsets are orthogonal notions.

This example reveals us that it is a non-trivial question to compute the op-
timal classified clusters because of two major problems. First, cluster that max-
imizes the index such as interclass variance is not always associated with special
features. In our example, although cluster segmented by (S1) has the optimal
index, the clusters are not associated with special features. Thus, the approach
of clustering followed by classification is not effective for deriving classified clus-
ters. Second, the number of combinations of items explodes as the number of
items increases.

1.2 Related Work

On clustering-classification approach, refinement of clustering or classification
might improve accuracy. Clustering studies have paid a great deal of atten-
tion to the choice of a measure that is tailored to the specificity of given data.
For example, measures of sub-clustering for gene expression profiles [5, 20] and
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model-based measures [19] have been proposed. However, in these approaches,
feature items are not supposed to be used to output directly constrained clusters.

Improvement of classification would increase the accuracy of the classifier for
each cluster. This sophistication, however, could increase the description length
of the classifier. For example, the number of nodes in a decision tree such as
CART [4] and C4.5 [15] is likely to huge, making it difficult to understand.
Moreover, classification methods do not generate classified clusters of similar
objects in terms of numeric vectors associated with tuples.

2 Itemset Classified Clustering

In this section, we formalize the itemset classified clustering problem.

Itemset Classified Clustering: Suppose that we classify a tuple by checking
to see whether it includes a feature itemset (e.g., {i1, i2}). Compute the
optimal classifier that maximizes interclass variance with its corresponding
cluster, or list the most significant N solutions.

In the running example, the optimal classifier is the itemset {i1, i2} and its
corresponding cluster is {t4, t5, t6}. Furthermore, when N = 10, the itemset
classified clustering problem demands the extraction of ten optimally classified
clusters.

Unfortunately, it is difficult to compute an optimal itemset that maximizes
the interclass variance, because the problem is NP-hard if we treat the maximum
number of items in an itemset as a variable. The NP-hardness can be proved
by reduction of the difficulty of the problem to the NP-hardness of finding the
minimum cover [8]. The reduction consists of the following three major steps: (1)
Treat a tuples as a vertex, and an item as a hyperedge enclosing such vertexes
(tuples) that contain the item. (2) A cover is then expressed as an itemset. (3) An
optimal itemset is proved to coincide with a minimal cover of vertexes according
to the convexity of the interclass variance function [13].

The NP-hardness prompts us to make an effective method to compute the
optimal itemset in practice. To compute the itemset classified clustering problem,
we present the properties of interclass variance in the next section.

3 Interclass Variance

3.1 Basic Definitions

In this section, we first introduce the index, interclass variance.

Definition 1 Let D be the set of all tuples. Let ik denote an item. We treat m
numerical attributes in the given database as special, and we call these attributes
objective attributes. Let a1, a2, . . . , am denote the objective attributes. Let t[ai]
indicate the value of an objective attribute ai associated with a tuple t.
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In Table 1, let D = {t1, t2, . . . , t8} and i1, . . . , i5 be items, and a1 and a2 be
objective attributes. Then, t2 contains itemset {i1, i4, i5} and t2[a1] = 1 and
t2[a2] = 2.

We divide D into two groups using itemset I, DI and D̄I . DI means a set of
tuples that include itemset I, and D̄I is the complement of DI ; namely D−DI . In
the running example, when I = {i1}, DI = {t2, t4, t5, t6} and D̄I = {t1, t3, t7, t8}.

Definition 2 Let n be |D| and x(I) be |DI |. Let si be
∑

t∈D t[ai], and yi(I) be∑
t∈DI

t[ai]. We define the interclass variance of itemset I as

x(I)
∑m

i=1

(
yi(I)
x(I)

− si
n

)2

+ (n − x(I))
∑m

i=1

(
si−yi(I)
n−x(I)

− si
n

)2

.

Since si and n are independent of the choice of itemset I according to the defini-
tion of interclass variance, the values of x(I) and yi(I) uniquely determine inter-
class variance. Therefore, we will refer to interclass variance as var(x, y1, . . . , ym).

Definition 3 var(x, y1, . . . , ym) = x
∑m

i=1

(
yi

x − si

n

)2 + (n − x)
∑m

i=1

(
si−yi

n−x − si

n

)2

.

In the running example, let I = {i1}. n = 8, s1 = s2 = 16, x(I) = 4,
y1(I) = 9 and y2(I) = 6. Therefore, var(x(I), y1(I), y2(I)) = 2.5.

When m = 1, this measure equals the interclass variance, a well-known sta-
tistical measure. Therefore, this index is a multi-dimensional generalization of
the interclass variance.

From the definition of interclass variance, we can prove the convexity of
var(x, y1, . . . , ym). The convexity is useful for conducting an effective search for
significant itemsets.

Definition 4 A function f(x, y1, . . . , ym) is convex if for any (x, y1, . . . , ym) and
(x′, y′

1, . . . , y
′
m) in the domain of f , and for any 0 ≤ λ ≤ 1,

λf(x, y1, . . . , ym) + (1 − λ)f(x′, y′
1, . . . , y

′
m) ≥ f (λ(x, y1, . . . , ym) + (1 − λ)(x′, y′

1, . . . , y
′
m)) .

Proposition 1 var(x, y1, . . . , ym) (0 ≤ x ≤ n) is a convex function.

Proof (Omitted)

3.2 Upper Bound

To calculate the set of significant itemsets, it is useful to estimate an upper
bound of the interclass variance of any superset J of I because the information
allows us to restrict the search space of the itemsets. For example, if an upper
bound of itemset {i2} is less than the interclass variance of {i1}, then {i2} and
its supersets (e.g., {i2, i3}) can be pruned.

To estimate an upper bound, first, we map each itemset J ⊇ I to a tu-
ple (x(J), y1(J), . . . , ym(J)), which we call stamp point of J . Subsequently, we
calculate a hyper-polyhedron that encloses all the stamp points of J ⊆ I for
the given itemset I. Finally, we prove that one of the vertexes on the wrapping
hyper-polyhedron provides an upper bound. We now present precise definitions
and propositions.
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Fig. 2. The hyper-polyhedron sur-
rounding all the stamp points of
J ⊇ I

Fig. 3. The point maximizing interclass variance
in S2({i1})

Definition 5 Let yi,k(I) be the multi-set {∑t∈D′⊆DI
t[ai] | |D′| = k}. Let Sk(I)

be {(k, z1, . . . , zm) | zi = max yi,k(I) or zi = min yi,k(I) for i = 1, 2, ..., m},
where m is the number of objective attributes. Each element in Sk(I) is a vertex
of the wrapping hyper-polyhedron on x = k.

Here, we describe yi,k(I) as a multi-set, because the multi-set representation will
be required later to define the best N solutions.

For example, in Table 1, let I be {i1}. Then, DI = {t2, t4, t5, t6}, y1,1(I) =
{1, 2, 3, 3}, y1,2(I) = {3, 4, 4, 5, 5, 6}. Furthermore, y2,2(I) = {2, 3, 3, 3, 3, 4}.
Therefore, S2(I) = {(2, 3, 2), (2, 3, 4), (2, 6, 2), (2, 6, 4)}.

Lemma 1 For any itemset J ⊇ I,
var(x(J), y1(J), . . . , ym(J)) ≤ max0≤k≤x(I){var(x) | x ∈ Sk(I)}.

Proof It is known that any convex function is maximized at one of the vertexes
on the boundary of a convex hyper-polyhedron [1]. From Proposition 1, interclass
variance is a convex function. Due to its convexity, it is sufficient to prove that
the hyper-polyhedron of

⋃x(I)
k=0 Sk(I) encloses all the stamp points of itemsets

J ⊇ I.
Note that DJ ⊆ DI for any itemset J ⊇ I. Since yi(J) ∈ yi,x(J)(I)(0 ≤ i ≤

m), min yi,x(J)(I) ≤ yi(J) ≤ max yi,x(J)(I). Therefore, var(x(J), y1(J), . . . , ym(J)) ≤
max{var(x) | x ∈ Sx(J)(I)} ≤ max0≤k≤x(I){var(x) | x ∈ Sk(I)}.

According to this lemma, we can estimate an upper bound of the interclass
variance of itemset J ⊇ I. Fig. 2 illustrates the wrapping strategy. We can
confirm that the hyper-polyhedron surrounds all stamp points. Indeed, according
to this lemma, we can estimate an upper bound of the interclass variance of any
itemset J ⊇ I.

However, two problems may appear. First, the wrapping hyper-polyhedron
might not be sufficiently tight to form a convex hull of J ⊇ I. Second, it could
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be too costly to calculate an upper bound when m is large because the number
of vertices could be x(I) × 2m in the worst case.

For the first problem, we show that our wrapping function is tight enough
to solve real data in Section 5. To overcome the second problem, we develop
a technique that allows us to dramatically reduce the number of vertices to
consider in the next subsection.

3.3 Efficient Calculation of the Upper-Bound

We first remark that the vertex farthest away from sik/n among the vertices of
the hyper-polyhedron on hyper-plain x = k maximizes the interclass variance.
From this property, we will devise an efficient algorithm for searching an upper
bound.

Definition 6 We denote the vertex farthest away from sik/n by
(k, opt y1,k(I), opt y2,k(I), . . .), where

opt yi,k(I) =
{

min yi,k(I) if | min yi,k(I) − sik/n |>| max yi,k(I) − sik/n |
max yi,k(I) otherwise

.

In the running example, k = 2, n = 8 and s1 = s2 = 16. Then, s1k/n =
s2k/n = 4. Since y1,2({i1}) = {3, 4, 4, 5, 5, 6}, min y1,2({i1}) = 3 and
max y1,2({i1}) = 6. Therefore, opt y1,2({i1}) = max y1,2({i1}) = 6. Similarly,
opt y2,2({i2}) = min y2,2({i1}) = 2. The arrows in Fig. 3 illustrate the selection
of opt.

Lemma 2 var(k, opt y1,k(I), . . . , opt ym,k(I)) = max{var(x) | x ∈ Sk(I)}.

Proof Let c = (k, s1k/n, . . . , smk/n). var(x, y1, . . . , ym) = x
m∑

i=1

(
yi

x − si

n

)2+(n−

x)
m∑

i=1

(
si−yi

n−x − si

n

)2

=
(

1
x + 1

n−x

) m∑

i=1

(
yi − si

n x
)2

. From this equality, on hyper-

plain x = k, if |(k, y1, . . . , ym) − c| ≥ |(k, y′
1, . . . , y

′
m) − c|, then var(k, y1, . . . , ym) ≥

var(k, y′
1, . . . , y

′
m).

Now, since opt yi,k(I) denotes the value farthest away from sik/n among
yi,k(I), the point farthest from c on x = k is (k, opt y1,k(I), . . . , opt ym,k(I)).
Therefore, var(k, opt y1,k(I), . . . , opt ym,k(I)) = max{var(x) | x ∈ Sk(I)}.
In the running example, (2, opt y1,2({i1}), opt y2,2({i1})) = (2, max y1,2({i1}),
min y2,2({i1})), and its stamp point is indicated with star in Fig. 3.

Lemma 1 and 2 lead to the following theorem.

Theorem 1 For any itemset J ⊇ I,

var(x(J), y1(J), . . . , ym(J))

≤ max
0≤k≤x(I)

var(k, opt y1,k(I), opt y2,k(I), . . . , opt ym,k(I)).
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Definition 7

u(I) = max
0≤k≤x(I)

var(k, opt y1,k(I), opt y2,k(I), . . . , opt ym,k(I)).

var(2, opt y1,2({i1}), opt y2,2({i1})) = var(2, max y1,2({i1}), min y2,2({i1})) = 5.33.
Similarly, when k = 1, 3 and 4, we can calculate the interclass variances as
2.29, 6.93 and 2.5, respectively. Therefore, u({i1}) = 6.93.

Let us consider the effective computation of u(I). We can calculate min yi,k(I)
(max yi,k(I), resp) for each i by scanning the sorted list of yi,1(I) once. Therefore,
the following lemma can be proved, and its pseudo-code used to calculate u(I)
is shown in Fig. 4. In the pseudo-code, yk

i (I) is k-th smallest value in yi,1(I).
This pseudo-code confirms the following lemma.

Lemma 3 Let I be an itemset. The time complexity for calculating u(I) is
O(mn log n).

4 Itemset Classified Clustering Algorithm

The estimation of an upper bound enables us to design an algorithm to solve
the itemset classified clustering problem as a result of the following pruning
observation.

Fig. 4. The pseudo-code used to calculate
u(I)

Fig. 5. The pseudo-code for Itemset Clas-
sified Clustering

Fig. 6. The pseudo-code for ICC-init Fig. 7. The pseudo-code for ICC-update
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Table 2. Default parameters

Parameter Meaning Default Value

|D|: The number of tuples (genes) 4,000
N : The number of the best classifiers (clusters) 10
L: The length of the promoter region 300

Table 3. Yeast Gene Expression Profile Dataset

Dataset # of feature items # of objective attributes # of available genes (tuples)

Spellman [8] 86,016 23 4,347
Cho [6] 86,016 17 6,137
DeRisi [7] 86,016 7 5,882

Observation 1 [13] Let us evaluate itemsets using an index satisfying convex-
ity. Let N be the user-specified number of itemset classified clustering rules. Let
L be a list of the best N itemsets, and τ(L) be the N -th best value in L. For
any itemset J ⊇ I, since u(J) ≤ u(I), J can be pruned when u(I) < τ(L).

This observation enabled us to design the algorithm “itemset classified clus-
tering.” To describe the itemset classified clustering, we define the following
notation.

Definition 8 Let k-itemset be an itemset containing k items. Let Qk and B1 be
a set of k-itemsets and a set of 1-itemsets, respectively. Let us assume that there
exists a total order among the items. Let I be an itemset, and head(I)(tail(I),
respectively) denote the minimum (maximum) number of items in I.

For example, {i1} is 1-itemset and {i1, i3} is 2-itemset. Assuming that i1 ≺ i2 ≺
· · · and I = {i2, i3, i4}. head(I) = i2 and tail(I) = i4.

Fig. 5-7 shows the pseudo-code used in itemset classified clustering. In this
pseudo-code, instead of traversing the itemsets over a lattice structure like apriori
algorithm [2], we traverse them over a tree structure based on the set enumeration
tree [3, 17], which is tailored to computing the best N rules using a statistical
measure.

5 Experimental Results

5.1 Dataset

This section presents experimental results examining the effectiveness and per-
formance of itemset classified clustering using yeast gene expression dataset and
its DNA sequences. Gene expression dataset includes expression levels of thou-
sands of yeast genes using DNA microarray under distinct conditions and range
from 7 to 23 [18, 6, 7]. We consider each level of expression as an objective value,
and each gene as a tuple.

Table 2 shows the parameters and their default values used to construct the
test data. Table 3 summarizes the three microarray experiments objective values.
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Fig. 8. Scalability of the performance

The experiments have 7 [7], 17 [6], and 23 [18] objective attributes, respectively.
In our experimental results, since gene expression levels are regulated by specific
combinations of short subsequences in promoter region (neighbour region of each
gene), we use the existence of all the subsequences whose lengths are between six
to eight, for instance, “AATGGC” or “AGATCGCC”, as feature items. Therefore, the
number of items is 46 + 47 + 48 = 86, 016 because a DNA sequence consists of 4
letters, A, C, G, and T. Briefly, we test itemset classified clustering algorithm on
a database containing 1,000-6,000 tuples, 7-23 objective attributes, and 86,016
items. As shown in motivating example, itemset classified clustering can extract
clusters which are different from clustering-classification approach, we compute
best 10 clusters containing more than or equal to 10% of all tuples without any
threshold of interclass variance.

We evaluated the overall performance of itemset classified clustering imple-
mented in C with an Ultra SPARC III 900 MHz processor and 1 GB of main
memory on Solaris 8.

5.2 Scalability

Two distinct ways of increasing the size of the dataset were used to test the
scalability of itemset classified clustering. We represent the scalability in Fig. 8.

Fig. 8(A) illustrates the execution time when we increase the number of
tuples |D| from 1,000 to 6,000. The figure shows that the execution time scales
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almost linearly with the number of tuples for every dataset. Therefore, this figure
indicates that our algorithm is scalable for increasing the tuples.

Fig. 8(B) demonstrates the performance of itemset classified clustering when
the average number of items in itemsets increases for adding noisy tuples to
dataset. Such a dataset can be obtained by increasing promoter length L because
the probability of whether each short subsequence appears in the promoter re-
gion increases. In Fig. 8(B), L ranges from 100 to 400, while |D| = 3, 000.
This figure shows that the execution time increases quadratically to the average
itemset size. This graph shows two types of effectiveness of our itemset classified
clustering algorithm. One is that, since our measure, interclass variance, inherits
the characteristics of statistical measures, itemset classified clustering effectively
neglects noisy tuples. The other is that our upper-bound pruning is effective
albeit the search space of itemsets grows more than exponentially according to
increase of the average size of itemsets. This dramatic effects of pruning could be
observed even when the objective attribute has over twenty dimensions. Indeed,
our wrapping hyper-polyhedron of the stamp tuples of all the supersets of an
itemset is bigger than their tight convex hull. Nevertheless, these experiments
prove that our wrapping upper bound estimation is sufficient for a real dataset.

We converted Fig. 8(A) into Fig. 8(C) to study the effect of the number of
objective attributes (dimensions). The figure shows that the execution time also
scales almost linearly with the number of objective attributes.

6 Concluding Remarks

This paper presented the demand of the consideration of new data sets consisting
of tuples which is represented by a feature itemset and an objective vector.
To analyze the data, because traditional clustering-classification method may
not always produce clusters associated with a feature itemset, we introduced
a new paradigm, itemset classified clustering, which is a clustering that allows
only splits expressible by a common feature itemset, and computes the optimal
itemset that maximizes the interclass variance of objective attributes, or list
the most significant N solutions. This itemset classified clustering can extract
clusters overlooked by two-clustering or k-means clustering.

Our experimental results show that the itemset classified clustering has the
scalability of performance for tuple size, objective attribute size, and itemset size.
Therefore, the method can solve the real molecular biological problem containing
6,000 tuples, more than 80,000 boolean feature items and 23 numerical objective
attributes.

Solving the itemset classified clustering problem is applicable to various prob-
lems because this problem prompts us to reconsider the results of both clustering
and classification analysis. One example is to find the association between pa-
tients’ gene expressions and their pathological features. [16] Furthermore, the
replacement of itemset with other features such as numerical or categorical fea-
tures might expand the application of clustering and classification algorithms.
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